Database
Systems

Chapter 3

Fundamentals of

Database

Elmasri ' Navathe

PEARSON
.//___\\.
Addison
Wesley

SQL History

= |IBM Sequel Language developed as a part of
System R Project at the IBM San Jose Research
Laboratory

s Renamed as Structured Query Language (SQL)

s ANSI| and ISO standard SQL.:
= SQL-86
= SQL-89
= SQL-92
= SQL: 1999

» SQL: 2003,2005,2008, 2012, 2014, 2016,
2017,2019

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 3

SQL Facillities

= Data Definition Language (DDL)
= Data Manipulation Language (DML)
= Data Control Language (DCL)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S| [de 8-4

Data Definition Language (DDL)

= Create and destroy databases and objects
= Creating a table or view
= Altering/expanding definition of table
» Creating/dropping an index
= Integrity constraints can be defined at the time of

creation or later

= Primarily used by database admin during setup and

removal phases of database object

= Commands are — create, update, drop

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 5

Data Definition Language (DDL)

= CREATE command
« Create and manage independent database

» For example, to maintain a database of customer contacts
for your sales department and a personnel database for

your Human Resource department

= Command - creates an empty database named
"Employees” on your DBMS

» CREATE DATABASE Employees;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 6

Data Definition Language (DDL)

s CREATE command
= Next step is to create tables that will contain data
= The CREATE TABLE command specifies
= a new base relation by giving it a name,

= specifying each of its attributes and their data
types (INTEGER, FLOAT, DECIMAL(i,)),
CHAR(n), VARCHAR(Nn) etc.)

= A constraint may be specified on an attribute

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 7

Data Definition Language (DDL)

= CREATE command
= [he command:

CREATE TABLE personal_info
(first_name varchar(20) NOT NULL,
last_name varchar(20) NOT NULL,
employee id int NOT NULL)

Creates a table titled "personal info" in the current
database

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 8

Data Definition Language (DDL)

= CREATE command

» Also used for specifying the primary key attributes,

and referential integrity constraints (foreign keys)

« Key attributes can be specified via the PRIMARY
KEY, FOREIGN KEY, REFERENCES and UNIQUE

phrases

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S| | de 8-9

Data Definition Language (DDL)
= CREATE command

= To specify CASCADE, SET NULL or SET DEFAULT on

referential integrity constraints (foreign keys)

CREATE TABLE dept_info
(DNAMEVARCHAR(10) NOT NULL,

DNUMBER INTEGER NOT NULL,
EMPLOYEE_ID int,

PRIMARY KEY (DNUMBER),

UNIQUE (DNAME),

FOREIGN KEY (EMPLOYEE_ID) REFERENCES
personal_info

ON DELETE SET DEFAULT ON UPDATE CASCADE);

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 10

Constraints

There are 5 different referential actions: CASCADE, RESTRICT, NO
ACTION, SET NULL, SET DEFAULT

CASCADE
« ON DELETE CASCADE means that if the parent record is deleted,
any child records are also deleted.
« ON UPDATE CASCADE means that if the parent primary key is
changed, the child value will also change to reflect that.
« ON UPDATE CASCADE ON DELETE CASCADE means that if
you UPDATE OR DELETE the parent, the change is cascaded to the

child.

Slide 8- 11

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Constraints

RESTRICT
« RESTRICT means that any attempt to delete and/or update the

parent will fail throwing an error.

« This is the default behavior in the event that a referential action
IS not explicitly specified.

 Foran ON DELETE or ON UPDATE that is not specified, the
default action is always RESTRICT .

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 8-12

Constraints (cont..)

NO ACTION
« NO ACTION: equivalent to RESTRICT.

 The MySQL Server rejects the delete or update operation for the

parent table if there is a related foreign key value in the referenced

table.

SET NULL
« SQL allows NULLs attribute values, a NOT NULL constraint may be

specified if NULL is not permitted for a particular attribute
« SET NULL - Delete or update the row from the parent table, and set

the foreign key column or columns in the child table to NULL.

Slide 8- 13

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Constraints (cont..)

SET DEFAULT
« A default value for an attribute could be set and it will be
Included in new tuple if an explicit value is not provided for that
attribute
 SET DEFAULT. allows the developer to specify a value to which
to set the foreign key column(s) on an UPDATE or a DELETE.

CHECK
* Restrict attribute or domain values using CHECK clause

following an attribute or domain definitions.

Dnumber INT NOT NULL CHECK (Dnumber = 0 AND
Dnumber < 21):

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 14

EMPLOYEE < Number of employees ——l DEPARTMENT ‘

1

CONTROLS

N

PROJECT |

Supervisor Supervisee

1 N

@ Location

DEPENDENTS_OF

DEPENDENT |

Blrth _date

Figure 3.2

An ER schema diagram for the COMPANY database. The diagrammatic notation ~p:
Cais introduced gradually throughout this chapter. slide 3- 15

Examples

= Consider the following relational database schema
corresponding to a COMPANY database

EMPLOYEE

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO

DEPARTMENT

DNAME DNUMBER MGRSSN MGRSTARTDATE

DEPT_LOCATIONS

DNUMBER DLOCATION

PROJECT
PNAME PNUMBER PLOCATION DNUM

WORKS_ON

ESSN PNO HOURS

DEPENDENT

ESSN DEPENDENT_NAME SEX BDATE RELATIONSHIP
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllue o- 10

Specifying Key and Referential Integrity
Constraints in SQL

CREATE TABLE EMPLOYEE

(...,

Dno INT NOT NULL DEFAULT 1.

CONSTRAINT EMPPK = €= (ptraint name
PRIMARY KEY (Ssn).

CONSTRAINT EMPSUPERFK

FOREIGN KEY (Super ssn) REFERENCES EMPLOYEE(Ssn)
ON DELETE SET NULL ON UPDATE CASCADE,
CONSTRAINT EMPDEPTFK

FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber)
ON DELETE SET DEFAULT ON UPDATE CASCADE):

Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition

Copyright © 2004 Ramez Elmasri and Shamkant Navathe : ﬁ!. ” 17
> I. A R T

Data Definition Language (DDL)

= ALTER command

« Modify information - to make changes to the structure of a
table without deleting and recreating it

= For example, add a new attribute to the personal_info table --
an employee's salary

= ALTER TABLE personal_info
ADD salary money null

= The "money" argument specifies that an employee's salary
will be stored using a dollars and cents format

= Example 2;
ALTER TABLE personal_info ADD JOB VARCHAR(12);

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 18

Alter Command (cont.)

Various forms of Alter command with syntax:
To add a new column:
ALTER TABLE table_name ADD column_name datatype,;
To delete a column:
ALTER TABLE table name DROP COLUMN column_name;
To modify a column:
ALTER TABLE table_name MODIFY column_name datatype;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 19

Alter Command (cont.)

Various forms of Alter command with syntax:
To rename table:

ALTER TABLE table_ name RENAME TO new table name;
To rename the column:

ALTER TABLE table_name RENAME COLUMN

old_Column_name to new_Column_name;

EX.
ALTER TABLE STUDENT ADD Address varchar2 (100);

ALTER TABLE STUDENT DROP COLUMN AGE;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 20

Data Definition Language (DDL)

= DROP command

= T0 permanently remove the table
= DROP TABLE personal_info

= 10 remove the entire database
= DROP DATABASE employees

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Slide 8- 21

Data Manipulation Language (DML)

= Retrieving and updating information from more than

two tables

= Commands are — select, update, delete, insert
=« INSERT command :

= The INSERT command in SQL is used to add records to

an existing table

s Syntax:

INSERT INTO table-name (column-names)

VALUES (values)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 8- 22

Insert examples

EX.

Problem:

Add a record for a new customer

INSERT INTO Customer (FirstName, LastName, City, Country, Phone)

VALUES (‘Craig’, 'Smith’, 'New York', 'USA', 1-01-993 2800)

Problem:

Add a new customer named Anita Coats to the database
INSERT INTO Customer (FirstName, LastName)
VALUES (‘Anita’, 'Coats')

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

CUSTOME
R

Id

FirstName

LastName

City

Country

Phongi e g o1

Data Manipulation Language (DML)

« SELECT command :

= Allows database users to retrieve the specific information

they desire from an operational database

= Example, the command shown below retrieves all of the

Information contained within the personal info table

SELECT * FROM personal_info

« the asterisk (*) is used as a wildcard in SQL - "Select

everything from the personal_info table.*

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 8- 24

Data Manipulation Language (DML)

« SELECT command :

= Users limit the attributes that are retrieved from the
database
= For example, the Human Resources department may
require a list of the last names of all employees In the
company
= SELECT last_name
FROM personal _info

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 25

Data Manipulation Language (DML)

« SELECT command :

= [he WHERE clause can be used to limit the records that

are retrieved to those that meet specified criteria

= The following command retrieves all of the data
contained within personal _info for records that have a

salary value greater than $50,000:

SELECT *
FROM personal _info
WHERE salary > $50,000

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 26

Data Manipulation Language (DML)

=« UPDATE command :

= 1o modify information contained within a table, either in bulk
or individually

= Syntax:

s UPDATE table-name SET column-name = value, column-
name = value, ...

= For example, Each year, company gives all employees a 3%
cost-of-living increase in their salary

« UPDATE personal_info
SET salary = salary * 1.03

« UPDATE personal_info
SET salary = salary + $5000
WHERE employee 1d =2

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 8- 27

Data Manipulation Language (DML)

=« DELETE command :

= The DELETE command with a WHERE clause can be
used to remove specific record from the personal info
table:

= Syntax:
DELETE from table-name WHERE condition
= Example;

« DELETE FROM personal_info
WHERE employee 1d =2
« DELETE all the records from the CUSTOMERS table
: DELETE FROM CUSTOMERS;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 28

Examples

= Consider the following relational database schema
corresponding to a COMPANY database

EMPLOYEE

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO

DEPARTMENT

DNAME DNUMBER MGRSSN MGRSTARTDATE

DEPT_LOCATIONS

DNUMBER DLOCATION

PROJECT
PNAME PNUMBER PLOCATION DNUM

WORKS_ON

ESSN PNO HOURS

DEPENDENT

ESSN DEPENDENT_NAME SEX BDATE RELATIONSHIP
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sliue o- 39

EMPLOYEE FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN |DNO
John B Smith 123456789 1965-01-09 731 Fondren, Houston, TX M 30000 333445555 5
Franklin T Wong 333445555 1955-12-08 638 Voss, Houston, TX M 40000 888665555 5
Allicia J Zelaya 999887777 1968-07-19 3321 Castle, Spring, TX F 25000 987654321 4
Jennifer S Wallace 987654321 1941-06-20 291 Berry, Bellaire, TX F 43000 888665555 <4
Ramesh K Narayan 666884444 1962-09-15 975 Fire Oak, Humble, TX M 38000 333445555 5
Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX F 25000 333445555 5
Ahmad A\ Jabbar 987987987 1969-03-29 980 Dallas, Houston, TX M 25000 987654321 4
James E Borg 888665555 1937-11-10 450 Stone, Houston, TX M 55000 null 1

DEPT_LOCATIONS DNUMBER DLOCATION
1 Houston
4 Stafford
DEPARTMENT DNAME DNUMBER MGRSSN MGRSTARTDATE 5 Bellaire
Research 5 333445555 1988-05-22 5 Sugarland
Administration 4 987654321 1995-01-01 5 Houston
Headquarters 1 888665555 1981-06-19
WORKS_ON ESSN PNO HOURS
123456789 1 32.5
123456789 2 7.5
666884444 3 40.0
453453453 1 20.0
453453453 2 20.0 PROJECT PNAME PNUMBER PLOCATION DNUM
333445555 £ 100 ProductX 1 Bellaire 5
333445555 3 10.0 ProductyY 5 Sugarland 5
333445555 10 100 ProductZ 3 Houston 5
333445555 20 10.0 Computerization 10 Stafford 4
999887777 30 30.0 Reorganization 20 Houston 1
999887777 10 10.0 Newbenefits 30 Stafford 4
987987987 10 35.0
987987987 30 5.0
987654321 30 20.0
987654321 20 15.0
888665555 20 null
DEPENDENT ESSN DEPENDENT_NAME SEX BDATE RELATIONSHIP
333445555 Alice F 1986-04-05 DAUGHTER
333445555 Theodore M 1983-10-25 SON
333445555 Joy F 1958-05-03 SPOUSE
987654321 Abner M 1942-02-28 SPOUSE
123456789 Michael M 1988-01-04 SON
123456789 Alice F 1988-12-30 DAUGHTER
123456789 Elizabeth F 1967-05-05 SPOUSE

= Example of a simple query on one relation

= Query 0: Retrieve the birthdate and address of the
employee whose name is 'John B. Smith'.

s QO: SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME="John' AND
MINIT='B’
AND LNAME="Smith’

Slide 8- 31

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

EMPLOYEE FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN |DNO
John B Smith 123456789 1965-01-09 731 Fondren, Houston, TX M 30000 333445555 5
Franklin T Wong 333445555 1955-12-08 638 Voss, Houston, TX M 40000 888665555 5
Allicia J Zelaya 999887777 1968-07-19 3321 Castle, Spring, TX F 25000 987654321 4
Jennifer S Wallace 987654321 1941-06-20 291 Berry, Bellaire, TX F 43000 888665555 <4
Ramesh K Narayan 666884444 1962-09-15 975 Fire Oak, Humble, TX M 38000 333445555 5
Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX F 25000 333445555 5
Ahmad A\ Jabbar 987987987 1969-03-29 980 Dallas, Houston, TX M 25000 987654321 4
James E Borg 888665555 1937-11-10 450 Stone, Houston, TX M 55000 null 1

DEPT_LOCATIONS DNUMBER DLOCATION
1 Houston
4 Stafford
DEPARTMENT DNAME DNUMBER MGRSSN MGRSTARTDATE 5 Bellaire
Research 5 333445555 1988-05-22 5 Sugarland
Administration 4 987654321 1995-01-01 5 Houston
Headquarters 1 888665555 1981-06-19
WORKS_ON ESSN PNO HOURS
123456789 1 32.5
123456789 2 7.5
666884444 3 40.0
453453453 1 20.0
453453453 2 20.0 PROJECT PNAME PNUMBER PLOCATION DNUM
333445555 £ 100 ProductX 1 Bellaire 5
333445555 3 10.0 ProductyY 5 Sugarland 5
333445555 10 100 ProductZ 3 Houston 5
333445555 20 10.0 Computerization 10 Stafford 4
999887777 30 30.0 Reorganization 20 Houston 1
999887777 10 10.0 Newbenefits 30 Stafford 4
987987987 10 35.0
987987987 30 5.0
987654321 30 20.0
987654321 20 15.0
888665555 20 null
DEPENDENT ESSN DEPENDENT_NAME SEX BDATE RELATIONSHIP
333445555 Alice F 1986-04-05 DAUGHTER
333445555 Theodore M 1983-10-25 SON
333445555 Joy F 1958-05-03 SPOUSE
987654321 Abner M 1942-02-28 SPOUSE
123456789 Michael M 1988-01-04 SON
123456789 Alice F 1988-12-30 DAUGHTER
123456789 Elizabeth F 1967-05-05 SPOUSE

= Query 1. Retrieve the name and address of all

employees who work for the 'Research’ department

Ql: SELECT FNAME, LNAME,
ADDRESS

FROM EMPLOYEE, DEPARTMENT
WHERE DNAME="Research’ AND
DNUMBER=DNO

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 33

EMPLOYEE FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN |DNO
John B Smith 123456789 1965-01-09 731 Fondren, Houston, TX M 30000 333445555 5
Franklin T Wong 333445555 1955-12-08 638 Voss, Houston, TX M 40000 888665555 5
Allicia J Zelaya 999887777 1968-07-19 3321 Castle, Spring, TX F 25000 987654321 4
Jennifer S Wallace 987654321 1941-06-20 291 Berry, Bellaire, TX F 43000 888665555 <4
Ramesh K Narayan 666884444 1962-09-15 975 Fire Oak, Humble, TX M 38000 333445555 5
Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX F 25000 333445555 5
Ahmad A\ Jabbar 987987987 1969-03-29 980 Dallas, Houston, TX M 25000 987654321 4
James E Borg 888665555 1937-11-10 450 Stone, Houston, TX M 55000 null 1

DEPT_LOCATIONS DNUMBER DLOCATION
1 Houston
4 Stafford
DEPARTMENT DNAME DNUMBER MGRSSN MGRSTARTDATE 5 Bellaire
Research 5 333445555 1988-05-22 5 Sugarland
Administration 4 987654321 1995-01-01 5 Houston
Headquarters 1 888665555 1981-06-19
WORKS_ON ESSN PNO HOURS
123456789 1 32.5
123456789 2 7.5
666884444 3 40.0
453453453 1 20.0
453453453 2 20.0 PROJECT PNAME PNUMBER PLOCATION DNUM
333445555 £ 100 ProductX 1 Bellaire 5
333445555 3 10.0 ProductyY 5 Sugarland 5
333445555 10 100 ProductZ 3 Houston 5
333445555 20 10.0 Computerization 10 Stafford 4
999887777 30 30.0 Reorganization 20 Houston 1
999887777 10 10.0 Newbenefits 30 Stafford 4
987987987 10 35.0
987987987 30 5.0
987654321 30 20.0
987654321 20 15.0
888665555 20 null
DEPENDENT ESSN DEPENDENT_NAME SEX BDATE RELATIONSHIP
333445555 Alice F 1986-04-05 DAUGHTER
333445555 Theodore M 1983-10-25 SON
333445555 Joy F 1958-05-03 SPOUSE
987654321 Abner M 1942-02-28 SPOUSE
123456789 Michael M 1988-01-04 SON
123456789 Alice F 1988-12-30 DAUGHTER
123456789 Elizabeth F 1967-05-05 SPOUSE

= Query 2: For every project located in 'Stafford’, list the project

number, the controlling department number, and the department
manager's last name, address, and birthdate

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE,
ADDRESS
FROM PROJECT, DEPARTMENT,
EMPLOYEE
WHERE DNUM=DNUMBER AND
MGRSSN=SSN AND
PLOCATION="Stafford"

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 35

= Query 2: For every project located in 'Stafford’, list the project

number, the controlling department number, and the department
manager's last name, address, and birthdate

Note:

= The join condition DNUM=DNUMBER relates a project to its controlling

department

= The join condition MGRSSN=SSN relates the controlling department to the

employee who manages that department

= A missing WHERE-clause indicates no condition; hence, all tuples of the relations

in the FROM-clause are selected

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 36

s 10 retrieve all the attribute values of the selected
tuples, a * Is used, which stands for all the attributes

= Examples:

Q: SELECT *FROM EMPLOYEE
WHERE DNO=5

Q: SELECT *FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research’ AND
DNO=DNUMBER

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 37

AND , OR, NOT clause

Problem: Get customer named Thomas Hardy

- SELECT Id, FirstName, LastName, City, Country
FROM Customer

WHERE FirstName = 'Thomas' AND LastName = 'Hardy"
Problem: List all customers from Spain or France

- SELECT Id, FirstName, LastName, City, Country
FROM Customer

WHERE Country = 'Spain' OR Country = 'France
Problem: List all customers that are not from the USA
- SELECT Id, FirstName, LastName, City, Country
FROM Customer

WHERE NOT Country = 'USA'

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Slide 8- 38

Order by

« ORDER BY allows sorting by one or more columns.
* Records can be returned in ascending or descending order. The
default sort order is ascending.
* The general syntax is:
SELECT column-names FROM table-name
WHERE condition
ORDER BY column-names ASC|DESC
Problem: List all suppliers in alphabetical order
SELECT CompanyName, ContactName, City, Country
FROM Supplier
ORDER BY CompanyName

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 39

Order by

Problem: List all customers in descending order

SELECT * FROM CUSTOMERS ORDER BY NAME
DESC;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 8- 40

Set Operations

Union

- combine the results of two or more Select statements
- it will eliminate duplicate rows from its result set
- number of columns and datatype must be same in both the tables.

Union all

This operation is similar to Union. But it also shows the duplicate rows.

Intersect

- combine two SELECT statements, but it only returns the records which are common from
both SELECT statements.

- In case of Intersect the number of columns and data-type must be same.

Copy _ <am- dJ Sh .ath Slide 8- 41

Set Operations

Minus

- combines result of two Select statements and return only those
result which belongs to first set of result

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 8-42

Set Operations

Example on Union:

Query: select * from First UNION select * from second

Second First
ID Name ID
2 adam 1
3 Chester 2
ID
Result: 1
2

Copyright © 2007 Ramez Elmasti ¢

Name
abhi

adam

NAME
abhi
adam

Chester

Slide 8- 43

Set Operations

Example on Union all:
Query: select * from First UNION ALL select * from second

ID Name ID Name
2 adam 1 abhi
3 Chester 2 adam
ID NAME
Result: . abh
2 adam
2 adam
3 Chester

Copyright © 2007 Ramez Elmasri

Slide 8- 44

Set Operations

Example on Intersect:

Query: select * from First INTERSECT select * from second

Result: ID

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Name
abhi

adam

Name
adam

Chester

NAME

adam

Slide 8- 45

Set Operations

Example on Minus:
Query: select * from First MINUS select * from second
The above query will return only those rows which are unique in ‘First’

ID Name

1 abhi

2 adam

ID Name

2 adam

3 Chester
Result: 1D NAME

1 abhi

Copyright © 2007 Ramez Elmasti al Slide 8- 46

Aggregate Functions

Max Sum

Avg

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 8- 47

Aggregate Functions

« SELECT COUNT returns a count of the number of data
values.

« SELECT SUM returns the sum of the data values.

« SELECT AVG returns the average of the data values.

Problem: Find the number of customers
- SELECT COUNT(Id)

Count
FROM Customer 91

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 48

Aggregate Functions

Problem: Compute the total amount sold in 2013
- SELECT SUM(TotalAmount)

Sum
FROM [Order] 658388.75
WHERE YEAR(OrderDate) = 2013

Problem: Compute the average size of all orders
- SELECT AVG(TotalAmount)
FROM [Order]

Average
1631.877819

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Slide 8- 49

Aggregate Functions

« SELECT MIN returns the minimum value for a column.
« SELECT MAX returns the maximum value for a column.
Problem: Find the cheapest product

- SELECT MIN(UnitPrice) UnitPrice
2.50
FROM Product

Problem: Find the largest order placed in 2014

- SELECT MAX(TotalAmount)

FROM [Order] Total Amount
WHERE YEAR(OrderDate) = 2014 17250.00

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 50

Distinct

= To eliminate duplicate tuples in a query result, the
keyword DISTINCT is used

= For example, the result of Q1 may have duplicate
SALARY values whereas Q2 does not have any
duplicate values

Ql: SELECT SALARY
FROM EMPLOYEE

Q2: SELECT DISTINCT SALARY
FROM EMPLOYEE

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 51

Distinct

DISTINCT can be used with aggregates: COUNT, AVG,
MAX, etc.

DISTINCT operates on a single column. DISTINCT for

multiple columns is not supported.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 52

Distinct examples

= Problem: List all supplier countries in alphabetical order.
SELECT DISTINCT Country
FROM Supplier
ORDER BY COUNTRY

s Problem: List the number of supplier countries

SELECT COUNT (DISTINCT Country)
FROM Supplier

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 8- 53

Between

« WHERE BETWEEN returns values that fall within a given
range.

- WHERE BETWEEN is a shorthand for >= AND <=.

« BETWEEN operator is inclusive: begin and end values
are included.

The general syntax is:

SELECT column-names

FROM table-name

WHERE column-name BETWEEN valuel AND value2

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 54

Between

Problem: List all products between $10 and $20

Query:

SELECT Id, ProductName, UnitPrice
FROM Product

WHERE UnitPrice BETWEEN 10 AND 20

ORDER BY UnitPrice

Id ProductName UnitPrice

3 Aniseed 10.00
Syrup

46 Spegesild 12.00

31 Gorgonzola 12.50

Telino Slide 8- 55

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

IN

« WHERE IN returns values that matches values in a list or
subqguery.

« WHERE IN iIs a shorthand for multiple OR conditions.

The general syntax is:

SELECT column-names

FROM table-name

WHERE column-name IN (values)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 56

IN

Problem: List all suppliers from the USA, UK, OR Japan

Query:

SELECT Id, CompanyName, City, Country
FROM Supplier

WHERE Country IN ((USA', 'UK', ‘Japan’)

Id CompanyNam City Country
e

1 Exotic Liquids London UK

2 New Orleans New Orleans USA
Cajun Delights

3 Grandma Ann Arbor USA
Kelly's
Homestead

4 Tokyo Traders Tokyo Japan

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 57

Like

« WHERE LIKE determines if a character string matches a pattern.
 Use WHERE LIKE when only a fragment of a text value is known.
« WHERE LIKE supports two wildcard match options: % and .
The general syntax is:
SELECT column-names
FROM table-name
WHERE column-name LIKE value
Optional Wildcard characters allowed in 'value' are % (percent) and _
(underscore).

A % matches any string with zero or more characters.

An _matches any single character.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 58

Like

* Problem: List all products with names that start with 'Ca’

* Query:
SELECT Id, ProductName, UnitPrice, Package
FROM Product

WHERE ProductName LIKE 'Ca%'

|d ProductName UnitPrice

18 Carnarvon 62.50
Tigers

60 Camembert 34.00

Copyright © 2007 Ramez Elmasti PlerI‘Ot

Package
16 kg pkg.

15-300 g
roungige 8- 59

Like

* Problem: List all products that start with 'Cha’ or 'Chan'’

and have one more character.

* Query:
SELECT Id, ProductName, UnitPrice, Package

FROM Product
WHERE ProductName LIKE 'Cha_' OR ProductName LIKE 'Chan

|d ProductName UnitPrice Package

1 Chali 18.00 10 boxes x 20
bags

2 Chang 19.00 24 - 12 oz
bottles

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 8- 60 I

Alias

« SQL aliases are used to give a table, or a column in a table, a temporary
name.

« Aliases are often used to make column names more readable.

« An alias only exists for the duration of the query.

Syntax:

For Column

SELECT column_name AS alias_name

FROM table name;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 8- 61

Alias

Examples:
1. Alias for columns

SELECT CustomerlID as ID, CustomerName AS Customer
FROM Customers;

SELECT CustomerName, Address + ', ' + PostalCode +''+ City + ', ' +
Country AS Address
FROM Customers;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 8- 62

Alias

Syntax:

For Table

SELECT column_name(s)

FROM table _name AS alias_name,;

Examples:

2. Alias for tables

SELECT 0.OrderID, o0.OrderDate, c.CustomerName
FROM Customers AS c, Orders AS o

WHERE c.CustomerName="Around the

Horn" AND c.CustomeriD=0.Customerl|D:;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Slide 8- 63

Alias

Problem: List total customers in each country.

Display results with easy to understand column headers.

Query:

3. Alias for resultant table

SELECT COUNT(C.Id) AS TotalCustomers, C.Country AS Nation
FROM Customer C

GROUP BY C.Country

TotalCustomers Nation
3 Argentina
2 Austria

2 Belgium

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Slide 8- 64

Alias

Problem: List details of customers who have placed orders

(consider two tables- customer and order)

Query:
SELECT C.ID, C.NAME, C.AGE, O. AMOUNT FROM
CUSTOMERS AS C, ORDERS AS O WHERE C.ID =

O.CUSTOMER _ID;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 65

NULL values

 NULL is the term used to represent a missing value.

« a NULL value is different than a zero value or a field that contains
spaces.

IS NULL or IS NOT NULL operators to check for a NULL value.

« Example:

SELECT ID, NAME, AGE, ADDRESS, SALARY FROM CUSTOMERS

WHERE SALARY IS NOT NULL,;

SELECT ID, NAME, AGE, ADDRESS, SALARY FROM CUSTOMERS
WHERE SALARY IS NULL;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 66

Group by

« The GROUP BY clause groups records into summary rows.
« GROUP BY returns one record for each group.
« GROUP BY also involves aggregates: COUNT, MAX, SUM, AVG,
etc.
« GROUP BY can group one or more columns.
The general syntax is:
SELECT column-names
FROM table-name
WHERE condition
GROUP BY column-names

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 67

Group by

Problem: List the number of customers in each country

- SELECT COUNT(ld), Country

Count Country
FROM Customer 3 Argentina
GROUP BY Country 2 Austria

2 Belgium

9 Brazil

3 Canada

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 68

Group by

employee nu

last_name first_name

mber

1001 Smith John 62000 500
1002 Anderson Jane 57500 500
1003 Everest Brad 71000 501
1004 Horvath Jack 42000 501

Problem: Calculate total salary offered by each department

Query:-
SELECT dept_id, SUM(salary) AS total salaries FROM
employees GROUP BY dept_id,;

Result:

dept_id total salaries
500 119500
501 113000 Slide 8- 69

Group by

product_id product_name category id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

5 Bread 75

6 Sliced Ham 25

7 Kleenex NULL
Query:-

SELECT category_id, COUNT(*) AS total products FROM products
WHERE category _id IS NOT NULL GROUP BY category_id ORDER

BY category id;
category id total _products

75 1 Slide 8- 70

Group by

employee nu
mber

last_name first_name

1001 Smith John 62000 500
1002 Anderson Jane 57500 500
1003 Everest Brad 71000 501
1004 Horvath Jack 42000 501

Problem: Find min salary in each department

Query:
SELECT dept_id, MIN(salary) AS lowest_salary

FROM employees GROUP BY dept _id;

dept_id lowest_salary

500 57500
501 42000

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl Ide 8-71

Having

HAVING filters records that work on summarized GROUP BY results.
HAVING applies to summarized group records, whereas WHERE
applies to individual records.
Only the groups that meet the HAVING criteria will be returned.
HAVING requires that a GROUP BY clause is present.
WHERE and HAVING can be in the same query.
Syntax:

SELECT column-names

FROM table-name

WHERE condition

GROUP BY column-names

Copyright © 2007 Ramez Elmasri and ShaIT-ﬂIAVI‘INl@ C O n d |t| O n SI ide 8- 72

Having

Problem: List the number of customers in each country.
Only include countries with more than 10 customers.

Query:
SELECT COUNT(ld), Country
FROM Customer
GROUP BY Country
HAVING COUNT(Id) > 10

Result

Count Country
11 France
11 Germany

13 USA

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 73

Having

Problem: Return only those records from department where
the minimum salary is greater than 35000

Query:

SELECT department, MIN(salary) AS "Lowest

salary"

FROM employees

GROUP BY department

HAVING MIN(salary) > 35000;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl ide 8- 74

Sample table: employees

emp_id | emp name | job_name | manager id | hire date | salary | commission | dep_id
———————— e e S e B ity sttt bbb
68319 | KAYLING | PRESIDENT | | 1991-11-18 | 6eee.ea | | 1@e1
66928 | BLAZE | MAMAGER | 68319 | 1991-@85-81 | 2758.80 | | 3ee1
67832 | CLARE | MANAGER | 68319 | 1991-@6-02 | 2558.0@ | | 1@e1
65646 | JONAS | MAMAGER | 68319 | 1991-84-82 | 2957.80 | | 2801
67858 | SCARLET | ANALYST | 65646 | 1997-24-12 | 31e0.0@ | | 2801
69962 | FRANK | AmMaLYsT | 65646 | 1991-12-83 | 31e8.00 | | 2801
63679 | SANDRIME | CLERK | 69062 | 199@-12-18 | 900.80 | | 2801
64989 | ADELYN | SALESMAN | 665928 | 1991-82-28 | 1708.00 | 49@.00 | 3eel
65271 | WADE | SALESMAN | 66928 | 1991-82-22 | 1350.0@ | GoR.08 | 300l

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 75

Sample Queries

Display all data from Employees table for all employees who was
hired before January 1st, 1992

Display the employee number, first name, job id and department
number for all employees whose department number is not
equal to 20, 60 and 80 (Employees table).

Display the last name, phone number, salary and manager
number, for all employees whose manager number equals 100,
102 or 103 (Employees table).

Display the first name and salary for all employees whose first

name ends with an e (Employees table).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 76

Sample Queries

Solution

1. SELECT *

FROM employees

WHERE hire_date <'01-JAN-1992°

2. SELECT employee id, first_ name , job_id, department_id
FROM employees

WHERE department_id NOT IN (20, 60, 80)

3. SELECT last_name , phone _number , salary , manager id
FROM employees

WHERE manager_id IN (103, 102, 100)

4. SELECT first_name , salary

FROM employees

WH E R%ri!@[&ﬂlgﬁmgajﬁ!@é%g'Navathe Slide 8- 77

Sample Queries

5. Display the last name and department number for all employees where
the second letter in their last name is | (Employees table).

6. Average salary per department
-Display the department number and average salary for each
department.
-Modify your query to display the results only for departments 50 or
80.

7. Display the department number, and the average salary for each
department, for all departments whose number is in the range of 20 and 80,
and their average salary is greater than 9000.

8. Customers and internet packages (Customers & Packages tables) —

Write a query to display first name, last name, package number
and internet speed for all customers whose package number equals 22 or
27, apply order by over last name

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 78

1. Customers

Field name

Customer 1d 2. Packages
First name :

Last name Field name
Birth_date Pack 1d

Join_date Speed

City

State

Strect Strt_date

Main phone no Monthly payment
Secondary_phone n Sector_id

)

Fax

Monthly discount

Pack 1d

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 8- 79

Sample Queries

Solution

5. SELECT last_name , department_id
FROM employees
WHERE last nhame LIKE' i%’

6. SELECT department_id , AVG(salary)
FROM employees
GROUP BY department_id

SELECT department_id , AVG(salary)
FROM employees

WHERE department_id IN (50, 80)
GROUP BY department_id

7. SELECT AVG(salary) , department_id
FROM employees

8. SELECT cust.last_name ,
cust.first_ nhame , cust.pack id,
pack.speed

FROM customers cust JOIN
packages pack

ON cust.pack_id = pack.pack_id
WHERE cust.pack_id IN (27, 22)
ORDER BY cust.last name

WHERE department_id BETWEEN 20 AND 80

GROUP BY department_id
HAVING AVG(salary) > 9000

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Slide 8- 80

Any, All
ALL Operator:

The ALL operator returns TRUE if all of the subquery values meet the
condition.

Query:

Select * from sales where total amt > ALL (100, 340, 23)

(Without all,

Select * from sales where total_amt > 100 AND total_amt > 340 AND
total amt > 23)

ANY Operator:

The ANY operator returns TRUE if any of the subquery values meet
the condition.

Query:

Select * from sales where total amt > ANY (100, 340, 23)

(Without any,

Select * from sales where total_amt > 100 OR total_amt > 340 OR
total _ amt > 23) N

Exists

* The Exists operator is used in queries where the query result
depends on whether or not certain rows exist in a table.

* |t evaluates to true if subquery returns atleast one row.

Query:

Select * from dept

Where not exists

(select * from emp where emp.deptno = dept.deptno)

82

Subquery

 AsubqueryisaSQL query nested inside a larger query.

* The subquery can be nested inside a SELECT, INSERT,
UPDATE, or DELETE statement or inside another subquery.

* A subquery is usually added within the WHERE Clause of
another SQL SELECT statement.

83

Subquery

The comparison operators can be used, such as >, <, or =.

The comparison operator can also be a multiple-row operator, such
as IN, ANY, or ALL.

A subquery is also called an inner query or inner select, while the
statement containing a subquery is also called an outer query or
outer select.

The inner query executes first before its parent query so that the

results of an inner query can be passed to the outer query.

Subquery

Syntax:

SELECT select list

FROM table

WHERE expr operator

(SELECT select list
FROM table);

Example: following two tables 'student' and 'marks' with common field

'StudentID".

StudentlD Name StudentlD Total marks
Vo0 Abe V00 g5
Vo2 Abhay ooz a0
V003 Acelin V003 74

V04 Adelphos lE! 8

Subquery

Problem - write a query to identify all students who get better marks

than that of the student who's StudentID is 'V002*
StudentlD

Solution:
V001
We require two queries; V002
V003
V004
First query:-

returns the marks (stored in Total _marks field) of 'V002'

Second query:-

Name
Abe

Abhay

Acelin
Adelphos

Studentll Total marks

V001
V002
V003
V004

95
all
74
a1

identifies the students who get better marks than the result of the first

query.

86

Subquery

. StudentlD Name
First query:-

V001 Abe
SELECT * FROM marks WHERE studentid = 'v002'; V002 Abhay
V003 Acelin
StudentlD Total marks V004 Adelphos
V002 a0
StudentlD Total marks
V001 95
Second query:- Ll Ll
V003 74
SELECT a.studentid, a.name, b.total_marks 004 a1
FROM student a, marks b
WHERE a.studentid = b.studentid studentid name | total_marks
AND b.total _marks >80; V001 Abe 95

V004 Adelphos 31

87

Su bq u e ry StudentlD Name

V001 Abe

V002 Abhay
Subquery:- V003 Acelin
SELECT a.studentid, a.name, b.total_marks sl Adelphos

StudentlD Total marks

FROM student a, marks b

V001 95
WHERE a.studentid = b.studentid V002 a0

V003 74
AND b.total _marks > V004 21

(SELECT total_marks FROM marks WHERE studentid = 'V002°);

Query result:

studentid name total marks

Voo Abe 05
V004 Adelphos 81

88

Subquery Guidelines
A subquery must be enclosed in parentheses.
A subquery must be placed on the right side of the comparison
operator.
If a subquery (inner query) returns a null value to the outer query,
the outer query will not return any rows when using certain
comparison operators in a WHERE clause.
Only one ORDER BY clause can be used for a SELECT statement, and

if specified, it must be the last clause in the main SELECT statement.

Types of Subquery

Single row subguery : Returns zero or one row.

Multiple row subquery : Returns one or more rows.
Multiple column subqueries : Returns one or more
columns.

Correlated subqueries : Reference one or more columns in
the outer SQL statement. The subquery is known as a
correlated subquery because the subquery is related to
the outer SQL statement.

Nested subgueries : Subqueries are placed within another

90

subquery.

Single Row Subquery —Ex 1

A single row subquery returns zero or one row to the outer SQL

statement.

Subquery can be placed in a WHERE clause, a HAVING clause, or a
FROM clause of a SELECT statement.

Ex- Select list of employees work in marketing department.

Single Row Subquery — Ex 1 (cont.)

SELECT last name, job id, department id
FROM employees

WHERE department id =

(SELECT department id

FROM departments

WHERE department name = ‘Marketing')
ORDER BY job id;

LAST_NAME JOB_ID DEPARTMENT_ID
Hartstein MK _MAN 20
Fay MK_REP 20

Result of subquery
DEPARTMENT_ID
20

The sub-query finds the department_id for ‘Marketing’, the outer query uses the returned
department_id to display rows from the employees table.

Single Row Subquery — Ex 2

Which employees earn less than the average salary?
« The subquery first finds the average salary for all
employees,
« the outer query then returns employees with a

salary of less than the average.

93

Single Row Subquery — Ex 2 (cont.)

SELECT last _name, salary

FROM employees
WHERE salary <

(SELECT AVG(salary)

FROM employees);

Result of subquery

AVG(SALARY)

8775

LAST_NAME SALARY
Whalen 4400
Gietz 8300
Taylor 8600
Grant 7000
Mourgos 5800
Rajs 3500
Davies 3100
Matos 2600
Vargas 2500
Ernst 6000
Lorentz 4200
Fay 6000

94

Single Row Subquery — Ex 3
Consider table agent
* Problem: Retrieve the agent_name, agent_code, phone_no from
the agents table whose agent_name is 'Alex’.

e (retrieve record based on agent_code)

AGENT_CODE | AGENT_NAME | WORKING_AREA | COMMISSION | PHONE_NO | COUNTRY

Single Row Subquery — Ex 3 (cont.)

AGENT_CODE | AGENT_NAME | WORKING_AREA | COMMISSION | PHONE_NO | COUNTRY

* |nner query:

SELECT agent_code FROM agents WHERE agent_name = 'Alex’;
Output:

AGENT CODE

* Quter query:
SELECT agent_name, agent_code, phone_no FROM agents WHERE
agent_code ='A003’;

Single Row Subquery- Ex 3 (cont.)

AGENT_CODE | AGENT_NAME | WORKING_AREA | COMMISSION | PHONE_NO | COUNTRY
Subquery:

SELECT agent_name, agent_code, phone _no FROM agents

WHERE agent_code =

(SELECT agent_code FROM agents
WHERE agent_name = 'Alex’);

I o
SELECT agent name, agent code, phone no

FROM agents
WHERE agent_code=

(SELECT agent_code

FROM agents

| WHERE agent_name = "Alex') |

" /
[
e
Alex ADD3
Subbarao ADD1 " A\
Benjamin ADD9 'I SELECT agent_name, agent_code, phone_no
Ramasundar ADOT FROM agents
Alord - A00sf WHERE agent_code = ’A003’ ;

L Alex ADD3
Subbarao ADD1 [
Benjamin AD0gS il
Ramasundar ADO7
Alford ADDS f

ﬂ_—’-——-’_‘__.ﬂ'-l-.—-—ﬂ———"'r--_-

s —
Alex ADD3 075-12458969

Single Row Subquery —Ex 4

e Other comparison operators such as <>, >, <, <= can be used with a
single subquery.

 Example:

Obtain order_num, ord_amt, ord_date, cust_code, agent_code from

order table where order amount is more than the average order

amount placed on date="12-02-2018’.

Single Row Subquery — Ex 4 (cont.)

 Example:

Obtain order_num, ord_amt, ord date, cust_code, agent_code from
order table where order amount is more than the average order
amount placed on date="12-02-2018..

Query:

SELECT ord_num,ord_amount,ord_date,cust_code, agent_code
FROM orders

WHERE ord_amount>

(SELECT AVG(ord _amount) FROM orders

WHERE ord_date='20-APR-08');

Multiple Row Subquery

* Multiple row subquery returns one or more rows to the outer SQL

statement.

* You may use the IN, ANY, or ALL operator in outer query to handle a

subquery that returns multiple rows.
Using IN operator with a Multiple Row Subquery

* |IN operator is used to check a value within a set of values. The list of

values may come from the results returned by a subquery.

Multiple Row Subquery

 Example:

Consider agent and order tables

Outer query: '‘agent_code' of 'orders' table must be in the list within IN
operator in inner query

Inner query:

'working_area' of 'agents' table must be '‘Bangalore’,

Query:

SELECT ord_num,ord_amount,ord_date, cust_code, agent_code
FROM orders

WHERE agent_code IN (SELECT agent_code FROM agents WHERE

working_area='Bangalore');

'(FSELECT ord _num,ord_amount,ord_date,)
cust_code, agent_code
FROM orders
WHERE agent_code IIN
., WHERE working area=—"Bangalore’
oy
ADO3 London ADD1 results of
AD01 Bangalore A0O7 inner query

AD009 Hampshair A011

ADos New York ¢

SELECT ord num,ord amount,ord date,

A070 Ehenna cust_code, agent_code FROM orders
A0 12 T ADLOSE
agents WHERE agent_code IN{AQ001,AQ007,A011);

200114

200122
200121

200134

200109
200101
200111

200130
200105

A00S

200117
200124

200123
200112 200120 ADD2
200116 ADDg
ADQZ i
orders 103

(C) wiresource.com

Multiple Row Subquery

Using ANY with a Multiple Row Subquery

* Use the ANY operator to compare a value with any value in a list.

* Placean=, <>, >, <, <=or >= operator before ANY in your query.

* The following example uses ANY to check if any of the agent who
belongs to the country 'UK".

* Query:

SELECT agent_code,agent_name,working_area,commission

FROM agents

WHERE agent_code = ANY

(SELECT agent_code FROM customer WHERE cust_country="UK");

I',_SEI_.E(_'I’l" agent_ code,agent name,working area,
COMmImission
FROM agents
WHERE agent_code = ANY

L. WHERE cust_country="UK"

ADOT India
ADOS USA
ADOS USA
A0 India '
ADOS USA
Q05 Auﬂ;a i3 -
CLUSTOIneT

A009
A003
A00S
A003
A00S

results of
inner query

SELECT agent code,agent name,
commission FROM agents

YWEHERE agent code=ANY(any row from inner

query);

(= A= -|" » [
ADO3 Alex .13 0
AD01 Subbarao A4 L
(ADD9 Benjamin__ ™.11 D
ADo7 FRamasunda .15
ADDS Alford L 12
AD11 Rawi Kumar 15
AD10 Santakumaf 14
ADD9 Benjamin 11 AD12 Lucida ___-"' 12 -
ADD3 Alex e o _—
'3 agents
ADDE McDen w5
—

(L) wiresource. com

105

Multiple Column Subquery

e Subquery returns multiple columns

* The following example retrieves the order amount with the lowest
price, group by agent code.

select ord_num, agent_code, ord date, ord_amount from orders

where(agent_code, ord_amount) IN

(SELECT agent_code, MIN(ord_amount)

FROM orders

GROUP BY agent_code);

ey It
SELECT ord_num, agent_code, ord_date,
ord amount FROM orders
WHERE (agent_code, ord_amount) IN
oy

200114 3500 1 AD0S
200122 2500 ADD4 v results of A004 1500
200118 500 J\ ADOG : inner query ADD2 500 o
200119 4000 l ADAD A0o7 500 :
200121 1500 ADD4 [= | AD009 500
200130 2500 1* AD11 . A011 2500 !
200134 4200 L ADOS . AD12 Q00 .
200115 2000 » ap13 - A010 2000 .
200108 4000 ADD4 AD13 2000 -
200103 1500 1 ADDS | AD0A 800
200105 2500 AD11 ’ ADDS 1000
200109 3500 1 AD10 e ‘&
s ———.
orders

¢

ord amount FROM orders

SELECT ord_ num, agent_code, ord_date,

WHERE (agent_code, ord_amount) IMN (results

ORD G D__ANOL from inner query);
200114 ADDE 3500
200122 ADD4 | 2s00
200119 AD1D 4000 200104 ADD4 . 1500
200121 (ADDa 1500 200121 ADDA _'._, 1500
200130 A0 2ZE00 200126 ADDZ2 500
200134 ADDS . 4200 200120 ADDZ % 500
200115 dRmaE | —— 200123 ADD2Z .\ 500
S00105 AD11_ 2500 200124 ADDT 500
200109 AD10 | 3500 2001148 A009 | 500
200101 ADDE . 3000 ZOTHTE LB | ZHEDD
S00111 . ApDOoE 1000 200130 AD11 | 2500
S00104 . ADO4 1500 200131 AD12 + 000
T — 200135 AD10 "2000
200115 AD13 ' 2000
results 107

(L) wilresource. corm

Correlated Subquery

* Correlated Subqueries are used to select data from a table
referenced in the outer query

 The subquery is known as a correlated because the subquery is
related to the outer query. The outer query is executed first and
inner query is executed for each records of outer query.

* Inthis type of queries, a table alias (also called a correlation name)

must be used to specify which table reference is to be used.

108

Correlated Subquery

Steps of Correlated Subqueries:

1. Executes the outer Query

2. For Each row of outer query inner subquery is executed once

3. The result of correlated subquery determines whether the fetched
row should be the part of our output results

4. The Process is Repeated for all Rows

Correlated Subquery

 Example:
Select the students whose marks have been entered into MARKS

table.

Referred by outer

Query: query

SELECT * FROM STUDENT s WHERE STD_ID IN /

(SELECT STD_ID FROM MARKS m WHERE s.STD ID = m.STD_ID);

* outer query column and inner query column are joined to get the
result. This query fetches all the records from STUDENT table and
joins with the STD_ID in MARKS table. It returns the records only if
there is a matching STD _ID in MARKS.

Correlated Subquery
* Query:
SELECT * FROM STUDENT s WHERE EXISTS
(SELECT STD_ID FROM MARKS m WHERE s.STD_ID = m.STD_ID);
The EXISTS operator is used to test for the existence of any record in a
subquery.
The EXISTS operator returns true if the subquery returns one or more
records.
* Query:
SELECT * FROM STUDENT s WHERE NOT EXISTS
(SELECT STD_ID FROM MARKS m WHERE s.STD_ID = m.STD_ID);

Subquery Vs Correlated Subquery

Sub Query

Correlated Sub Query

Inner Query is executed First.

Outer Query is executed first.

Inner query is executed only once and its result is used
by outer query.

Inner query is executed for each of the records that outer
query returns.

Uses using =, <, >, >=, <=, IN, BETWEEN operators.

Can use using =, <, >, >=, <=, IN, BETWEEN operators, but it
mainly uses EXISTS and NOT EXISTS clause.

Always outer query columns are compared with inner
qguery but there are no explicit joins in the inner query
with outer query columns.

There should be some joins between the outer and inner
qguery columns in the inner query.

Is always used in the WHERE clause.

Is used in WHERE clause as well as columns of SELECT
statement.

Performance is better as inner query is executed only
once and outer query is executed based on the result of
inner query.

Correlated subqueries evaluate once for each row of the
outer query.

It will be bit slow if the outer table has large number of
records. This is because, when each record of outer query is
retrieved, the inner query is executed. The number of
execution of inner query depends on the number of records
returned by the outer query.

Rather than incur the overhead of this correlated subquery, a
join can be used.

Nested Subquery

* Asubquery can be nested inside other subqueries. The Execution of
Nested suubquery always follows bottom up approach.

* Execution steps:

Step 1:

Executed Bottom query:

Step 2:

Execute The Second Query which is above bottom query:
Step 3:

Excecuted the Top Query

113

Nested Subquery

* Asubquery can be nested inside other subqueries. The Execution of
Nested suubquery always follows bottom up approach.

 Example: consider employee and job tables
SELECT job_id,AVG(salary)

FROM employees

GROUP BY job_id HAVING AVG(salary)<

(SELECT MAX(AVG(min_salary))

FROM jobs WHERE job_id IN

(SELECT job_id

FROM job_history

WHERE department_id BETWEEN 50 AND 100)

GROUP BY job_id);

114

Nested Subquery

This example contains three queries: a nested subquery, a subquery,

and the outer query.

Sequence of execution:
Nested: SELECT job_id FROM job_history WHERE department_id
BETWEEN 50 AND 100;

job_history
JOB ID DEPARTMENT_ID
(IT_PROG B0)
AL ACCOUNT 110 \
AL MGH 110 JOB_ID
hilk_REP 20 SELECT job_id ST_CLERK
. . FROM job_history -
ol CLERK S0 WHERE department_id ST_CLERK
ST_CLEHH 0 BETWEEN 50 AND 100; T_PROG
AD ASST 90 SA_REP
54 REP a0 SA_hAMN
S WAN a0 AD_ASST
(AC_ACCOUNT 90 HE_RNEERT 115

Nested Subquery

* Now the subquery that receives output from the nested subquery
stated previously.

Subquery: SELECT MAX(AVG(min_salary)) FROM jobs

WHERE job_id IN

('ST_CLERK','ST_CLERK','IT_PROG', 'SA_REP','SA_MAN','AD_ASST',"

AC_ACCOUNT')

GROUP BY job_id;

MAX(AVG(MIN_SALARY))

10000

116

Nested Subﬁquerv

/

|

SELECT AVG(min_salary)

FROM jobs WHERE job_id IN(
'ST_CLERK','ST_CLERK','TT_PROG',
'SA_REP','SA_MAN','AD_ASST,
'"AC_ACCOUNT")

GROUP BY job_id;

Yoo,

il %

-

1

!

AVG(MIN_SALARY)

4200 \
3000

MAX{AVG{MIN_SALARYY))

4000

(10000

) 10000

JOB_ID MIN_SALARY
AD_PRES 20000
AD_WF 15000
(~D_assT 000) —
FI_MGR 8200
FI_ACCOUNT 4200
AC_MGR 8200
AC_ACCOUNT 4200
S MAN 10000 I
S4_REP 6000
PLI_MAN 8000
PU_CLERK 2500
ST_MAN 5500
(sT_cLERK 2000) —
SH_CLERK 2500
(IT_PRoG 4000 Vs
MK_MAN 3000
Mk_REP 4000
HR_REF 4000
PR_REP 4500

jobs

gO00
2000

SELECT MAX(AVG(min_salary))

FROM jobs WHERE job_id IN(
'ST_CLERK','ST_CLERK','IT_PROG',
'SA_REP','SA MAN'AD ASST',
'AC_ACCOUNT")

GROUP BY job_id;

117

Nested Subquery

e Outer Query: SELECT job_id, AVG(salary) FROM employees GROUP
BY job_id HAVING AVG(salary)<10000;
The outer query returns the job _id, average salary of employees that

are less than maximum of average of min_salary returned by the

previous query Qutput
JOB_ID AVG(SALARY)
IT PROG 5766
AC ACCOUNT 8306
ST _MAN 7286
AD_ ASST 4496
SH_CLERK 3215
FI _ACCOUNT 79206
FU CLERK 2786
SA REP 8356
ME_REP 6066
ST CLERK 2785

HR_REF 6506 118

Subqueries with INSERT, UPDATE, DELETE

statement
* Query:

1. INSERT INTO neworder

SELECT * FROM orders

WHERE advance_amount in(2000,5000);

2. UPDATE neworder SET ord_date='15-JAN-10"
WHERE ord _amount-advance_amount<
(SELECT MIN(ord_amount) FROM orders);

3. DELETE FROM neworder

WHERE advance amount<

(SELECT MAX(advance_amount) FROM orders);

SQL Facilities (cont..)

= Data Control Language (DCL)

= Database security control including privileges and
revoke privileges
= Commands are — grant, revoke (refer advanced

sql ppt)

Slide 8- 120

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

References

s Navathe
s Korth

s Web
= https://www.postgresgltutorial.com/

= https://sgldatabasetutorials.com/sql-db/single-row-
subqueries/

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S| [de 8-121

