
Module 3:
Data Model - Relational Data

Model and Relational Algebra

Outline

• Introduction

• Mapping EER to Relational Model

• Data Manipulation
• Relational Algebra
• Relational Calculus

• Data Integrity

• Advantages of the Relational Model

2

Unit 3.1 & 3.2:

Introduction

• Relational Model was proposed by E.F.Codd in 1970
based on concept of mathematical relation which looks
like a table of value

• All data models represent a record which is collection of
attributes where structure of record may be somewhat
different

• Data model provides facilities for representing entities
and their attributes as well as relationships

3

Why Relational Model?

• ER Model allows us to define the structure of enterprise
data more easily

• Relational model allows powerful query languages to be
designed that could not be employed with ER model

• ER model is used to build conceptual view of database
Relational Model is used for implementation of

conceptual view

4

Relational Model
• Provides specification of an abstract database management

system

• Easy to understand

• based on theoretical concepts like predicate calculus and theory
of relations

• Codd defined relational model as consisting of following three
components:

1. Data Structure: types of data structure used for building
database

2. Data Manipulation: operators that are used to retrieve,
derive or modify data stored in data structures

3. Data Integrity: rules that explicitly/implicitly define
consistent database state 5

1. Data Structure

• Information about all entities and their attributes as well
as relationships are presented to users as
tables(relations)

• Database is collection of relations

• Each row of each table consist of entity occurrence or
relationship occurrence

• Each column refer to an attribute

• In relational model, it is assumed that no ordering of
rows and columns is defined

6

• Relational Terminology:

1. Relation: simple table defined as set of rows

2. Tuple: each row in a relation

3. Attribute: column in a relation

4. Degree of relation: number of columns in the relation

5. Cardinality of relation: number of rows in the relation

6. Domain: set of atomic values that each element in
column is permitted to take.

• Domain maybe given unique names

• Same domain can be used by number of different
columns

1. Data Structure(contd..)

7

8

1. Data Structure example (contd..)

• A Relation may be defined in multiple ways.

• The Schema of a Relation: R (A1, A2,An)

Relation schema R is defined over attributes A1, A2,
.....An

For Example -

CUSTOMER (Cust-id, Cust-name, Address, Phone#)

Here, CUSTOMER is a relation defined over the four
attributes Cust-id, Cust-name, Address, Phone#, each of
which has a domain or a set of valid values. For example,
the domain of Cust-id is 6 digit numbers.

9

1. Data Structure(contd..)

• A tuple is an ordered set of values

• Each value is derived from an appropriate domain.

• Each row in the CUSTOMER table may be referred to as a
tuple in the table and would consist of four values.

• <632895, "John Smith", "101 Main St. Atlanta, GA
30332", "(404) 894-2000">
is a tuple belonging to the CUSTOMER relation.

• A relation may be regarded as a set of tuples (rows).

10

1. Data Structure(contd..)

• A domain has a logical definition: e.g.,
“USA_phone_numbers” are the set of 11 digit phone
numbers valid in the U.S. which may have a format:
(ddd)-ddd-dddd where each d is a decimal digit.

• E.g., Dates have various formats such as monthname,
date, year or yyyy-mm-dd, or dd mm,yyyy etc.

• An attribute designates the role played by the domain.

• E.g., the domain Date may be used to define attributes
“Invoice-date” and “Payment-date”.

11

1. Data Structure(contd..)

12

1. Data Structure Summary(contd..)

13

1. Data Structure Summary(contd..)

• Properties of a relation in relational model:
1. Each relation contains only one record type

2. Each relation has a fixed number of columns(attributes) that
are explicitly named. Each attribute name within a relation is
unique

3. No two rows in a relation are the same

4. Each item or element in relation is atomic, every attribute
has only one value that cannot be decomposed into smaller
components

5. Rows have no ordering associated with them

6. Columns have no ordering associated with them

7. null value is used to represent values that are unknown or
inapplicable to certain tuples

1. Data Structure(contd..)

14

15

Properties of a relation in relational model

1. Data Structure(contd..)

Candidate Key:

• An attribute(or set of attributes) is called candidate key of
relation if it satisfies following properties:
a. An attribute(or set of attributes) uniquely identifies each tuple

in relation…..(uniqueness property)

b. If key is set of attributes then no subset of these attributes has
property(a)…..(minimal property)

c. more than one candidate key

d. Ex: Employee_Id, SSN

Primary Key:

• One(and only one) of the candidate keys is arbitrarily chosen
as the primary key of the table

• Primary key therefore has properties of uniqueness and
minimality

• Ex: Employee_Id

1. Data Structure(contd..)

16

• Mapping EER Model to Relational Model

• ER-to-Relational Mapping Algorithm

Step 1: Mapping of Regular Entity Types

Step 2: Mapping of Weak Entity Types

Step 3: Mapping of Binary 1:1 Relation Types

Step 4: Mapping of Binary 1:N Relationship Types.

Step 5: Mapping of Binary M:N Relationship Types.

Step 6: Mapping of Multivalued attributes.

Step 7: Mapping of N-ary Relationship Types.

• Mapping EER Model Constructs to Relations

Step 8: Options for Mapping Specialization or Generalization.

Step 9: Mapping of Union Types (Categories).

Unit 3.2

17

FIGURE 7.1
The ER conceptual schema diagram for the COMPANY database.

18

19

20

ER-to-Relational Mapping Algorithm

• Step 1: Mapping of Regular Entity Types.

• For each regular (strong) entity type E in the ER schema, create a
relation R that includes all the simple attributes of E.

• Include only simple composite attributes of a composite attribute
• Choose one of the key attributes of E as the primary key for R. If

the chosen key of E is composite, the set of simple attributes that
form it will together form the primary key of R.

Example:
• We create the relations EMPLOYEE, DEPARTMENT, and PROJECT

in the relational schema corresponding to the regular entities in
the ER diagram.

• SSN, DNUMBER, and PNUMBER are the primary keys for the
relations EMPLOYEE, DEPARTMENT, and PROJECT as shown. 21

FIGURE 7.1
The ER conceptual schema diagram for the COMPANY database.

22

FIGURE 7.2
Result of mapping the COMPANY ER schema into a relational
schema.

23

ER-to-Relational Mapping Algorithm (contd..)

• Step 2: Mapping of Weak Entity Types

• For each weak entity type W in the ER schema with owner entity type E,
create a relation R and include all simple attributes (or simple components
of composite attributes) of W as attributes of R.

• In addition, include as foreign key attributes of R the primary key
attribute(s) of the relation(s) that correspond to the owner entity type(s).

• The primary key of R is the combination of the primary key(s) of the
owner(s) and the partial key of the weak entity type W, if any.

Example:
• Create the relation DEPENDENT in this step to correspond to the weak

entity type DEPENDENT.
• Include the primary key SSN of the EMPLOYEE relation as a foreign key

attribute of DEPENDENT (renamed to ESSN).
The primary key of the DEPENDENT relation is the combination {ESSN,
DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of
DEPENDENT.

24

ER-to-Relational Mapping Algorithm (contd..)

• Step 3: Mapping of Binary 1:1 Relation Types

For each binary 1:1 relationship type R in the ER schema,
identify the relations S and T that correspond to the entity types
participating in R. There are three possible approaches:

(1) Foreign Key approach: Choose one of the relations-S, say-and
include a foreign key in S the primary key of T. It is better to
choose an entity type with total participation in R in the role of S.

Example: 1:1 relation MANAGES is mapped by choosing the
participating entity type DEPARTMENT to serve in the role of S,
because its participation in the MANAGES relationship type is
total.

25

FIGURE 7.2
Result of mapping the COMPANY ER schema into a
relational schema.

26

Step 3: Mapping of Binary 1:1 Relation

Types(contd..)

(2) Merged relation option:

• An alternate mapping of a 1:1 relationship type is
possible by merging the two entity types and the
relationship into a single relation. This may be
appropriate when both participations are total.

27

FIGURE 7.1
The ER conceptual schema diagram for the COMPANY database.

28

FIGURE 7.2
Result of mapping the COMPANY ER schema into a
relational schema.

29

ER-to-Relational Mapping Algorithm (cont)

• Step 4: Mapping of Binary 1:N Relationship Types.

• For each regular binary 1:N relationship type R, identify the relation S
that represent the participating entity type at the N-side of the
relationship type.

• Include as foreign key in S the primary key of the relation T that
represents the other entity type participating in R.

• Include any simple attributes of the 1:N relation type as attributes of S.

Example: 1:N relationship types WORKS_FOR, CONTROLS, and
SUPERVISION in the figure. For WORKS_FOR we include the primary
key DNUMBER of the DEPARTMENT relation as foreign key in the
EMPLOYEE relation and call it DNO.

30

FIGURE 7.1
The ER conceptual schema diagram for the COMPANY
database.

31

FIGURE 7.2
Result of mapping the COMPANY ER schema into a
relational schema.

32

ER-to-Relational Mapping Algorithm (cont)

• Step 5: Mapping of Binary M:N Relationship Types. (Cross
Referenced Approach)

• For each regular binary M:N relationship type R, create a new relation S
to represent R.

• Include as foreign key attributes in S the primary keys of the relations
that represent the participating entity types; their combination will
form the primary key of S.

• Also include any simple attributes of the M:N relationship type (or
simple components of composite attributes) as attributes of S.

Example:
• The M:N relationship type WORKS_ON from the ER diagram is mapped

by creating a relation WORKS_ON in the relational database schema.
• Attribute HOURS in WORKS_ON represents the HOURS attribute of the

relation type. The primary key of the WORKS_ON relation is the
combination of the foreign key attributes {ESSN, PNO}. 33

FIGURE 7.1
The ER conceptual schema diagram for the COMPANY
database.

34

FIGURE 7.2
Result of mapping the COMPANY ER schema into a
relational schema.

35

ER-to-Relational Mapping Algorithm (cont)

• Step 6: Mapping of Multivalued attributes.

• For each multivalued attribute A, create a new relation R. This
relation R will include an attribute corresponding to A, plus the
primary key attribute K-as a foreign key in R-of the relation that
represents the entity type of relationship type that has A as an
attribute.

• The primary key of R is the combination of A and K. If the multivalued
attribute is composite, we include its simple components.

Example: The relation DEPT_LOCATIONS is created. The attribute
DLOCATION represents the multivalued attribute LOCATIONS of
DEPARTMENT, while DNUMBER-as foreign key-represents the
primary key of the DEPARTMENT relation. The primary key of R is the
combination of {DNUMBER, DLOCATION}. 36

FIGURE 7.1
The ER conceptual schema diagram for the COMPANY
database.

37

FIGURE 7.2
Result of mapping the COMPANY ER schema into a
relational schema.

38

ER-to-Relational Mapping Algorithm (cont)

• Step 7: Mapping of N-ary Relationship Types.

• For each n-ary relationship type R, where n>2, create a
new relationship S to represent R.

• Include as foreign key attributes in S the primary keys of
the relations that represent the participating entity types.

• Also include any simple attributes of the n-ary relationship
type (or simple components of composite attributes) as
attributes of S.

Example: The relationship type SUPPLY in the ER below. This can be
mapped to the relation SUPPLY shown in the relational schema, whose
primary key is the combination of the three foreign keys {SNAME,
PARTNO, PROJNAME} 39

FIGURE 4.11
Ternary relationship types. (a) The SUPPLY relationship.

40

FIGURE 7.3
Mapping the n-ary relationship type SUPPLY from Figure
4.11a.

41

Summary of Mapping constructs and
constraints

Table 7.1 Correspondence between ER and Relational Models

ER Model Relational Model

Entity type “Entity” relation

1:1 or 1:N relationship type Foreign key (or “relationship” relation)

M:N relationship type “Relationship” relation and two foreign keys

n-ary relationship type “Relationship” relation and n foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

42

Mapping EER Model Constructs to Relations

• Step 8: Options for Mapping Specialization or
Generalization.

• Convert each specialization with m subclasses {S1, S2,….,Sm}
and generalized superclass C, where the attributes of C are
{k,a1,…an} and k is the (primary) key, into relational schemas
using one of the four following options:

Option 8A: Multiple relations-Superclass and subclasses.

• Create a relation L for C with attributes Attrs(L) = {k,a1,…an}
and PK(L) = k.

• Create a relation Li for each subclass Si, 1 < i < m, with the
attributesAttrs(Li) = {k} U {attributes of Si} and PK(Li)=k.

• This option works for any specialization (total or partial,
disjoint or over-lapping). 43

FIGURE 4.4
EER diagram
notation for an
attribute-defined
specialization on
JobType.

FIGURE 7.4

Options for mapping specialization or generalization.

(a) Mapping the EER schema in Figure 4.4 using option 8A.

44

Step 8: Options for Mapping Specialization or
Generalization.

Option 8B: Multiple relations-Subclass relations only
• Create a relation Li for each subclass Si, 1 < i < m, with the

attributes Attr(Li) = {attributes of Si} U {k,a1…,an} and
PK(Li) = k.

• This option only works for a specialization whose
subclasses are total (every entity in the superclass must
belong to (at least) one of the subclasses).

• Recommended if specialization has disjointedness
constraint

Mapping EER Model Constructs to Relations (contd..)

45

FIGURE 4.3
Generalization. (b) Generalizing CAR and TRUCK into the
superclass VEHICLE.

Options for mapping specialization or generalization.

(b) Mapping the EER schema in Figure 4.3b using option 8B.

46

d

Mapping EER Model Constructs to Relations
(cont)

Option 8C: Single relation with one type attribute.

• Create a single relation L with attributes Attrs(L) = {k,a1,…an} U
{attributes of S1} U…U {attributes of Sm} U {t} and PK(L) = k.

• The attribute t is called a type (or discriminating) attribute that
indicates the subclass to which each tuple belongs

• Recommended for specialization whose subclasses are disjoint
and has potential of generating many null values if specific
attributes exist in subclasses

47

FIGURE 4.4
EER diagram
notation for an
attribute-defined
specialization on
JobType.

Options for mapping specialization or generalization.

(c) Mapping the EER schema in Figure 4.4 using option 8C.

d

48EngType

Mapping EER Model Constructs to
Relations (cont)

Option 8D: Single relation with multiple type attributes.

• Create a single relation schema L with attributes Attrs(L)
= {k,a1,…an} U {attributes of S1} U…U {attributes of Sm} U
{t1, t2,…,tm} and PK(L) = k.

• Each ti, 1 < I < m, is a Boolean type attribute indicating
whether a tuple belongs to the subclass Si.

• Recommended for specialization whose subclasses are
overlapping

• Can be used for disjoint subclasses as well

49

FIGURE 4.5
EER diagram notation for an overlapping (nondisjoint)
specialization.

Options for mapping specialization or generalization.

(d) Mapping Figure 4.5 using option 8D with Boolean type fields Mflag and

Pflag.

o

50

Mapping EER Model Constructs to Relations
(cont)
• Mapping of Shared

Subclasses (Multiple
Inheritance)

A shared subclass, such as
STUDENT_ASSISTANT, is a
subclass of several classes,
indicating multiple inheritance.
These classes must all have the
same key attribute; otherwise,
the shared subclass would be
modeled as a category.

Below both 8C and 8D are used
for the shared class
STUDENT_ASSISTANT. 51

d

FIGURE 7.5
Mapping the EER specialization lattice in Figure 4.6 using
multiple options.

52

course

Major

Mapping EER Model Constructs to Relations (cont)

• Step 9: Mapping of Union Types (Categories).

• For mapping a category whose defining superclass have
different keys, it is customary to specify a new key attribute,
called a surrogate key, when creating a relation to
correspond to the category.

• In the example below we can create a relation OWNER to
correspond to the OWNER category and include any
attributes of the category in this relation. The primary key of
the OWNER relation is the surrogate key, which we called
OwnerId.

53

FIGURE 4.8
Two categories (union types):
OWNER and
REGISTERED_VEHICLE.

54

FIGURE 7.6
Mapping the EER
categories (union
types) in Figure 4.7 to
relations.

OwnerId

55

Exercise

56

57

Mapping Exercise
Exercise 7.4.

FIGURE 7.7

An ER schema for a SHIP_TRACKING database.

58

2. Data Manipulation

• Relation set processing facilities are available to the user

• Using relational operators, tables(relation) are manipulated
so application program need not use loops

• Purpose of database: provide information to users within the
enterprise

• Process of querying a relational database is essence of
manipulating tables

• Two formal data manipulation languages are proposed by
Codd for relational Model:

• Relational Algebra

• Relational Calculus
59

Relational Algebra And Relational
Calculus: Outline

• Relational Algebra
• Unary Relational Operations

• Relational Algebra Operations From Set Theory

• Binary Relational Operations

• Additional Relational Operations

• Examples of Queries in Relational Algebra

• Relational Calculus
• Tuple Relational Calculus

• Domain Relational Calculus

• Example Database Application (COMPANY) 60

Relational Algebra Overview

• Basic set of operations for the relational model

• Enable a user to specify basic retrieval requests (or queries)

• The result of an operation is a new relation

• The algebra operations thus produce new relations which
can be further manipulated using operations of the same
algebra

• A sequence of relational algebra operations forms a relational
algebra expression

• The result of a relational algebra expression is also a
relation that represents the result of a database query (or
retrieval request)

61

Relational Algebra Overview

• Relational Algebra consists of several groups of operations
• Unary Relational Operations

• SELECT (symbol: (sigma))
• PROJECT (symbol: (pi))
• RENAME (symbol: (rho))

• Relational Algebra Operations From Set Theory
• UNION (), INTERSECTION (), DIFFERENCE (or MINUS, –)
• CARTESIAN PRODUCT (x)

• Binary Relational Operations
• JOIN (several variations of JOIN exist)
• DIVISION

• Additional Relational Operations
• OUTER JOINS, OUTER UNION
• AGGREGATE FUNCTIONS (These compute summary of

information: SUM, COUNT, AVG, MIN, MAX)

62

Database Schema for COMPANY

• All examples discussed below refer to the COMPANY database
shown here.

63

Database state

64

Unary Relational Operations: SELECT

• The SELECT operation (denoted by (sigma)) is used to select a
subset of the tuples from a relation based on a selection
condition.

• The selection condition acts as a filter

• Keeps only those tuples that satisfy the qualifying condition

• Tuples satisfying the condition are selected whereas the other
tuples are discarded (filtered out)

• Syntax:

 <selection condition>(R) where

• (sigma) is used to denote the select operator

• selection condition is a Boolean (conditional)
65

Unary Relational Operations: SELECT

• Tuples that make the condition true are selected

• appear in the result of the operation

• Tuples that make the condition false are filtered out

• discarded from the result of the operation

• Examples:

• Select the EMPLOYEE tuples whose department number is 4:

 DNO = 4 (EMPLOYEE)

• Select the employee tuples whose salary is greater than
$30,000:

 SALARY > 30,000 (EMPLOYEE)
66

Unary Relational Operations: SELECT (contd.)

• SELECT Operation Properties
• The SELECT operation <selection condition>(R) produces a relation S

that has the same schema (same attributes) as R
• SELECT is commutative:

• <condition1>(< condition2> (R)) = <condition2> (< condition1> (R))

• cascade (sequence) of SELECT operations may be applied in any
order:
• <cond1>(<cond2> (<cond3> (R)) = <cond2> (<cond3> (<cond1> (R)))

• A cascade of SELECT operations may be replaced by a single
selection with a conjunction of all the conditions:
• <cond1>(< cond2> (<cond3>(R)) = <cond1> AND < cond2> AND < cond3>(R)))

67

68

Exercise: Select Operator

1. Find all tuples from player relation for which country is India.

2. Select all the tuples for which runs are greater than or equal to 15000.

3. Select all the players whose runs are greater than or equal to 6000 and
age is less than 25

69

Solution

1. σ Country=India (Player)

2. σ Runs>=15000 (Player)

3. σ Runs>6000 AND Age<25(Player)

70

Unary Relational Operations: PROJECT

• PROJECT Operation is denoted by (pi)

• This operation keeps certain columns (attributes) from a
relation and discards the other columns.

• PROJECT creates a vertical partitioning

• The list of specified columns (attributes) is kept in
each tuple

• The other attributes in each tuple are discarded

• Syntax:
<attribute list>(R)

• (pi) is the symbol used to represent the project operation
• <attribute list> is the desired list of attributes from relation R. 71

Unary Relational Operations: PROJECT (cont.)

• The project operation removes any duplicate tuples
• This is because the result of the project operation

must be a set of tuples
• Mathematical sets do not allow duplicate elements.

• Example:

To list each employee’s first and last name and salary, the
following is used:

LNAME, FNAME,SALARY(EMPLOYEE)

72

Unary Relational Operations: PROJECT (contd.)

• PROJECT Operation Properties

• The number of tuples in the result of projection
<list>(R) is

• always less or equal to the number of tuples in R

• If the list of attributes includes a key of R, then the
number of tuples in the result of PROJECT is equal to the
number of tuples in R

73

74

Exercise: Project Operator

75

1. π Country (Player)
2. π Team Id, Country (Player)

1. List all the countries in Player relation.
2. List all the team ids and countries in Player Relation

Relational Algebra Expressions

• We may want to apply several relational algebra
operations one after the other

• Either we can write the operations as a single
relational algebra expression by nesting the
operations, or

• We can apply one operation at a time and create
intermediate result relations.

• In the latter case, we must give names to the relations
that hold the intermediate results.

76

Single expression versus sequence of
relational operations (Example)

• To retrieve the first name, last name, and salary of all
employees who work in department number 5, we must
apply a select and a project operation

• We can write a single relational algebra expression as
follows:

• FNAME, LNAME, SALARY(DNO=5(EMPLOYEE))

• OR We can explicitly show the sequence of operations,
giving a name to each intermediate relation:

• DEP5_EMPS DNO=5(EMPLOYEE)

• RESULT FNAME, LNAME, SALARY (DEP5_EMPS)
77

Unary Relational Operations: RENAME

• The RENAME operator is denoted by (rho)

• In some cases, we may want to rename the attributes of
a relation or the relation name or both

• Useful when a query requires multiple operations

• Necessary in some cases (see JOIN operation later)

78

Unary Relational Operations: RENAME (contd.)

• The general RENAME operation can be expressed by
any of the following forms:

• S (B1, B2, …, Bn)(R) changes both:

• the relation name to S, and

• the column (attribute) names to B1, B1, …..Bn

• S(R) changes:

• the relation name only to S

• (B1, B2, …, Bn)(R) changes:

• the column (attribute) names only to B1, B1, …..Bn

79

Example of applying multiple operations and
RENAME

80

Relational Algebra Operations from Set Theory:
UNION

• UNION Operation

• Binary operation, denoted by

• The result of R S, is a relation that includes all tuples
that are either in R or in S or in both R and S

• Duplicate tuples are eliminated

• The two operand relations R and S must be “type
compatible” (or UNION compatible)

• R and S must have same number of attributes

• Each pair of corresponding attributes must be type
compatible (have same or compatible domains)

81

Relational Algebra Operations from Set Theory:
UNION

• Example:
• To retrieve the social security numbers of all

employees who either work in department 5 (RESULT1
below) or directly supervise an employee who works in
department 5 (RESULT2 below)

• We can use the UNION operation as follows:
DEP5_EMPS DNO=5 (EMPLOYEE)

RESULT1 SSN(DEP5_EMPS)

RESULT2(SSN) SUPERSSN(DEP5_EMPS)
RESULT RESULT1 RESULT2

• The union operation produces the tuples that are in
either RESULT1 or RESULT2 or both

82

Example: UNION operation

83

Relational Algebra Operations from
Set Theory

84

• Type Compatibility of operands is required for the
binary set operation UNION , (also for INTERSECTION
, and SET DIFFERENCE –)

• R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type
compatible if:

• they have the same number of attributes, and

• the domains of corresponding attributes are type
compatible (i.e. dom(Ai)=dom(Bi) for i=1, 2, ..., n).

• The resulting relation for R1R2 (also for R1R2, or R1–
R2) has the same attribute names as the first operand
relation R1 (by convention)

Relational Algebra Operations from Set
Theory: INTERSECTION

• INTERSECTION is denoted by

• The result of the operation R S, is a relation that includes all
tuples that are in both R and S

• The attribute names in the result will be the same as the
attribute names in R

• The two operand relations R and S must be “type compatible”

85

Relational Algebra Operations from Set
Theory: SET DIFFERENCE

• SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by –

• The result of R – S, is a relation that includes all tuples that are
in R but not in S

• The attribute names in the result will be the same as the
attribute names in R

• The two operand relations R and S must be “type compatible”

86

Example to illustrate :UNION, INTERSECT,
and DIFFERENCE

87

Exercise: Set theory operators

1. Find all the customers having an account but not the loan.

2. Find all the customers having a loan but not the account.

881. π cust-name (Depositor) – π cust-name(Borrower)

2. π cust-name (Borrower) – π cust-name (Depositor)

Some properties of UNION, INTERSECT,
and DIFFERENCE

• Notice that both union and intersection are commutative
operations; that is

• R S = S R, and R S = S R

• Both union and intersection can be treated as n-ary
operations applicable to any number of relations as both
are associative operations; that is

• R (S T) = (R S) T

• (R S) T = R (S T)

• The minus operation is not commutative; that is, in
general

• R – S ≠ S – R 89

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT

90

• CARTESIAN (or CROSS) PRODUCT Operation

• Combine tuples from two relations in a combinatorial
fashion.

• Denoted by R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm)

• Result is a relation Q with degree n + m attributes:

• Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.

• The resulting relation state has one tuple for each
combination of tuples—one from R and one from S.

• Hence, if R has nR tuples (denoted as |R| = nR), and S has nS

tuples, then R x S will have nR * nS tuples.

• The two operands do NOT have to be "type compatible”

Example: Cartesian Product

91

Relational Algebra Operations from Set Theory:
CARTESIAN PRODUCT (contd..)

• Generally, CROSS PRODUCT is not a meaningful operation

• Can become meaningful when followed by other
operations

• Example (not meaningful):

List of all female employee’s dependent

• FEMALE_EMPS SEX=’F’(EMPLOYEE)

• EMPNAMES FNAME, LNAME, SSN (FEMALE_EMPS)

• EMP_DEPENDENTS EMPNAMES x DEPENDENT

• EMP_DEPENDENTS will contain every combination of
EMPNAMES and DEPENDENT

• whether or not they are actually related
92

Example of applying CARTESIAN PRODUCT

93

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT (cont.)

• To keep only combinations where the DEPENDENT is
related to the EMPLOYEE, we add a SELECT operation as
follows

• Example (meaningful):

• FEMALE_EMPS SEX=’F’(EMPLOYEE)

• EMPNAMES FNAME, LNAME, SSN (FEMALE_EMPS)

• EMP_DEPENDENTS EMPNAMES x DEPENDENT

• ACTUAL_DEPS SSN=ESSN(EMP_DEPENDENTS)

• RESULT FNAME, LNAME, DEPENDENT_NAME (ACTUAL_DEPS)

• RESULT will now contain the name of female employees
and their dependents

94

Exercise: Cartesian Product

95

Solution

96

Binary Relational Operations: JOIN

• JOIN Operation (denoted by)
• The sequence of CARTESIAN PRODUCT followed by SELECT

is used quite commonly to identify and select related tuples
from two relations

• A special operation, called JOIN combines this sequence
into a single operation

• This operation is very important for any relational database
with more than a single relation, because it allows us
combine related tuples from various relations

• The general form of a join operation on two relations R(A1,
A2, . . ., An) and S(B1, B2, . . ., Bm) is:

R <join condition>S
• where R and S can be any relations that result from general

relational algebra expressions. 97

Binary Relational Operations: JOIN (contd..)

• Example:
• Retrieve the name of the manager of each department.
• To get the manager’s name, we need to combine each

DEPARTMENT tuple with the EMPLOYEE tuple whose SSN value
matches the MGRSSN value in the department tuple.

• We do this by using the join operation.

• DEPT_MGR DEPARTMENT MGRSSN=SSN EMPLOYEE

• MGRSSN=SSN is the join condition
• Combines each department record with the employee who

manages the department
• The join condition can also be specified as

DEPARTMENT.MGRSSN= EMPLOYEE.SSN
98

Database state

99

Example : JOIN operation

100

Some properties of JOIN

• Consider the following JOIN operation:

• R(A1, A2, . . ., An) S(B1, B2, . . ., Bm)

R.Ai=S.Bj

• Result is a relation Q with degree n + m attributes:

• Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.

• The resulting relation state has one tuple for each
combination of tuples—r from R and s from S, but only if
they satisfy the join condition r[Ai]=s[Bj]

• Hence, if R has nR tuples, and S has nS tuples, then the join
result will generally have less than nR * nS tuples.

• Only related tuples (based on the join condition) will appear
in the result 101

Some properties of JOIN

• The general case of JOIN operation is called a Theta-join: R theta S

• The join condition is called theta

• Theta can be any general boolean expression on the attributes of R
and S; for example:

• R.Ai<S.Bj AND (R.Ak=S.Bl OR R.Ap<S.Bq)

• Most join conditions involve one or more equality conditions
“AND”ed together; for example:

• R.Ai=S.Bj AND R.Ak=S.Bl AND R.Ap=S.Bq

102

Binary Relational Operations: EQUIJOIN

• The most common use of join involves join conditions with
equality comparisons only

• Such a join, where the only comparison operator used is =,
is called an EQUIJOIN.

• In the result of an EQUIJOIN we always have one or more
pairs of attributes (whose names need not be identical)
that have identical values in every tuple.

• The JOIN seen in the previous example was an EQUIJOIN.

103

Binary Relational Operations: NATURAL JOIN
Operation

• NATURAL JOIN Operation

• Another variation of JOIN called NATURAL JOIN —
denoted by * — was created to get rid of the second
(superfluous) attribute in an EQUIJOIN condition.

• because one of each pair of attributes with identical
values is superfluous

• The standard definition of natural join requires that
the two join attributes, or each pair of corresponding
join attributes, have the same name in both relations

• If this is not the case, a renaming operation is applied
first. 104

Binary Relational Operations NATURAL JOIN (contd.)

• Example: To apply a natural join on the DNUMBER attributes of
DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:

• DEPT_LOCS DEPARTMENT * DEPT_LOCATIONS

• Only attribute with the same name is DNUMBER

• An implicit join condition is created based on this attribute:

DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER

• Another example: Q R(A,B,C,D) * S(C,D,E)

• Result keeps only one attribute of each such pair:

• Q(A,B,C,D,E)
105

Database state

106

Example of NATURAL JOIN operation

107

Exercise on Natural Join

108

Solution

109

Complete Set of Relational Operations

• The set of operations including SELECT , PROJECT ,
UNION , DIFFERENCE - , RENAME , and CARTESIAN
PRODUCT X is called a complete set because any other
relational algebra expression can be expressed by a
combination of these five operations.

• For example:

• R S = (R S) – ((R - S) (S - R))

• R <join condition>S = <join condition> (R X S)

110

Binary Relational Operations: DIVISION

• The division operation is applied to two relations

• Attributes of S is proper subset of Attributes of R.

• The relation returned by division operator will have
attributes = (All attributes of R – All Attributes of S)

• The relation returned by division operator will return
those tuples from relation R which are associated to
every S’s tuple.

111

Example of DIVISION

112

Exercise: Division Operator

113

Relation Q is

Summary of Relational Algebra Operations

114

Additional Relational Operations: Aggregate
Functions and Grouping

• A type of request that cannot be expressed in the basic
relational algebra is to specify mathematical aggregate
functions on collections of values from the database.

• Examples :

• Retrieving the average or total salary of all employees or
the total number of employee tuples.

• Used in simple statistical queries that summarize
information from the database tuples.

• Common functions applied to collections of numeric values
include

• SUM, AVERAGE, MAXIMUM, and MINIMUM.

• The COUNT function is used for counting tuples or values. 115

Aggregate Function Operation

• Use of the Aggregate Functional operation ℱ

• ℱMAX Salary (EMPLOYEE) retrieves the maximum salary value
from the EMPLOYEE relation

• ℱMIN Salary (EMPLOYEE) retrieves the minimum Salary value
from the EMPLOYEE relation

• ℱSUM Salary (EMPLOYEE) retrieves the sum of the Salary from
the EMPLOYEE relation

• ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE) computes the count
(number) of employees and their average salary

• Note: count just counts the number of rows, without
removing duplicates 116

Using Grouping with Aggregation

• Grouping can be combined with Aggregate Functions
• Example:
• For each department, retrieve the DNO, COUNT SSN,

and AVERAGE SALARY
• A variation of aggregate operation ℱ allows this:
• Grouping attribute placed to left of symbol
• Aggregate functions to right of symbol
• DNO ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE)

• Above operation groups employees by DNO (department
number) and computes the count of employees and
average salary per department

117

Examples of applying aggregate functions
and grouping

118

Additional Relational Operations (cont.)

The OUTER JOIN Operation

• In NATURAL JOIN and EQUIJOIN, tuples without a matching
(or related) tuple are eliminated from the join result

• Tuples with null in the join attributes are also eliminated

• This amounts to loss of information.

• A set of operations, called OUTER joins, can be used when
we want to keep all the tuples in R, or all those in S, or all
those in both relations in the result of the join, regardless
of whether or not they have matching tuples in the other
relation.

120

Additional Relational Operations (cont.)

• The left outer join operation keeps every tuple in the first or
left relation R in R S; if no matching tuple is found in S, then
the attributes of S in the join result are filled or “padded” with
null values.

• A similar operation, right outer join, keeps every tuple in the
second or right relation S in the result of R S.

• A third operation, full outer join, denoted by keeps all
tuples in both the left and the right relations when no
matching tuples are found, padding them with null values as
needed.

121

Left and Right Outer Join

122

Example: Outer Join

1235

Left Outer Join

124

Right Outer Join

125

Full Outer Join

126

Exercise: Right, Left and Full Outer Join

127

Solution

128

Additional Relational Operations (contd.)

• Example: An outer union can be applied to two relations
whose schemas are STUDENT(Name, SSN, Department,
Advisor) and INSTRUCTOR(Name, SSN, Department,
Rank).

• Tuples from the two relations are matched based on having
the same combination of values of the shared attributes—
Name, SSN, Department.

• If a student is also an instructor, both Advisor and Rank will
have a value; otherwise, one of these two attributes will be
null.

• The result relation STUDENT_OR_INSTRUCTOR will have the
following attributes:

STUDENT_OR_INSTRUCTOR (Name, SSN, Department,
Advisor, Rank)

129

Examples of Queries in Relational Algebra

 Q1: Retrieve the name and address of all employees who work for the

‘Research’ department.

 Q6: Retrieve the names of employees who have no dependents.

130

RESEARCH_DEPT DNAME=’Research’ (DEPARTMENT)

RESEARCH_EMPS (RESEARCH_DEPT DNUMBER=DNOEMPLOYEE)

RESULT FNAME, LNAME, ADDRESS (RESEARCH_EMPS)

ALL_EMPS SSN(EMPLOYEE)

EMPS_WITH_DEPS(SSN) ESSN(DEPENDENT)

EMPS_WITHOUT_DEPS (ALL_EMPS - EMPS_WITH_DEPS)

RESULT LNAME, FNAME (EMPS_WITHOUT_DEPS * EMPLOYEE)

Database state

131

Exercise: 1

132

133

134

Relational Calculus

• A relational calculus expression creates a new relation,
which is specified in terms of variables that range over
rows of the stored database relations (in tuple calculus)
or over columns of the stored relations (in domain
calculus).

• In a calculus expression, there is no order of operations
to specify how to retrieve the query result—a calculus
expression specifies only what information the result
should contain.

• This is the main distinguishing feature between
relational algebra and relational calculus.

138

Relational Calculus

• Relational calculus is considered to be a nonprocedural
language.

• This differs from relational algebra, where we must write
a sequence of operations to specify a retrieval request;
hence relational algebra can be considered as a
procedural way of stating a query.

• Types of Relational Calculus:

• Tuple Relational Calculus

• Domain Relational Calculus 139

Tuple Relational Calculus

• The tuple relational calculus is based on specifying a
number of tuple variables.

• Each tuple variable usually ranges over a particular
database relation, meaning that the variable may take as
its value any individual tuple from that relation.

• A simple tuple relational calculus query is of the form

{t | COND(t)}

• where t is a tuple variable and COND (t) is a conditional
expression involving t.

• The result of such a query is the set of all tuples t that
satisfy COND (t). 140

Tuple Relational Calculus (contd..)

Example:

• To find the first and last names of all employees whose
salary is above $50,000, we can write the following tuple
calculus expression:

{t.FNAME, t.LNAME | EMPLOYEE(t) AND t.SALARY>50000}

• The condition EMPLOYEE(t) specifies that the range
relation of tuple variable t is EMPLOYEE.

• Explanation:
The first and last name (PROJECTION FNAME, LNAME) of each
EMPLOYEE tuple t that satisfies the condition t.SALARY>50000
(SELECTION SALARY >50000) will be retrieved. 141

The Existential and Universal Quantifiers

• Two special symbols called quantifiers can appear in
formulas; these are the universal quantifier () and the
existential quantifier ().

• Informally, a tuple variable t is bound if it is quantified,
meaning that it appears in an (t) or (t) clause;
otherwise, it is free.

• If F is a formula, then so are (t)(F) and (t)(F), where t
is a tuple variable.
• The formula (t)(F) is true if the formula F evaluates to

true for some (at least one) tuple assigned to free
occurrences of t in F; otherwise (t)(F) is false.

• The formula (t)(F) is true if the formula F evaluates to
true for every tuple (in the universe) assigned to free
occurrences of t in F; otherwise (t)(F) is false. 142

Example: Query Using Existential Quantifier

• Retrieve the name and address of all employees who work for
the ‘Research’ department. The query can be expressed as :

{t.FNAME, t.LNAME, t.ADDRESS | EMPLOYEE(t) and (d)
(DEPARTMENT(d) and d.DNAME=‘Research’ and
d.DNUMBER=t.DNO) }

• The only free tuple variables in a relational calculus expression
should be those that appear to the left of the bar (|).
• In above query, t is the only free variable; it is then bound

successively to each tuple.

• The conditions EMPLOYEE (t) and DEPARTMENT(d) specify the
range relations for t and d.

• The condition d.DNAME = ‘Research’ is a selection condition and
corresponds to a SELECT operation in the relational algebra,
whereas the condition d.DNUMBER = t.DNO is a JOIN condition.

144

Example Query Using Universal Quantifier

• Find the names of employees who work on all the
projects controlled by department number 5. The query
can be:

{e.LNAME, e.FNAME | EMPLOYEE(e) and ((
x)(not(PROJECT(x)) or not(x.DNUM=5)

• In query above, using the expression not(PROJECT(x))
inside the universally quantified formula evaluates to
true all tuples x that are not in the PROJECT relation.
• Then we exclude the tuples we are not interested in

from R itself. The expression not(x.DNUM=5) evaluates
to true all tuples x that are in the project relation but
are not controlled by department 5.

145

Languages Based on Tuple Relational Calculus

• The language SQL is based on tuple calculus. It uses the
basic block structure to express the queries in tuple
calculus:
• SELECT <list of attributes>

• FROM <list of relations>

• WHERE <conditions>

• SELECT clause mentions the attributes being projected,
the FROM clause mentions the relations needed in the
query, and the WHERE clause mentions the selection as
well as the join conditions.
• SQL syntax is expanded further

146

The Domain Relational Calculus

• The language called QBE (Query-By-Example) that is
related to domain calculus was developed almost
concurrently to SQL at IBM Research, Yorktown Heights,
New York.

• Domain calculus was thought of as a way to explain
what QBE does.

• Domain calculus differs from tuple calculus in the type of
variables used in formulas:

• Rather than having variables range over tuples, the
variables range over single values from domains of
attributes.

• To form a relation of degree n for a query result, we must
have n of these domain variables— one for each
attribute.

148

The Domain Relational Calculus

• An expression of the domain calculus is of the form

{ x1, x2, . . ., xn |

COND(x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m)}

• where x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m are domain variables that
range over domains (of attributes)

• and COND is a condition or formula of the domain relational
calculus.

149

Example Query Using Domain Calculus

• Retrieve the birthdate and address of the employee
whose name is ‘John B. Smith’.

• Query :
{uv | (q) (r) (s) (t) (w) (x) (y) (z)

(EMPLOYEE(qrstuvwxyz) and q=’John’ and r=’B’ and
s=’Smith’)}

• Ten variables for the employee relation are needed, one
to range over the domain of each attribute in order.
• Of the ten variables q, r, s, . . ., z, only u and v are free.

• Specify the requested attributes, BDATE and ADDRESS, by
the free domain variables u for BDATE and v for
ADDRESS.

• Specify the condition for selecting a tuple following the
bar (|)—

150

3. Data Integrity

• Specify rules that implicitly/explicitly define consistent
database or change of state

• Integrity constraints are necessary to avoid situations like:

1. Some data has been inserted in database but it cannot be
identified

2. Same data is missing in different tables

3. During processing, keys are not compared properly

• Integrity constraint are defined as condition on database that
restricts data that can be stored in database

151

Constraints Categories

1. Implicit/ inherent Model based Constraint

2. Schema Based Constraints

Expressed in schemas of data model by specifying them
in DDL

3. Application Based or Semantic Constraint

152

Domain Constraint

• Specify within each tuple, value of each attribute must
be atomic value from dom(A)

• Datatypes associated with domains include
numeric(int,floa,double), character, boolean, strings,
date, time, timestamps etc

153

Entity Integrity Constraint

• Relational Database Schema: A set S of relation schemas
that belong to the same database. S is the name of the
database.

S = {R1, R2, ..., Rn}

• Entity Integrity: The primary key attributes PK of each
relation schema R in S cannot have null values in any
tuple of r(R). This is because primary key values are used
to identify the individual tuples.

t[PK] null for any tuple t in r(R)

• Note: Other attributes of R may be similarly constrained
to disallow null values, even though they are not
members of the primary key. 154

Key constraint
• Superkey of R: A set of attributes S_K of R such that no

two tuples in any valid relation instance r(R) will have
the same value for SK. That is, for any distinct tuples t1
and t2 in r(R), t1[SK] t2[SK].

• Key of R: A "minimal" superkey; and two distinct tuples
cannot have identical values for all attributes in key

• Example: The CAR relation schema:
CAR(State, Reg#, SerialNo, Make, Model, Year)

has two keys Key1 = {State, Reg#}, Key2 = {SerialNo}, which are also
superkeys. {SerialNo, Make} is a superkey but not a key.

• If a relation has several candidate keys, one is chosen
arbitrarily to be the primary key. The primary key
attributes are underlined.

155

• Null can be used when value is not known at present
time

• Attributes may not be applicable

• Some information not known or never will be known

• However, having null values create issue from computing
average for collection of values to comparing null with
not null values

Null constraint

156

• A constraint involving two relations (the previous
constraints involve a single relation).

• Used to specify a relationship among tuples in two
relations: the referencing relation and the referenced
relation.

• Tuples in the referencing relation R1 have attributes FK
(called foreign key attributes) that reference the primary
key attributes PK of the referenced relation R2. A tuple t1

in R1 is said to reference a tuple t2 in R2 if t1[FK] = t2[PK].

• A referential integrity constraint can be displayed in a
relational database schema as a directed arc from R1.FK
to R2.

157

Referential Integrity

Statement of the constraint

The value in the foreign key column (or columns) FK of the the
referencing relation R1 can be either:

(1) a value of an existing primary key value of the
corresponding primary key PK in the referenced relation
R2,, or..

(2) a null.

In case (2), the FK in R1 should not be a part of its own
primary key.

158

Referential Integrity(contd..)

159

Referential Integrity(contd..)

Semantic Integrity Constraints:
- based on application semantics and cannot be expressed

by the model per se

- E.g., “the max. no. of hours per employee for all projects
he or she works on is 56 hrs per week”

- A constraint specification language may have to be used
to express these

- SQL-99 allows triggers and ASSERTIONS to allow for some
of these

160

Other Types of Constraints

Update Operations on Relations

• INSERT a tuple.

• DELETE a tuple.

• MODIFY a tuple.

• Integrity constraints should not be violated by the update
operations.

• Updates may propagate to cause other updates
automatically. This may be necessary to maintain
integrity constraints.

161

• In case of integrity violation, several actions can
be taken:

• Cancel the operation that causes the violation (REJECT
option)

• Perform the operation but inform the user of the
violation

• Trigger additional updates so the violation is corrected
(CASCADE option, SET NULL option)

• Execute a user-specified error-correction routine

162

Update Operations on Relations

Advantages of Relational Model

1. Data independence: provide a sharp and clear boundary
between logical and physical aspects of database
management

2. Simplicity: simpler structure which is easy to communicate
to users and programmers and wide number of users can
interact with simple model

3. Set-processing: facilities for manipulating a set of records at
a time so that programmers are not operating on database
record by record

4. Sound theoretical background: provide theoretical
background for database management field

164

