
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 1

Chapter 3

Structured Query Language- SQL
- By Jyoti Tryambake

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

SQL History

◼ IBM Sequel Language developed as a part of

System R Project at the IBM San Jose Research

Laboratory

◼ Renamed as Structured Query Language (SQL)

◼ ANSI and ISO standard SQL:

◼ SQL-86

◼ SQL-89

◼ SQL-92

◼ SQL: 1999

◼ SQL: 2003,2005,2008, 2012, 2014, 2016,

2017,2019
Slide 8- 3

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

SQL Facilities

◼ Data Definition Language (DDL)

◼ Data Manipulation Language (DML)

◼ Data Control Language (DCL)

Slide 8- 4

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Definition Language (DDL)

◼ Create and destroy databases and objects

◼ creating a table or view

◼ Altering/expanding definition of table

◼ Creating/dropping an index

◼ Integrity constraints can be defined at the time of

creation or later

◼ Primarily used by database admin during setup and

removal phases of database object

◼ Commands are – create, update, drop

Slide 8- 5

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Definition Language (DDL)

◼ CREATE command

◼ Create and manage independent database

◼ For example, to maintain a database of customer contacts

for your sales department and a personnel database for

your Human Resource department

◼ Command - creates an empty database named

"Employees" on your DBMS

◼ CREATE DATABASE Employees;

Slide 8- 6

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Definition Language (DDL)

◼ CREATE command

◼ Next step is to create tables that will contain data

◼ The CREATE TABLE command specifies

◼ a new base relation by giving it a name,

◼ specifying each of its attributes and their data

types (INTEGER, FLOAT, DECIMAL(i,j),

CHAR(n), VARCHAR(n) etc.)

◼ A constraint may be specified on an attribute

Slide 8- 7

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Definition Language (DDL)

◼ CREATE command

◼ The command:

CREATE TABLE personal_info

(first_name varchar(20) NOT NULL,

last_name varchar(20) NOT NULL,

employee_id int NOT NULL)

Creates a table titled "personal_info" in the current
database

Slide 8- 8

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Definition Language (DDL)

◼ CREATE command

◼ Also used for specifying the primary key attributes,

and referential integrity constraints (foreign keys)

◼ Key attributes can be specified via the PRIMARY

KEY, FOREIGN KEY, REFERENCES and UNIQUE

phrases

Slide 8- 9

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Definition Language (DDL)

◼ CREATE command

◼ To specify CASCADE, SET NULL or SET DEFAULT on

referential integrity constraints (foreign keys)

CREATE TABLE dept_info

(DNAMEVARCHAR(10) NOT NULL,

DNUMBER INTEGER NOT NULL,

EMPLOYEE_ID int,

PRIMARY KEY (DNUMBER),

UNIQUE (DNAME),

FOREIGN KEY (EMPLOYEE_ID) REFERENCES

personal_info

ON DELETE SET DEFAULT ON UPDATE CASCADE);
Slide 8- 10

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Constraints

There are 5 different referential actions: CASCADE, RESTRICT, NO

ACTION, SET NULL, SET DEFAULT

CASCADE

• ON DELETE CASCADE means that if the parent record is deleted,

any child records are also deleted.

• ON UPDATE CASCADE means that if the parent primary key is

changed, the child value will also change to reflect that.

• ON UPDATE CASCADE ON DELETE CASCADE means that if

you UPDATE OR DELETE the parent, the change is cascaded to the

child.

Slide 8- 11

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Constraints

RESTRICT

• RESTRICT means that any attempt to delete and/or update the

parent will fail throwing an error.

• This is the default behavior in the event that a referential action

is not explicitly specified.

• For an ON DELETE or ON UPDATE that is not specified, the

default action is always RESTRICT`.

Slide 8- 12

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Constraints (cont..)

NO ACTION

• NO ACTION: equivalent to RESTRICT.

• The MySQL Server rejects the delete or update operation for the

parent table if there is a related foreign key value in the referenced

table.

SET NULL

• SQL allows NULLs attribute values, a NOT NULL constraint may be

specified if NULL is not permitted for a particular attribute

• SET NULL - Delete or update the row from the parent table, and set

the foreign key column or columns in the child table to NULL.

Slide 8- 13

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Constraints (cont..)

SET DEFAULT

• A default value for an attribute could be set and it will be

included in new tuple if an explicit value is not provided for that

attribute

• SET DEFAULT. allows the developer to specify a value to which

to set the foreign key column(s) on an UPDATE or a DELETE.

CHECK

• Restrict attribute or domain values using CHECK clause

following an attribute or domain definitions.

Slide 8- 14

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 15

Example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples

◼ Consider the following relational database schema

corresponding to a COMPANY database

Slide 8- 16

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 17

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Definition Language (DDL)

◼ ALTER command

◼ Modify information - to make changes to the structure of a

table without deleting and recreating it

◼ For example, add a new attribute to the personal_info table --

an employee's salary

◼ ALTER TABLE personal_info

ADD salary money null

◼ The "money" argument specifies that an employee's salary

will be stored using a dollars and cents format

◼ Example 2;

ALTER TABLE personal_info ADD JOB VARCHAR(12);

Slide 8- 18

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Alter Command (cont.)

Various forms of Alter command with syntax:

To add a new column:

ALTER TABLE table_name ADD column_name datatype;

To delete a column:

ALTER TABLE table_name DROP COLUMN column_name;

To modify a column:

ALTER TABLE table_name MODIFY column_name datatype;

Slide 8- 19

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Alter Command (cont.)

Various forms of Alter command with syntax:

To rename table:

ALTER TABLE table_name RENAME TO new_table_name;

To rename the column:

ALTER TABLE table_name RENAME COLUMN

old_Column_name to new_Column_name;

Ex.

ALTER TABLE STUDENT ADD Address varchar2 (100);

ALTER TABLE STUDENT DROP COLUMN AGE;

Slide 8- 20

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Definition Language (DDL)

◼ DROP command

◼ To permanently remove the table
◼ DROP TABLE personal_info

◼ To remove the entire database
◼ DROP DATABASE employees

Slide 8- 21

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Manipulation Language (DML)

◼ Retrieving and updating information from more than

two tables

◼ Commands are – select, update, delete, insert

◼ INSERT command :

◼ The INSERT command in SQL is used to add records to

an existing table

◼ Syntax:

INSERT INTO table-name (column-names)

VALUES (values)
Slide 8- 22

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Ex.

Problem:

Add a record for a new customer

INSERT INTO Customer (FirstName, LastName, City, Country, Phone)

VALUES ('Craig', 'Smith', 'New York', 'USA', 1-01-993 2800)

Problem:

Add a new customer named Anita Coats to the database

INSERT INTO Customer (FirstName, LastName)

VALUES ('Anita', 'Coats')

CUSTOME

R

Id

FirstName

LastName

City

Country

Phone

Insert examples

Slide 8- 23

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Manipulation Language (DML)

◼ SELECT command :

◼ Allows database users to retrieve the specific information

they desire from an operational database

◼ Example, the command shown below retrieves all of the

information contained within the personal_info table

SELECT * FROM personal_info

◼ the asterisk (*) is used as a wildcard in SQL - "Select

everything from the personal_info table.“

Slide 8- 24

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Manipulation Language (DML)

◼ SELECT command :

◼ Users limit the attributes that are retrieved from the

database

◼ For example, the Human Resources department may

require a list of the last names of all employees in the

company

◼ SELECT last_name

FROM personal_info

Slide 8- 25

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Manipulation Language (DML)

◼ SELECT command :

◼ The WHERE clause can be used to limit the records that

are retrieved to those that meet specified criteria

◼ The following command retrieves all of the data

contained within personal_info for records that have a

salary value greater than $50,000:

SELECT *

FROM personal_info

WHERE salary > $50,000
Slide 8- 26

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Manipulation Language (DML)

◼ UPDATE command :

◼ To modify information contained within a table, either in bulk

or individually

◼ Syntax:

◼ UPDATE table-name SET column-name = value, column-

name = value, ...

◼ For example, Each year, company gives all employees a 3%

cost-of-living increase in their salary

◼ UPDATE personal_info

SET salary = salary * 1.03

◼ UPDATE personal_info

SET salary = salary + $5000

WHERE employee_id = 2
Slide 8- 27

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Manipulation Language (DML)

◼ DELETE command :

◼ The DELETE command with a WHERE clause can be

used to remove specific record from the personal_info

table:

◼ Syntax:

◼ DELETE from table-name WHERE condition

◼ Example;

◼ DELETE FROM personal_info

WHERE employee_id = 2

◼ DELETE all the records from the CUSTOMERS table

◼ - DELETE FROM CUSTOMERS;

Slide 8- 28

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples

◼ Consider the following relational database schema

corresponding to a COMPANY database

Slide 8- 29

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 30

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ Example of a simple query on one relation

◼ Query 0: Retrieve the birthdate and address of the

employee whose name is 'John B. Smith'.

◼ Q0: SELECT BDATE, ADDRESS

FROM EMPLOYEE

WHERE FNAME='John' AND

MINIT='B’

AND LNAME='Smith'

Slide 8- 31

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 32

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ Query 1: Retrieve the name and address of all

employees who work for the 'Research' department

Q1: SELECT FNAME, LNAME,

ADDRESS

FROM EMPLOYEE, DEPARTMENT

WHERE DNAME='Research' AND

DNUMBER=DNO

Slide 8- 33

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 34

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ Query 2: For every project located in 'Stafford', list the project

number, the controlling department number, and the department

manager's last name, address, and birthdate

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE,

ADDRESS

FROM PROJECT, DEPARTMENT,

EMPLOYEE

WHERE DNUM=DNUMBER AND

MGRSSN=SSN AND

PLOCATION='Stafford'

Slide 8- 35

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ Query 2: For every project located in 'Stafford', list the project

number, the controlling department number, and the department

manager's last name, address, and birthdate

Note:

◼ The join condition DNUM=DNUMBER relates a project to its controlling

department

◼ The join condition MGRSSN=SSN relates the controlling department to the

employee who manages that department

◼ A missing WHERE-clause indicates no condition; hence, all tuples of the relations

in the FROM-clause are selected

Slide 8- 36

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ To retrieve all the attribute values of the selected
tuples, a * is used, which stands for all the attributes

◼ Examples:

Q: SELECT * FROM EMPLOYEE
WHERE DNO=5

Q: SELECT * FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND

DNO=DNUMBER

Slide 8- 37

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

AND , OR, NOT clause

Problem: Get customer named Thomas Hardy

- SELECT Id, FirstName, LastName, City, Country

FROM Customer

WHERE FirstName = 'Thomas' AND LastName = 'Hardy'

Problem: List all customers from Spain or France

- SELECT Id, FirstName, LastName, City, Country

FROM Customer

WHERE Country = 'Spain' OR Country = 'France‘

Problem: List all customers that are not from the USA

- SELECT Id, FirstName, LastName, City, Country

FROM Customer

WHERE NOT Country = 'USA'

Slide 8- 38

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Order by

• ORDER BY allows sorting by one or more columns.

• Records can be returned in ascending or descending order. The

default sort order is ascending.

• The general syntax is:

SELECT column-names FROM table-name

WHERE condition

ORDER BY column-names ASC|DESC

Problem: List all suppliers in alphabetical order

SELECT CompanyName, ContactName, City, Country

FROM Supplier

ORDER BY CompanyName

Slide 8- 39

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Order by

Problem: List all customers in descending order

SELECT * FROM CUSTOMERS ORDER BY NAME

DESC;

Slide 8- 40

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Set Operations

Union

- combine the results of two or more Select statements

- it will eliminate duplicate rows from its result set

- number of columns and datatype must be same in both the tables.

Union all

This operation is similar to Union. But it also shows the duplicate rows.

Intersect

- combine two SELECT statements, but it only returns the records which are common from
both SELECT statements.

- In case of Intersect the number of columns and data-type must be same.

Slide 8- 41

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Set Operations

Minus

- combines result of two Select statements and return only those
result which belongs to first set of result

Slide 8- 42

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Set Operations

Example on Union:

Query: select * from First UNION select * from second

Result:

First

ID Name

1 abhi

2 adam

Second

ID Name

2 adam

3 Chester

ID NAME

1 abhi

2 adam

3 Chester Slide 8- 43

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Set Operations

Example on Union all:

Query: select * from First UNION ALL select * from second

Result:

ID Name

1 abhi

2 adam

ID Name

2 adam

3 Chester

ID NAME

1 abhi

2 adam

2 adam

3 Chester Slide 8- 44

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Set Operations

Example on Intersect:

Query: select * from First INTERSECT select * from second

Result:

ID Name

1 abhi

2 adam

ID Name

2 adam

3 Chester

ID NAME

2 adam Slide 8- 45

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Set Operations

Example on Minus:

Query: select * from First MINUS select * from second

The above query will return only those rows which are unique in ‘First’

Result:

ID Name

1 abhi

2 adam

ID Name

2 adam

3 Chester

ID NAME

1 abhi
Slide 8- 46

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Aggregate Functions

Count

Sum

AvgMin

Max

Slide 8- 47

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Aggregate Functions

• SELECT COUNT returns a count of the number of data

values.

• SELECT SUM returns the sum of the data values.

• SELECT AVG returns the average of the data values.

Problem: Find the number of customers

- SELECT COUNT(Id)

FROM Customer

Count

91

Slide 8- 48

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Aggregate Functions

Problem: Compute the total amount sold in 2013

- SELECT SUM(TotalAmount)

FROM [Order]

WHERE YEAR(OrderDate) = 2013

Problem: Compute the average size of all orders

- SELECT AVG(TotalAmount)

FROM [Order]

Sum

658388.75

Average

1631.877819

Slide 8- 49

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Aggregate Functions

• SELECT MIN returns the minimum value for a column.

• SELECT MAX returns the maximum value for a column.

Problem: Find the cheapest product

- SELECT MIN(UnitPrice)

FROM Product

Problem: Find the largest order placed in 2014

- SELECT MAX(TotalAmount)

FROM [Order]

WHERE YEAR(OrderDate) = 2014

UnitPrice

2.50

TotalAmount

17250.00
Slide 8- 50

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distinct

◼ To eliminate duplicate tuples in a query result, the

keyword DISTINCT is used

◼ For example, the result of Q1 may have duplicate

SALARY values whereas Q2 does not have any

duplicate values

Q1: SELECT SALARY

FROM EMPLOYEE

Q2: SELECT DISTINCT SALARY

FROM EMPLOYEE

Slide 8- 51

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distinct

• DISTINCT can be used with aggregates: COUNT, AVG,

MAX, etc.

• DISTINCT operates on a single column. DISTINCT for

multiple columns is not supported.

Slide 8- 52

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Distinct examples

◼ Problem: List all supplier countries in alphabetical order.

SELECT DISTINCT Country

FROM Supplier

ORDER BY COUNTRY

◼ Problem: List the number of supplier countries

SELECT COUNT (DISTINCT Country)

FROM Supplier

Slide 8- 53

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Between

• WHERE BETWEEN returns values that fall within a given

range.

• WHERE BETWEEN is a shorthand for >= AND <=.

• BETWEEN operator is inclusive: begin and end values

are included.

The general syntax is:

SELECT column-names

FROM table-name

WHERE column-name BETWEEN value1 AND value2

Slide 8- 54

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Between

Problem: List all products between $10 and $20

Query:

SELECT Id, ProductName, UnitPrice

FROM Product

WHERE UnitPrice BETWEEN 10 AND 20

ORDER BY UnitPrice

Id ProductName UnitPrice

3 Aniseed

Syrup

10.00

46 Spegesild 12.00

31 Gorgonzola

Telino

12.50

Slide 8- 55

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

In

• WHERE IN returns values that matches values in a list or

subquery.

• WHERE IN is a shorthand for multiple OR conditions.

The general syntax is:

SELECT column-names

FROM table-name

WHERE column-name IN (values)

Slide 8- 56

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

In

Problem: List all suppliers from the USA, UK, OR Japan

Query:

SELECT Id, CompanyName, City, Country

FROM Supplier

WHERE Country IN ('USA', 'UK', 'Japan')

Id CompanyNam

e

City Country

1 Exotic Liquids London UK

2 New Orleans

Cajun Delights

New Orleans USA

3 Grandma

Kelly's

Homestead

Ann Arbor USA

4 Tokyo Traders Tokyo Japan

Slide 8- 57

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Like

• WHERE LIKE determines if a character string matches a pattern.

• Use WHERE LIKE when only a fragment of a text value is known.

• WHERE LIKE supports two wildcard match options: % and _.

The general syntax is:

SELECT column-names

FROM table-name

WHERE column-name LIKE value

Optional Wildcard characters allowed in 'value' are % (percent) and _

(underscore).

A % matches any string with zero or more characters.

An _ matches any single character.

Slide 8- 58

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Like

• Problem: List all products with names that start with 'Ca‘

• Query:

SELECT Id, ProductName, UnitPrice, Package

FROM Product

WHERE ProductName LIKE 'Ca%'

Id ProductName UnitPrice Package

18 Carnarvon

Tigers

62.50 16 kg pkg.

60 Camembert

Pierrot

34.00 15-300 g

roundsSlide 8- 59

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Like

• Problem: List all products that start with 'Cha' or 'Chan'

and have one more character.

• Query:

SELECT Id, ProductName, UnitPrice, Package

FROM Product

WHERE ProductName LIKE 'Cha_' OR ProductName LIKE 'Chan_'

Id ProductName UnitPrice Package

1 Chai 18.00 10 boxes x 20

bags

2 Chang 19.00 24 - 12 oz

bottles

Slide 8- 60

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Alias

• SQL aliases are used to give a table, or a column in a table, a temporary

name.

• Aliases are often used to make column names more readable.

• An alias only exists for the duration of the query.

Syntax:

For Column

SELECT column_name AS alias_name

FROM table_name;

Slide 8- 61

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Alias

Examples:

1. Alias for columns

SELECT CustomerID as ID, CustomerName AS Customer

FROM Customers;

SELECT CustomerName, Address + ', ' + PostalCode + ' ' + City + ', ' +

Country AS Address

FROM Customers;

Slide 8- 62

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Alias

Syntax:

For Table

SELECT column_name(s)

FROM table_name AS alias_name;

Examples:

2. Alias for tables

SELECT o.OrderID, o.OrderDate, c.CustomerName

FROM Customers AS c, Orders AS o

WHERE c.CustomerName="Around the

Horn" AND c.CustomerID=o.CustomerID;

Slide 8- 63

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Alias

Problem: List total customers in each country.

Display results with easy to understand column headers.

Query:

3. Alias for resultant table

SELECT COUNT(C.Id) AS TotalCustomers, C.Country AS Nation

FROM Customer C

GROUP BY C.Country

TotalCustomers Nation

3 Argentina

2 Austria

2 Belgium Slide 8- 64

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Alias

Problem: List details of customers who have placed orders

(consider two tables- customer and order)

Query:

SELECT C.ID, C.NAME, C.AGE, O.AMOUNT FROM

CUSTOMERS AS C, ORDERS AS O WHERE C.ID =

O.CUSTOMER_ID;

Slide 8- 65

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

NULL values

• NULL is the term used to represent a missing value.

• a NULL value is different than a zero value or a field that contains

spaces.

• IS NULL or IS NOT NULL operators to check for a NULL value.

• Example:

SELECT ID, NAME, AGE, ADDRESS, SALARY FROM CUSTOMERS

WHERE SALARY IS NOT NULL;

SELECT ID, NAME, AGE, ADDRESS, SALARY FROM CUSTOMERS

WHERE SALARY IS NULL;

Slide 8- 66

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Group by

Slide 8- 67

• The GROUP BY clause groups records into summary rows.

• GROUP BY returns one record for each group.

• GROUP BY also involves aggregates: COUNT, MAX, SUM, AVG,

etc.

• GROUP BY can group one or more columns.

The general syntax is:

SELECT column-names

FROM table-name

WHERE condition

GROUP BY column-names

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Group by

Slide 8- 68

Problem: List the number of customers in each country

- SELECT COUNT(Id), Country

FROM Customer

GROUP BY Country

Count Country

3 Argentina

2 Austria

2 Belgium

9 Brazil

3 Canada

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Group by

employee_nu

mber
last_name first_name salary dept_id

1001 Smith John 62000 500

1002 Anderson Jane 57500 500

1003 Everest Brad 71000 501

1004 Horvath Jack 42000 501

Problem: Calculate total salary offered by each department

Query:-

SELECT dept_id, SUM(salary) AS total_salaries FROM

employees GROUP BY dept_id;

Result:

dept_id total_salaries

500 119500

501 113000 Slide 8- 69

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Group by

Query:-

SELECT category_id, COUNT(*) AS total_products FROM products

WHERE category_id IS NOT NULL GROUP BY category_id ORDER

BY category_id;

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

5 Bread 75

6 Sliced Ham 25

7 Kleenex NULL

category_id total_products

25 1

50 4

75 1 Slide 8- 70

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Group by

Problem: Find min salary in each department

Query:

employee_nu

mber
last_name first_name salary dept_id

1001 Smith John 62000 500

1002 Anderson Jane 57500 500

1003 Everest Brad 71000 501

1004 Horvath Jack 42000 501

SELECT dept_id, MIN(salary) AS lowest_salary

FROM employees GROUP BY dept_id;

dept_id lowest_salary

500 57500

501 42000
Slide 8- 71

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Having

• HAVING filters records that work on summarized GROUP BY results.

• HAVING applies to summarized group records, whereas WHERE

applies to individual records.

• Only the groups that meet the HAVING criteria will be returned.

• HAVING requires that a GROUP BY clause is present.

• WHERE and HAVING can be in the same query.

• Syntax:

SELECT column-names

FROM table-name

WHERE condition

GROUP BY column-names

HAVING condition Slide 8- 72

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Having

Problem: List the number of customers in each country.

Only include countries with more than 10 customers.

Query:

SELECT COUNT(Id), Country

FROM Customer

GROUP BY Country

HAVING COUNT(Id) > 10
Result

Count Country

11 France

11 Germany

13 USA

Slide 8- 73

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Having

Problem: Return only those records from department where

the minimum salary is greater than 35000

Query:

SELECT department, MIN(salary) AS "Lowest

salary"

FROM employees

GROUP BY department

HAVING MIN(salary) > 35000;

Slide 8- 74

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 75

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Sample Queries

1. Display all data from Employees table for all employees who was

hired before January 1st, 1992

2. Display the employee number, first name, job id and department

number for all employees whose department number is not

equal to 20, 60 and 80 (Employees table).

3. Display the last name, phone number, salary and manager

number, for all employees whose manager number equals 100,

102 or 103 (Employees table).

4. Display the first name and salary for all employees whose first

name ends with an e (Employees table).

Slide 8- 76

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Sample Queries

Solution

1. SELECT *

FROM employees

WHERE hire_date < '01-JAN-1992‘

2. SELECT employee_id , first_name , job_id, department_id

FROM employees

WHERE department_id NOT IN (20 , 60 , 80)

3. SELECT last_name , phone_number , salary , manager_id

FROM employees

WHERE manager_id IN (103 , 102 , 100)

4. SELECT first_name , salary

FROM employees

WHERE first_name LIKE '%e' Slide 8- 77

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Sample Queries

5. Display the last name and department number for all employees where

the second letter in their last name is i (Employees table).

6. Average salary per department

-Display the department number and average salary for each

department.

-Modify your query to display the results only for departments 50 or

80.

7. Display the department number, and the average salary for each

department, for all departments whose number is in the range of 20 and 80,

and their average salary is greater than 9000.

8. Customers and internet packages (Customers & Packages tables) –

Write a query to display first name, last name, package number

and internet speed for all customers whose package number equals 22 or

27, apply order by over last name
Slide 8- 78

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 79

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Sample Queries

Solution

5. SELECT last_name , department_id

FROM employees

WHERE last_name LIKE '_i%‘

6. SELECT department_id , AVG(salary)

FROM employees

GROUP BY department_id

SELECT department_id , AVG(salary)

FROM employees

WHERE department_id IN (50, 80)

GROUP BY department_id

7. SELECT AVG(salary) , department_id

FROM employees

WHERE department_id BETWEEN 20 AND 80

GROUP BY department_id

HAVING AVG(salary) > 9000

8. SELECT cust.last_name ,

cust.first_name , cust.pack_id ,

pack.speed

FROM customers cust JOIN

packages pack

ON cust.pack_id = pack.pack_id

WHERE cust.pack_id IN (27, 22)

ORDER BY cust.last_name

Slide 8- 80

Any, All
ALL Operator:
The ALL operator returns TRUE if all of the subquery values meet the
condition.
Query:
Select * from sales where total_amt > ALL (100, 340, 23)
(Without all,
Select * from sales where total_amt > 100 AND total_amt > 340 AND
total_amt > 23)

ANY Operator:
The ANY operator returns TRUE if any of the subquery values meet
the condition.
Query:
Select * from sales where total_amt > ANY (100, 340, 23)
(Without any,
Select * from sales where total_amt > 100 OR total_amt > 340 OR
total_amt > 23)

81

Exists
• The Exists operator is used in queries where the query result

depends on whether or not certain rows exist in a table.

• It evaluates to true if subquery returns atleast one row.

Query:

Select * from dept

Where not exists

(select * from emp where emp.deptno = dept.deptno)

82

Subquery

• A subquery is a SQL query nested inside a larger query.

• The subquery can be nested inside a SELECT, INSERT,

UPDATE, or DELETE statement or inside another subquery.

• A subquery is usually added within the WHERE Clause of

another SQL SELECT statement.

83

Subquery

• The comparison operators can be used, such as >, <, or =.

• The comparison operator can also be a multiple-row operator, such

as IN, ANY, or ALL.

• A subquery is also called an inner query or inner select, while the

statement containing a subquery is also called an outer query or

outer select.

• The inner query executes first before its parent query so that the

results of an inner query can be passed to the outer query.

84

Subquery
Syntax:

Example: following two tables 'student' and 'marks' with common field

'StudentID'.

85

Subquery
Problem - write a query to identify all students who get better marks

than that of the student who's StudentID is 'V002‘

Solution:

We require two queries;

First query:-

returns the marks (stored in Total_marks field) of 'V002'

Second query:-

identifies the students who get better marks than the result of the first

query.

86

Subquery
First query:-

SELECT * FROM marks WHERE studentid = 'V002';

Second query:-

SELECT a.studentid, a.name, b.total_marks

FROM student a, marks b

WHERE a.studentid = b.studentid

AND b.total_marks >80;

87

Subquery

Subquery:-

SELECT a.studentid, a.name, b.total_marks

FROM student a, marks b

WHERE a.studentid = b.studentid

AND b.total_marks >

(SELECT total_marks FROM marks WHERE studentid = 'V002‘);

Query result:

88

Subquery Guidelines
• A subquery must be enclosed in parentheses.

• A subquery must be placed on the right side of the comparison

operator.

• If a subquery (inner query) returns a null value to the outer query,

the outer query will not return any rows when using certain

comparison operators in a WHERE clause.

• Only one ORDER BY clause can be used for a SELECT statement, and

if specified, it must be the last clause in the main SELECT statement.

89

Types of Subquery
• Single row subquery : Returns zero or one row.

• Multiple row subquery : Returns one or more rows.

• Multiple column subqueries : Returns one or more

columns.

• Correlated subqueries : Reference one or more columns in

the outer SQL statement. The subquery is known as a

correlated subquery because the subquery is related to

the outer SQL statement.

• Nested subqueries : Subqueries are placed within another

subquery. 90

Single Row Subquery – Ex 1
• A single row subquery returns zero or one row to the outer SQL

statement.

• Subquery can be placed in a WHERE clause, a HAVING clause, or a

FROM clause of a SELECT statement.

• Ex- Select list of employees work in marketing department.

91

Single Row Subquery – Ex 1 (cont.)

92

Single Row Subquery – Ex 2

93

Which employees earn less than the average salary?

• The subquery first finds the average salary for all

employees,

• the outer query then returns employees with a

salary of less than the average.

Single Row Subquery – Ex 2 (cont.)

94

Single Row Subquery – Ex 3
Consider table agent

• Problem: Retrieve the agent_name, agent_code, phone_no from

the agents table whose agent_name is 'Alex'.

• (retrieve record based on agent_code)

AGENT_CODE | AGENT_NAME | WORKING_AREA | COMMISSION | PHONE_NO | COUNTRY

95

Single Row Subquery – Ex 3 (cont.)

• Inner query:

SELECT agent_code FROM agents WHERE agent_name = 'Alex';

Output:

AGENT_CODE

A003

• Outer query:

SELECT agent_name, agent_code, phone_no FROM agents WHERE

agent_code = 'A003';

AGENT_CODE | AGENT_NAME | WORKING_AREA | COMMISSION | PHONE_NO | COUNTRY

96

Single Row Subquery- Ex 3 (cont.)

Subquery:

SELECT agent_name, agent_code, phone_no FROM agents

WHERE agent_code =

(SELECT agent_code FROM agents

WHERE agent_name = 'Alex');

AGENT_CODE | AGENT_NAME | WORKING_AREA | COMMISSION | PHONE_NO | COUNTRY

97

98

Single Row Subquery – Ex 4
• Other comparison operators such as <>, >, <, <= can be used with a

single subquery.

• Example:

Obtain order_num, ord_amt, ord_date, cust_code, agent_code from

order table where order amount is more than the average order

amount placed on date=’12-02-2018’.

99

Single Row Subquery – Ex 4 (cont.)
• Example:

Obtain order_num, ord_amt, ord_date, cust_code, agent_code from

order table where order amount is more than the average order

amount placed on date=’12-02-2018’.

Query:

SELECT ord_num,ord_amount,ord_date,cust_code, agent_code

FROM orders

WHERE ord_amount>

(SELECT AVG(ord_amount) FROM orders

WHERE ord_date='20-APR-08');

100

Multiple Row Subquery

• Multiple row subquery returns one or more rows to the outer SQL

statement.

• You may use the IN, ANY, or ALL operator in outer query to handle a

subquery that returns multiple rows.

Using IN operator with a Multiple Row Subquery

• IN operator is used to check a value within a set of values. The list of

values may come from the results returned by a subquery.

101

Multiple Row Subquery
• Example:

Consider agent and order tables

Outer query: 'agent_code' of 'orders' table must be in the list within IN

operator in inner query

Inner query:

'working_area' of 'agents' table must be 'Bangalore',

Query:

SELECT ord_num,ord_amount,ord_date, cust_code, agent_code

FROM orders

WHERE agent_code IN (SELECT agent_code FROM agents WHERE

working_area='Bangalore'); 102

103

Multiple Row Subquery
Using ANY with a Multiple Row Subquery

• Use the ANY operator to compare a value with any value in a list.

• Place an =, <>, >, <, <= or >= operator before ANY in your query.

• The following example uses ANY to check if any of the agent who

belongs to the country 'UK'.

• Query:

SELECT agent_code,agent_name,working_area,commission

FROM agents

WHERE agent_code = ANY

(SELECT agent_code FROM customer WHERE cust_country='UK');

104

105

Multiple Column Subquery

• Subquery returns multiple columns

• The following example retrieves the order amount with the lowest

price, group by agent code.

select ord_num, agent_code, ord_date, ord_amount from orders

where(agent_code, ord_amount) IN

(SELECT agent_code, MIN(ord_amount)

FROM orders

GROUP BY agent_code);

106

107

Correlated Subquery
• Correlated Subqueries are used to select data from a table

referenced in the outer query

• The subquery is known as a correlated because the subquery is

related to the outer query. The outer query is executed first and

inner query is executed for each records of outer query.

• In this type of queries, a table alias (also called a correlation name)

must be used to specify which table reference is to be used.

108

Correlated Subquery
Steps of Correlated Subqueries:

1. Executes the outer Query

2. For Each row of outer query inner subquery is executed once

3. The result of correlated subquery determines whether the fetched

row should be the part of our output results

4. The Process is Repeated for all Rows

109

Correlated Subquery
• Example:

Select the students whose marks have been entered into MARKS

table.

Query:

SELECT * FROM STUDENT s WHERE STD_ID IN

(SELECT STD_ID FROM MARKS m WHERE s.STD_ID = m.STD_ID);

• outer query column and inner query column are joined to get the

result. This query fetches all the records from STUDENT table and

joins with the STD_ID in MARKS table. It returns the records only if

there is a matching STD_ID in MARKS.

110

Referred by outer

query

Correlated Subquery
• Query:

SELECT * FROM STUDENT s WHERE EXISTS

(SELECT STD_ID FROM MARKS m WHERE s.STD_ID = m.STD_ID);

The EXISTS operator is used to test for the existence of any record in a

subquery.

The EXISTS operator returns true if the subquery returns one or more

records.

• Query:

SELECT * FROM STUDENT s WHERE NOT EXISTS

(SELECT STD_ID FROM MARKS m WHERE s.STD_ID = m.STD_ID);

111

Subquery Vs Correlated Subquery
Sub Query Correlated Sub Query

Inner Query is executed First. Outer Query is executed first.

Inner query is executed only once and its result is used
by outer query.

Inner query is executed for each of the records that outer
query returns.

Uses using =, <, >, >=, <=, IN, BETWEEN operators.
Can use using =, <, >, >=, <=, IN, BETWEEN operators, but it
mainly uses EXISTS and NOT EXISTS clause.

Always outer query columns are compared with inner
query but there are no explicit joins in the inner query
with outer query columns.

There should be some joins between the outer and inner
query columns in the inner query.

Is always used in the WHERE clause.
Is used in WHERE clause as well as columns of SELECT
statement.

Performance is better as inner query is executed only
once and outer query is executed based on the result of
inner query.

Correlated subqueries evaluate once for each row of the
outer query.
It will be bit slow if the outer table has large number of
records. This is because, when each record of outer query is
retrieved, the inner query is executed. The number of
execution of inner query depends on the number of records
returned by the outer query.
Rather than incur the overhead of this correlated subquery, a
join can be used. 112

Nested Subquery
• A subquery can be nested inside other subqueries. The Execution of

Nested suubquery always follows bottom up approach.

• Execution steps:

Step 1:
Executed Bottom query:
Step 2:
Execute The Second Query which is above bottom query:
Step 3:
Excecuted the Top Query

113

Nested Subquery
• A subquery can be nested inside other subqueries. The Execution of

Nested suubquery always follows bottom up approach.

• Example: consider employee and job tables

SELECT job_id,AVG(salary)

FROM employees

GROUP BY job_id HAVING AVG(salary)<

(SELECT MAX(AVG(min_salary))

FROM jobs WHERE job_id IN

(SELECT job_id

FROM job_history

WHERE department_id BETWEEN 50 AND 100)

GROUP BY job_id);

114

Nested Subquery
• This example contains three queries: a nested subquery, a subquery,

and the outer query.

• Sequence of execution:

• Nested: SELECT job_id FROM job_history WHERE department_id

BETWEEN 50 AND 100;

115

Nested Subquery
• Now the subquery that receives output from the nested subquery

stated previously.

Subquery: SELECT MAX(AVG(min_salary)) FROM jobs

WHERE job_id IN

('ST_CLERK','ST_CLERK','IT_PROG', 'SA_REP','SA_MAN','AD_ASST', '

AC_ACCOUNT')

GROUP BY job_id;

MAX(AVG(MIN_SALARY))

10000

116

Nested Subquery

117

Nested Subquery
• Outer Query: SELECT job_id, AVG(salary) FROM employees GROUP

BY job_id HAVING AVG(salary)<10000;

The outer query returns the job_id, average salary of employees that

are less than maximum of average of min_salary returned by the

previous query

118

Subqueries with INSERT, UPDATE, DELETE
statement

• Query:

1. INSERT INTO neworder

SELECT * FROM orders

WHERE advance_amount in(2000,5000);

2. UPDATE neworder SET ord_date='15-JAN-10'

WHERE ord_amount-advance_amount<

(SELECT MIN(ord_amount) FROM orders);

3. DELETE FROM neworder

WHERE advance_amount<

(SELECT MAX(advance_amount) FROM orders);

119

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

SQL Facilities (cont..)

◼ Data Control Language (DCL)

◼ Database security control including privileges and

revoke privileges

◼ Commands are – grant, revoke (refer advanced

sql ppt)

Slide 8- 120

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

References

◼ Navathe

◼ Korth

◼ Web

◼ https://www.postgresqltutorial.com/

◼ https://sqldatabasetutorials.com/sql-db/single-row-

subqueries/

Slide 8- 121

