
Module 2:
Data Modeling:

Enhanced-Entity-Relationship 
Model

Prof. Pradnya Bhangale
p.bhangale@somaiya.edu



Unit 2.1

• Introduction

• Benefits of Data Modeling

• Types of Models

• Phases of  Database Modeling

• Entity-Relationship (ER) Model

Outline



Introduction

• Building a database system is a complex process that normally 
requires 

• Analyzing user requirements

• Design process

• Concluding with implementation

• During analysis and design, database designer needs to build 
model of proposed database system

• Database modeling is needed to adequately manage database 
development process

• Some examples of model building: architects, aeronautical 
engineers, computer architects, traffic engineers

• A model is an abstract representation of design of complex 
product, process or situation

3



Benefits of Data Modeling

1. Focusing on essentials

• Ignore the details that tend to distract from essential 
features

• Ex: modeling a library

2. Ease of communication and understanding

• Helps all parties involved in building a model to reach 
common understanding of the subject of modeling

• Communication involves developing documentation

• Model can be expressed in text or graphical 
representation or concrete like a prototype

4



3. Product or Process improvement

• Communication between different stake holders lead 
to improvement in product or process modeling

• Ex: process being modeled may involve enterprise 
customers supplying information through forms

4. Exploring alternatives

• Assist in answering ‘what if’ questions

• Sometimes it is necessary to build prototype to 
evaluate alternatives

Benefits of Data Modeling (contd..)

5



Types of models

1. Descriptive 
• Primary purpose to describe or understand phenomena or 

complex machinery

• Ex: meteorologists, investment companies, school teacher

2. Prescriptive
• Primary purpose is to clearly specify what a piece of 

machinery/ software is supposed to do

• Ex: Google classroom

3. Representative 
• Primary purpose is to simulate behaviour of some 

phenomena or machinery

• Ex: computer games, face recognition techniques 6



Phases of Data Modeling/Design

7



• Phase 1: Requirement Collection and Analysis:

• Database Designers interview prospective database users to 
understand and document their data requirements

• Requirements should be specified in as detailed 

• In parallel, specify functional requirements of the 
application(user defined operations) with use of data flow, 
sequence diagrams etc.

• Phase 2: Conceptual Schema:

• Have concise description of data requirements of users and 
include detailed description of entity, types, relationships and 
constraints represented using high level data model

• High level data model  act as reference to ensure that all users 
data requirements are met and that requirements do not conflict 

Phases of Data Modeling(contd..)

8



• Phase 3: Logical Design:

• Actual implementation of database using commercial 
DBMS(relational or Object oriented database model)

• Conceptual schema is transformed from high-level data model to 
implementation data model  

• Phase 4: Physical Design:

• Internal storage structures, indexes, access paths and file 
organization for database files are specified

• In parallel, application programs are designed and implemented 
as database transactions corresponding to high level transaction 
specification

• ER model concepts for conceptual schema is introduced 

Phases of Data Modeling(contd..)

9



Example COMPANY Database

• We need to create a database schema design based on 
the following (simplified) requirements of the COMPANY 
Database:

• The company is organized into DEPARTMENTs. Each 
department has a name, number and an employee 
who manages the department. We keep track of the 
start date of the department manager. A department 
may have several locations.

• Each department controls a number of PROJECTs. Each 
project has a unique name, unique number and is 
located at a single location.

10



Example COMPANY Database (Contd.)

• We store each EMPLOYEE’s social security number, 
address, salary, sex, and birthdate. 

• Each employee works for one department but may 
work on several projects.

• We keep track of the number of hours per week that 
an employee currently works on each project.

• We also keep track of the direct supervisor of each 
employee.

• Each employee may have a number of DEPENDENTs.

• For each dependent, we keep track of their name, sex, 
birthdate, and relationship to the employee.

11



ER Model Concepts
• Entities and Attributes

• Entities are specific objects or things in the mini-world that 
are represented in the database.
• For example the EMPLOYEE John Smith, the Research 

DEPARTMENT, the ProductX PROJECT

• Attributes are properties used to describe an entity.
• For example an EMPLOYEE entity may have the 

attributes Name, SSN, Address, Sex, BirthDate

• A specific entity will have a value for each of its attributes.
• For example a specific employee entity may have 

Name='John Smith', SSN='123456789', Address ='731, 
Fondren, Houston, TX', Sex='M', BirthDate='09-JAN-55‘

• Each attribute has a value set (or data type) associated with 
it – e.g. integer, string, subrange, enumerated type, … 12



Types of Attributes

• Simple
• Each entity has a single atomic value for the attribute. For 

example, SSN or Gender.
• Composite

• The attribute may be composed of several components. For 
example:
• Address(Apt#, House#, Street, City, State, ZipCode, 

Country)
• Name(FirstName, MiddleName, LastName).
• Composition may form a hierarchy where some 

components are themselves composite.
• Multi-valued

• An entity may have multiple values for that attribute. For 
example, Color of a CAR or PreviousDegrees of a STUDENT.
• Denoted as {Color} or {PreviousDegrees}. 13



Example of a composite attribute

14



Types of Attributes (contd..)

• In general, composite and multi-valued attributes may be 
nested arbitrarily to any number of levels, although this is 
rare.

• For example, PreviousDegrees of a STUDENT is a composite 
multi-valued attribute denoted by {PreviousDegrees
(College, Year, Degree, Field)}

• Multiple PreviousDegrees values can exist

• Each has four subcomponent attributes:

• College, Year, Degree, Field

• Derived attributes
• Can be computed from other attributes
• E.g.  age, given date of birth 15



Entity Types and Key Attributes 

• Entities with the same basic attributes are grouped or 
typed into an entity type. 

• For example, the entity type EMPLOYEE and PROJECT.

• An attribute of an entity type for which each entity must 
have a unique value is called a key attribute of the entity 
type. 

• For example, SSN of EMPLOYEE.

16



Entity Types and Key Attributes 
(contd..)

• A key attribute may be composite. 

• VehicleTagNumber is a key of the CAR entity type with 
components (Number, State).

• An entity type may have more than one key. 

• The CAR entity type may have two keys:

• VehicleIdentificationNumber (popularly called VIN)

• VehicleTagNumber (Number, State), aka license 
plate number.

• Each key is underlined

17



Naming Conventions

• Entities:

• Each entity should be a noun, singular or present 
tense(something about which we want to keep 
information)

• First letter should be uppercase

• Wherever necessary, entities name must be joined using 
underscore  symbol

• Entity names must be meaningful and must not conflict 
with other entity names

• Ex: Account, Customer, Product, Employee, Department, 
Player etc.

18



Naming Conventions(Contd…)

• Attributes:

• Attribute name should be noun 

• Where necessary, attribute name can use underscore 
to join two words

• Attribute name should be unique. Attributes of 
different entities can have same name

• Ex: PID, EmpID, Course_No, Status, Reason, 
Date_of_Birth etc.

19



Displaying an Entity type

• In ER diagrams, an entity type is displayed in a 
rectangular box

• Attributes are displayed in ovals

• Each attribute is connected to its entity type

• Components of a composite attribute are connected to 
the oval representing the composite attribute

• Each key attribute is underlined

• Multivalued attributes displayed in double ovals

• Derived attributes are represented with dotted oval

20



E-R Diagram With Composite, Multivalued, 
and Derived Attributes

21



Ex: Entity Type CAR with two keys and a 
corresponding Entity Set

22



Entity Set

• Each entity type will have a collection of entities stored 
in the database called the entity set

• Previous slide shows three CAR entity instances in the 
entity set for CAR

• Same name (CAR) used to refer to both the entity type 
and the entity set

• Entity set is the current state of the entities of that type 
that are stored in the database

23



Example COMPANY Database

• We need to create a database schema design based on 
the following (simplified) requirements of the COMPANY 
Database:

• The company is organized into DEPARTMENTs. Each 
department has a name, number and an employee 
who manages the department. We keep track of the 
start date of the department manager. A department 
may have several locations.

• Each department controls a number of PROJECTs. Each 
project has a unique name, unique number and is 
located at a single location.

24



Example COMPANY Database (Contd.)

• We store each EMPLOYEE’s social security number, 
address, salary, sex, and birthdate. 

• Each employee works for one department but may 
work on several projects.

• We keep track of the number of hours per week that 
an employee currently works on each project.

• We also keep track of the direct supervisor of each 
employee.

• Each employee may have a number of DEPENDENTs.

• For each dependent, we keep track of their name, sex, 
birthdate, and relationship to the employee.

25



Initial Design of Entity Types for the 
COMPANY Database Schema

• Based on the requirements, we can identify four initial 
entity types in the COMPANY database:

• DEPARTMENT

• PROJECT

• EMPLOYEE

• DEPENDENT

• The initial attributes shown are derived from the 
requirements description

26



Initial Design of Entity Types:
EMPLOYEE, DEPARTMENT, PROJECT, DEPENDENT

27



Example:1

For your convenience, here is a summary of how the Academic 
Database (School Management System) works:

a. A School/University has many Departments which offer courses to 
students in a given academic session.

b. Each of these courses is taught by a faculty.

c. Students enroll for different courses in an academic session.

d. Besides the registration details, the parent information of the 
student also needs to be maintained by the University/School.

e. The Department maintains the student’s attendance details which 
would decide the eligibility of the student to take up the exams for 
that academic session.

f. For each academic session, exams are conducted and the results are 
shared with the student within a stipulated period of time.

g. The Department also maintains a log of the Faculty login and logout 
time for their reporting needs.

28



Example 1 Solution: Identified Entities

29



Example 1 Solution :Identify Attributes for 
Entities

30



Refining the initial design by 
introducing relationships

• The initial design is typically not complete

• Some aspects in the requirements will be represented as 
relationships

• ER model has three main concepts:

• Entities (and their entity types and entity sets)

• Attributes (simple, composite, multivalued, derived)

• Relationships (and their relationship types and 
relationship sets)

31



Relationships and Relationship Types

• A relationship relates two or more distinct entities with a 
specific meaning.
• For example, EMPLOYEE John Smith works on the ProductX

PROJECT, or EMPLOYEE Franklin Wong manages the Research 
DEPARTMENT.

• Relationships of the same type are grouped or typed into 
a relationship type.
• For example, the WORKS_ON relationship type in which 

EMPLOYEEs and PROJECTs participate, or the MANAGES
relationship type in which EMPLOYEEs and DEPARTMENTs 
participate.

• The degree of a relationship type is the number of 
participating entity types. 
• Both MANAGES and WORKS_ON are binary relationships. 32



Relationship instances of the WORKS_FOR N:1 
relationship between EMPLOYEE and DEPARTMENT

33



Relationship instances of the M:N  WORKS_ON 
relationship between EMPLOYEE and PROJECT

34



Relationship type vs. relationship set

• Relationship Type:

• Is the schema description of a relationship

• Identifies the relationship name and the participating 
entity types

• Also identifies certain relationship constraints

• Relationship Set:

• The current set of relationship instances represented 
in the database

• The current state of a relationship type
35



Relationship type vs. relationship set 
(contd..)

• Each instance in the set relates individual participating 
entities – one from each participating entity type

• In ER diagrams, we represent the relationship type as 
follows:

• Diamond-shaped box is used to display a relationship 
type

• Connected to the participating entity types via straight 
lines

36



Naming Convention(contd..)

• Relationships:

• Each relationship name should be a verb that fits 
sentence structure

• Where necessary, relationship name can use 
underscore to join two words

• Ex: Occupies, Married_to, Represents, Batting etc.

37



Example COMPANY Database

• We need to create a database schema design based on 
the following (simplified) requirements of the COMPANY 
Database:

• The company is organized into DEPARTMENTs. Each 
department has a name, number and an employee 
who manages the department. We keep track of the 
start date of the department manager. A department 
may have several locations.

• Each department controls a number of PROJECTs. Each 
project has a unique name, unique number and is 
located at a single location.

38



Example COMPANY Database (Contd.)

• We store each EMPLOYEE’s social security number, 
address, salary, sex, and birthdate. 

• Each employee works for one department but may 
work on several projects.

• We keep track of the number of hours per week that 
an employee currently works on each project.

• We also keep track of the direct supervisor of each 
employee.

• Each employee may have a number of DEPENDENTs.

• For each dependent, we keep track of their name, sex, 
birthdate, and relationship to the employee.

39



Refining the COMPANY database schema 
by introducing relationships

• By examining the requirements, six relationship types are 
identified

• All are binary relationships( degree 2)

• Listed below with their participating entity types:

• WORKS_FOR (between EMPLOYEE, DEPARTMENT)

• MANAGES (also between EMPLOYEE, DEPARTMENT)

• CONTROLS (between DEPARTMENT, PROJECT)

• WORKS_ON (between EMPLOYEE, PROJECT)

• SUPERVISION (between EMPLOYEE (as subordinate), 
EMPLOYEE (as supervisor))

• DEPENDENTS_OF (between EMPLOYEE, DEPENDENT) 40



Discussion on Relationship Types

• In general, more than one relationship type can exist 
between the same participating entity types 

• MANAGES and WORKS_FOR are distinct relationship 
types between EMPLOYEE and DEPARTMENT

• Different meanings and different relationship 
instances.

41



ER DIAGRAM –Relationship Types are:
WORKS_FOR, MANAGES, WORKS_ON, CONTROLS, SUPERVISION, DEPENDENTS_OF

42



Role Names and Recursive Relationships

• Each entity that participates in a relationship type plays a 
particular role in relationship

• Role name signifies role that participating entity from entity 
type plays in each relationship instance

• Ex: Works_for relationship type, EMPLOYEE plays role of 
employee or worker and DEPARTMENT plays role of 
department or employer

• Role name has significant importance when same entity 
participates more than once in a relationship type in different 
roles

Such relationship types are called recursive or self-
referencing relationships 43



Ex: Recursive Relationship type

44



Recursive Relationship Type

• An relationship type whose with the same participating 
entity type in distinct roles

• Example: the SUPERVISION relationship

• EMPLOYEE participates twice in two distinct roles:

• supervisor (or boss) role

• supervisee (or subordinate) role

• Each relationship instance relates two distinct EMPLOYEE 
entities:

• One employee in supervisor role

• One employee in supervisee role
45



Displaying a recursive relationship
• In a recursive relationship type.

• Both participations are same 
entity type in different roles.

• For example, SUPERVISION 
relationships between 
EMPLOYEE (in role of 
supervisor or boss) and 
(another) EMPLOYEE (in role of 
subordinate or worker).

• In following figure, first role 
participation labeled with 1 and 
second role participation labeled 
with 2.

• In ER diagram, need to display 
role names to distinguish 
participations.

46



Recursive Relationship Type is: SUPERVISION

(participation role names are shown)

47



Weak Entity Types

• An entity that does not have a key attribute

• A weak entity must participate in an identifying relationship 
type with an owner or identifying entity type

• Entities are identified by the combination of:

• A partial key(discriminator key) of the weak entity type

• The particular entity they are related to in the identifying 
entity type

• Example: 

• A DEPENDENT entity is identified by the dependent’s first 
name, and the specific EMPLOYEE with whom the 
dependent is related

• Name of DEPENDENT is the partial key

• DEPENDENT is a weak entity type represented with double 
rectangular box

• EMPLOYEE is its identifying entity type via the identifying 
relationship type DEPENDENT_OF

48



Example: Weak Entity Set

49



Attributes of Relationship types

• A relationship type can have attributes:

• For example, HoursPerWeek of WORKS_ON

• A value of HoursPerWeek depends on a particular 
(employee, project) combination

• Most relationship attributes are used with M:N 
relationships

• In 1:N relationships, they can be transferred to the 
entity type on the N-side of the relationship

51



Relationship Sets with Attributes

52



Example Attribute of a Relationship Type: 
Hours of WORKS_ON

53



Constraints on Relationships

• Constraints on Relationship Types

• Can be of two types: Cardinality Ratio and Participation

• Cardinality Ratio (specifies maximum number of 
relationship instances that an entity can participate in) 

• One-to-one (1:1)

• One-to-many (1:N) 

• Many-to-one (N:1)

• Many-to-many (M:N)

54



Many-to-one (N:1) Relationship

55



Many-to-many (M:N) Relationship

56



Example: Cardinality Ratio

57



Constraints on Relationships (contd..)

• Participation Constraints:

• Existence of an entity depends on it being related to 
any other entity via a relationship type

• Specifies minimum number of relationship instances 
that each entity can participate in (minimum 
cardinality constraint)

• Two types of participation constraints:
• Total(existence dependency): Each entity is involved in 

the relationship

• Ex: every employee must work for a department

• Partial: Not all entities are involved in the relationship

• Ex: Don’t expect every employee to manage department
58



Notation for Constraints on Relationships
• Cardinality ratio (of a binary relationship): 1:1, 1:N, N:1, or 

M:N
• Shown by placing appropriate numbers on the relationship 

edges.

• Participation constraint (on each participating entity type): 
total (called existence dependency) or partial.

• Total shown by double line

• Partial by single line.

• NOTE: These are easy to specify for Binary Relationship Types.

59



Example: Participation Constraint

60



(min, max) notation for relationship 
structural constraints:

• Specifies that each entity e in E participates in at least min and 
at most max relationship instances in R

• Default(no constraint): min=0, max=n (signifying no limit)
• Must have minmax, min0, max 1
• Examples:

• A department has exactly one manager and an employee 
can manage at most one department.
• Specify (0,1) for participation of EMPLOYEE in MANAGES
• Specify (1,1) for participation of DEPARTMENT in MANAGES

• An employee can work for exactly one department but a 
department can have any number of employees.
• Specify (1,1) for participation of EMPLOYEE in WORKS_FOR
• Specify (0,n) for participation of DEPARTMENT in WORKS_FOR

61



The (min,max) notation for 
relationship constraints

Read the min,max numbers next to the entity 

type and looking away from the entity type



Example:

63



S
lid

e
 3

-
6
4

COMPANY ER Schema Diagram using (min, 
max) notation



Summary of notation for ER diagrams

68



Casestudy:1

Consider following set of requirements for a UNIVERSITY 
database that is used to keep track of students transcripts.

• University keeps track of each students name, student 
number, SSN, current address and phone, permanent address 
and phone, birth date, gender, class, major department, minor 
department if any, and degree program. Some user 
applications need to refer to city, state and Zip code of 
students permanent address and to students last name. Both 
SSN and student number have unique values for each student

• Each department is described by a name, department code, 
office number, office phone and college. Both name and code 
have unique values for each department

69



Casestudy:1(contd..)

• Each course has a course name, description, course number, 
number of semester hours, level and offering department. The 
value of course number is unique for each course

• Each section has an instructor, semester, year, course and 
section number. The section number distinguishes sections of 
the same course that are taught during same semester/year, 
its value are 1,2,3… upto number of sections taught during 
each semester

• A grade report has a student, section, letter grade and 
numeric grade(0,1,2,3 or 4)

• Design ER Schema for this application. Specify key attributes 
of each entity type, constraints on each relationship type. 
Note any unspecified requirements and make appropriate 
assumptions to make specification complete 70



Solution:

71



Relationships of Higher Degree

• Degree of relationship type is defined as number of 
participating entity types

• Relationship types of degree 2 are called binary

• Relationship types of degree 3 are called ternary and of 
degree n are called n-ary

• In general, an n-ary relationship is not equivalent to n 
binary relationships

• Constraints are harder to specify for higher-degree 
relationships (n > 2) than for binary relationships

80



Discussion of n-ary relationships (n > 2)

• In general, 3 binary relationships can represent different 
information than a single ternary relationship (see Figure 
3.17a and b on next slide)

• If needed, the binary and n-ary relationships can all be 
included in the schema design (see Figure 3.17a and b, 
where all relationships convey different meanings)

• In some cases, a ternary relationship can be represented 
as a weak entity if the data model allows a weak entity 
type to have multiple identifying relationships (and 
hence multiple owner entity types) (see Figure 3.17c)

81



Example of a ternary relationship

82



Discussion of n-ary relationships (n > 2)

• If a particular binary 
relationship can be derived 
from a higher-degree 
relationship at all times, then 
it is redundant

• For example, the 
TAUGHT_DURING, 
OFFERED_DURING binary 
relationships can be derived 
from the ternary relationship 
OFFERS (based on the 
meaning of the relationships)

83



Example
• Two ER Diagrams of employees, department and projects are given 

below:

1. Which employees work on Project J1?
2. Which departments are involved in project J1?
3. Which parts are supplied to project J1?
4. How many employees of department D1 working on project J1?
5. Are there parts that S1 can supply but is not supplying currently?
• Queries answered by model 1
• Queries answered by model 2
• Queries cannot be answered by any models?

84

Model 1
Model 2



Outline
• EER stands for Enhanced ER or Extended ER

• EER Model Concepts
• Includes all modeling concepts of basic ER 
• Additional concepts: 

• subclasses/superclasses
• specialization/generalization
• aggregation
• categories (UNION types)

• These are fundamental to conceptual modeling

Unit 2.2:

91



Subclasses and Superclasses

• An entity type may have additional meaningful 
subgroupings of its entities

• Example: EMPLOYEE may be further grouped into: 

• SECRETARY, ENGINEER, TECHNICIAN, …

• Based on the EMPLOYEE’s Job

• MANAGER

• EMPLOYEEs who are managers

• SALARIED_EMPLOYEE, HOURLY_EMPLOYEE

• Based on the EMPLOYEE’s method of pay

• EER diagrams extend ER diagrams to represent these 
additional subgroupings, called subclasses or subtypes 92



Subclasses and Superclasses(contd..)

93



Subclasses and Superclasses (contd..)

• Each of these subgroupings is a subset of EMPLOYEE 
entities 

• Each is called a subclass of EMPLOYEE 

• EMPLOYEE is the superclass for each of these subclasses 

• These are called superclass/subclass relationships:

• EMPLOYEE/SECRETARY

• EMPLOYEE/TECHNICIAN

• EMPLOYEE/MANAGER

• …

94



Subclasses and Superclasses (contd..)

• These are also called IS-A relationships
• SECRETARY IS-A EMPLOYEE, TECHNICIAN IS-A EMPLOYEE, ….

• Note: An entity that is member of a subclass represents 
the same real-world entity as some member of the 
superclass:
• The subclass member is the same entity in a distinct specific 

role

• An entity cannot exist in the database merely by being a 
member of a subclass; it must also be a member of the 
superclass 

• A member of the superclass can be optionally included as a 
member of any number of its subclasses

95



Subclasses and Superclasses (contd..)

• Examples:

• A salaried employee who is also an engineer belongs 
to the two subclasses:

• ENGINEER, and

• SALARIED_EMPLOYEE 

• A salaried employee who is also an engineering 
manager belongs to the three subclasses:

• MANAGER,

• ENGINEER, and

• SALARIED_EMPLOYEE 

• It is not necessary that every entity in a superclass be a 
member of some subclass

96



Attribute Inheritance in Superclass / 
Subclass Relationships 

• An entity that is member of a subclass inherits

• All attributes of the entity as a member of the 
superclass 

• All relationships of the entity as a member of the 
superclass

• Example:

• In the previous slide, SECRETARY (as well as 
TECHNICIAN and ENGINEER) inherit the attributes 
Name, SSN, …, from EMPLOYEE

• Every SECRETARY entity will have values for the 
inherited attributes

97



98

Attribute Inheritance in Superclass / Subclass 
Relationships 



Specialization

• Specialization is the process of defining a set of 
subclasses of a superclass 

• The set of subclasses is based upon some distinguishing 
characteristics of the entities in the superclass

• Example: {SECRETARY, ENGINEER, TECHNICIAN} is a 
specialization of EMPLOYEE based upon job type.

• May have several specializations of the same 
superclass 

99



Representing Specialization in EER 
Diagrams

100



Specialization (contd..)

• Example: Another specialization of EMPLOYEE based on 
method of pay is {SALARIED_EMPLOYEE, 
HOURLY_EMPLOYEE}.

• Superclass/subclass relationships and specialization can be 
diagrammatically represented in EER diagrams

• Attributes of a subclass are called specific or local
attributes.

• For example, the attribute TypingSpeed of SECRETARY

• The subclass can also participate in specific relationship 
types.

• For example, a relationship BELONGS_TO of 
HOURLY_EMPLOYEE 101



Specialization (contd..)

102



Generalization

• Generalization is the reverse of the specialization process 

• Several classes with common features are generalized 
into a superclass; 

• original classes become its subclasses

• Example: CAR, TRUCK generalized into VEHICLE; 

• both CAR, TRUCK become subclasses of the superclass 
VEHICLE.

• We can view {CAR, TRUCK} as a specialization of VEHICLE 

• Alternatively, we can view VEHICLE as a generalization of 
CAR and TRUCK 

103



Generalization (contd..)

104



Generalization and Specialization 

• Diagrammatic notation are sometimes used to 
distinguish between generalization and specialization

• Arrow pointing to the generalized superclass 
represents a generalization 

• Arrows pointing to the specialized subclasses 
represent a specialization 

• We do not use this notation because it is often 
subjective as to which process is more appropriate for 
a particular situation 

105



Generalization and Specialization (contd..)

• Data Modeling with Specialization and Generalization

• A superclass or subclass represents a collection (or set 
or grouping) of entities

• It also represents a particular type of entity

• Shown in rectangles in EER diagrams (as are entity 
types) 

• We can call all entity types (and their corresponding 
collections) classes, whether they are entity types, 
superclasses, or subclasses

106



Constraints on Specialization and 
Generalization
• If we can determine exactly those entities that will 

become members of each subclass by a condition, the 
subclasses are called predicate-defined (or condition-
defined) subclasses 

• Condition is a constraint that determines subclass 
members 

• Display a predicate-defined subclass by writing the 
predicate condition next to the line attaching the 
subclass to its superclass 

107



Constraints on Specialization and 
Generalization (contd..)

• If all subclasses in a specialization have membership 
condition on same attribute of the superclass, 
specialization is called an attribute-defined 
specialization 
• Example: JobType is the defining attribute of the 

specialization {SECRETARY, TECHNICIAN, ENGINEER} of 
EMPLOYEE

• If no condition determines membership, the subclass is 
called user-defined 
• Membership in a subclass is determined by the database 

users by applying an operation to add an entity to the 
subclass 

• Membership in the subclass is specified individually for 
each entity in the superclass by the user 

108



Displaying an attribute-defined 
specialization in EER diagrams

109



Constraints on Specialization and 
Generalization (contd..)

• Two basic constraints can apply to a 
specialization/generalization:

• Disjointness Constraint

• Completeness Constraint

110



Constraints on Specialization and 
Generalization (contd..)

• Disjointness Constraint: 

• Specifies that the subclasses of the specialization must 
be disjoint:

• an entity can be a member of at most one of the 
subclasses of the specialization

• Specified by d in EER diagram 

• If not disjoint, specialization is overlapping:

• that is the same entity may be a member of more 
than one subclass of the specialization

• Specified by o in EER diagram 
111



Constraints on Specialization and 
Generalization (contd..)

• Completeness Constraint: 

• Total specifies that every entity in the superclass must 
be a member of some subclass in the 
specialization/generalization 

• Shown in EER diagrams by a double line

• Partial allows an entity not to belong to any of the 
subclasses 

• Shown in EER diagrams by a single line

112



Constraints on Specialization and 
Generalization (contd..)

• Hence, we have four types of 
specialization/generalization:

• Disjoint, total 

• Disjoint, partial 

• Overlapping, total 

• Overlapping, partial

• Note: Generalization usually is total because the 
superclass is derived from the subclasses.

113



Example of disjoint partial Specialization

114



Example of overlapping total Specialization

115



Example:

• Explain by drawing a diagram of how could you 
model a driving license which may be for driving 
a car, bus, truck, taxi, scooter or tourist bus. 

• Use a superclass/ subclass model. 

• List all information that each entity must possess

116



Specialization/Generalization Hierarchies, 
Lattices & Shared Subclasses

• A subclass may itself have further subclasses specified on 
it 

• forms a hierarchy or a lattice

• Hierarchy has a constraint that every subclass has only 
one superclass (called single inheritance); this is basically 
a tree structure

• In a lattice, a subclass can be subclass of more than one 
superclass (called multiple inheritance)

117



Shared Subclass “Engineering_Manager”

118



Specialization/Generalization Hierarchies, 
Lattices & Shared Subclasses (contd..)

• In a lattice or hierarchy, a subclass inherits attributes not 
only of its direct superclass, but also of all its predecessor 
superclasses

• A subclass with more than one superclass is called a 
shared subclass (multiple inheritance)

• Can have:

• specialization hierarchies or lattices, or 

• generalization hierarchies or lattices, 

• depending on how they were derived

• We just use specialization (to stand for the end result of 
either specialization or generalization) 119



Specialization/Generalization Hierarchies, 
Lattices & Shared Subclasses (contd..)

• In specialization, start with an entity type and then 
define subclasses of the entity type by successive 
specialization

• called a top down conceptual refinement process

• In generalization, start with many entity types and 
generalize those that have common properties

• Called a bottom up conceptual synthesis process

• In practice, a combination of both processes is usually 
employed 

120



Specialization / Generalization Lattice 
Example (UNIVERSITY)

121



Categories (UNION TYPES)

• All of the superclass/subclass relationships we have seen 
thus far have a single superclass 

• A shared subclass is a subclass in:

• more than one distinct superclass/subclass relationships

• each relationships has a single superclass

• shared subclass leads to multiple inheritance

• In some cases, we need to model a single 
superclass/subclass relationship with more than one
superclass 

• Superclasses can represent different entity types 

• Such a subclass is called a category or UNION TYPE 122



Categories (UNION TYPES) (contd..)

• Example: In a database for vehicle registration, a vehicle 
owner can be a PERSON, a BANK (holding a lien on a 
vehicle) or a COMPANY.

• A category (UNION type) called OWNER is created to 
represent a subset of the union of the three superclasses 
COMPANY, BANK, and PERSON 

• A category member must exist in at least one of its 
superclasses

• Difference from shared subclass, which is a:

• subset of the intersection of its superclasses

• shared subclass member must exist in all of its superclasses
123



Formal Definitions of EER Model

• Class C: 
• A type of entity with a corresponding set of entities:

• could be entity type, subclass, superclass, or category

• Note: The definition of relationship type in ER/EER 
should have 'entity type' replaced with 'class‘ to allow 
relationships among classes in general

• Subclass S is a class whose:
• Type inherits all the attributes and relationship of a class C

• Set of entities must always be a subset of the set of entities of 
the other class C
• S ⊆ C

• C is called the superclass of S

• A superclass/subclass relationship exists between S and C 124



Formal Definitions of EER Model 
(contd..)

• Specialization Z: Z = {S1, S2,…, Sn} is a set of subclasses 
with same superclass G; hence, G/Si is a superclass 
relationship for i = 1, …., n.
• G is called a generalization of the subclasses {S1, S2,…, 

Sn} 
• Z is total if we always have:

• S1 ∪ S2 ∪ … ∪ Sn = G;
• Otherwise, Z is partial.

• Z is disjoint if we always have:
• Si ∩ Sj empty-set for i ≠ j;

• Otherwise, Z is overlapping.

125



Formal Definitions of EER Model 
(contd..)

• Subclass S of C is predicate defined if predicate 
(condition)  p on attributes of C is used to specify 
membership in S; 
• that is, S = C[p], where C[p] is the set of entities in C that 

satisfy condition p

• A subclass not defined by a predicate is called user-
defined 

• Attribute-defined specialization: if a predicate A = ci 
(where A is an attribute of G and ci is a constant value 
from the domain of A) is used to specify membership in 
each subclass Si in Z
• Note: If ci ≠ cj for i ≠ j, and A is single-valued, then the 

attribute-defined specialization will be disjoint. 126



Two categories (UNION types): OWNER, 
REGISTERED_VEHICLE

127



Formal Definitions of EER Model 
(contd..)

• Category or UNION type T

• A class that is a subset of the union of n defining 
superclasses
D1, D2,…Dn, n>1:

• T ⊆ (D1 ∪ D2 ∪ … ∪ Dn)

• Can have a predicate pi on the attributes of Di to 
specify entities of Di that are members of T. 

• If a predicate is specified on every Di: T = (D1[p1] ∪
D2[p2] ∪…∪ Dn[pn])

128



Alternative diagrammatic notations

• ER/EER diagrams are a specific notation for displaying the 
concepts of the model diagrammatically

• DB design tools use many alternative notations for the 
same or similar concepts

• One popular alternative notation uses UML class 
diagrams

129



UML Example for Displaying 
Specialization / Generalization

130



S
lid

e
 4

-
1
3
1

Alternative Diagrammatic 
Notations



S
lid

e
 4

-
1
3
2

General Conceptual Modeling 
Concepts

• GENERAL DATA ABSTRACTIONS

• CLASSIFICATION and INSTANTIATION

• AGGREGATION and ASSOCIATION (relationships)

• GENERALIZATION and SPECIALIZATION

• IDENTIFICATION

• CONSTRAINTS

• CARDINALITY (Min and Max)

• COVERAGE (Total vs. Partial, and Exclusive (disjoint) vs. 
Overlapping)


