


# Transactions Management and Concurrency

- By Jyoti Tryambake



Database System Concepts - 5<sup>th</sup> Edition, Sep 12, 2006.



# **Transaction Concept**

- A **transaction** is a *unit* of program execution that accesses and possibly updates various data items.
- **E.g.** transaction to transfer \$50 from account A to account B:
  - 1. **read**(*A*)
  - 2. *A* := *A* − 50
  - 3. **write**(*A*)
  - 4. **read**(*B*)
  - 5. B := B + 50
  - 6. **write**(*B*)
- Two main issues to deal with:
  - Failures of various kinds, such as hardware failures and system crashes
    - Concurrent execution of multiple transactions







## **Example of Fund Transfer**

- Transaction to transfer \$50 from account A to account B:
  - 1. **read**(*A*)
  - 2. A := A 50
  - 3. **write**(*A*)
  - 4. **read**(*B*)
  - 5. B := B + 50
  - 6. **write**(*B*)

#### **Atomicity requirement**

- if the transaction fails after step 3 and before step 6, money will be "lost" leading to an inconsistent database state
  - Failure could be due to software or hardware
- the system should ensure that updates of a partially executed transaction are not reflected in the database

#### Responsible Component = Transaction Management





## **Example of Fund Transfer**

- **Transaction to transfer \$50 from account A to account B:** 
  - 1. **read**(*A*)
  - 2. A := A 50
  - 3. **write**(*A*)
  - 4. **read**(*B*)
  - 5. B := B + 50
  - 6. **write**(*B*)
- Durability requirement once the user has been notified that the transaction has completed (i.e., the transfer of the \$50 has taken place), the updates to the database by the transaction must persist even if there are software or hardware failures.

#### **Responsible Component = Recovery Manager**





- Transaction to transfer \$50 from account A to account B:
  - 1. read(A)
  - 2. A := A 50
  - 3. **write**(*A*)
  - 4. **read**(*B*)
  - 5. B := B + 50
  - 6. **write**(*B*)
- Consistency requirement in above example:
  - The sum of A and B is unchanged by the execution of the transaction
  - During transaction execution the database may be temporarily inconsistent.
  - When the transaction completes successfully the database must be consistent
    - Erroneous transaction logic can lead to inconsistency

#### **Responsible Component = Application Programmer**

Database System Concepts - 5<sup>th</sup> Edition, Sep 12, 2006.

 $\ensuremath{\textcircled{\texttt{CSilberschatz}}}$  , Korth and Sudarshan



Isolation requirement — if between steps 3 and 6, another transaction T2 is allowed to access the partially updated database, it will see an inconsistent database (the sum A + B will be less than it should be).

| T1                           | T2                           |
|------------------------------|------------------------------|
| 1. <b>read</b> ( <i>A</i> )  |                              |
| 2. <i>A</i> := <i>A</i> − 50 |                              |
| 3. <b>write</b> ( <i>A</i> ) |                              |
|                              | read(A), read(B), print(A+B) |
| 4. <b>read</b> ( <i>B</i> )  |                              |
| 5. <i>B</i> := <i>B</i> + 50 |                              |
| 6. <b>write</b> ( <i>B</i> ) |                              |

- Isolation can be ensured trivially by running transactions serially
  - that is, one after the other.





Isolation requirement — if between steps 3 and 6, another transaction T2 is allowed to access the partially updated database, it will see an inconsistent database (the sum A + B will be less than it should be).

| T1                           | Т2                           |
|------------------------------|------------------------------|
| 1. <b>read</b> ( <i>A</i> )  |                              |
| 2. <i>A</i> := <i>A</i> − 50 |                              |
| 3. <b>write</b> ( <i>A</i> ) |                              |
|                              | read(A), read(B), print(A+B) |
| 4. <b>read</b> ( <i>B</i> )  |                              |
| 5. <i>B</i> := <i>B</i> + 50 |                              |
| 6. <b>write</b> ( <i>B</i> ) |                              |

The isolation property of a transaction ensures that the concurrent execution of transactions results in a system state that is equivalent to a state that could have been obtained had these transactions executed one at a time in some order





Isolation requirement — if between steps 3 and 6, another transaction T2 is allowed to access the partially updated database, it will see an inconsistent database (the sum A + B will be less than it should be).

| T1                           | T2                           |
|------------------------------|------------------------------|
| 1. <b>read</b> ( <i>A</i> )  |                              |
| 2. <i>A</i> := <i>A</i> − 50 |                              |
| 3. <b>write</b> ( <i>A</i> ) |                              |
|                              | read(A), read(B), print(A+B) |
| 4. <b>read</b> ( <i>B</i> )  |                              |
| 5. <i>B</i> := <i>B</i> + 50 |                              |
| 6. <b>write</b> ( <i>B</i> ) |                              |

#### **Responsible Component = Concurrency Control Management**





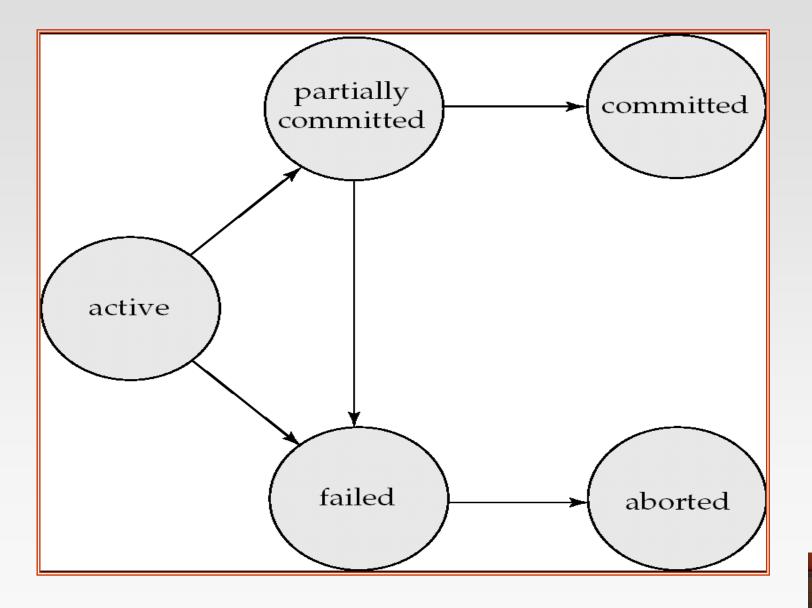
# **ACID Properties**

A **transaction** is a unit of program execution that accesses and possibly updates various data items. To preserve the integrity of data the database system must ensure:

- Atomicity. Either all operations of the transaction are properly reflected in the database or none are.
- Consistency. Execution of a transaction in isolation preserves the consistency of the database.
- Isolation. Although multiple transactions may execute concurrently, each transaction must be unaware of other concurrently executing transactions. Intermediate transaction results must be hidden from other concurrently executed transactions.
  - That is, for every pair of transactions  $T_i$  and  $T_j$ , it appears to  $T_i$  that either  $T_j$ , finished execution before  $T_i$  started, or  $T_j$  started execution after  $T_i$  finished.
- Durability. After a transaction completes successfully, the changes it has made to the database persist, even if there are system failures.



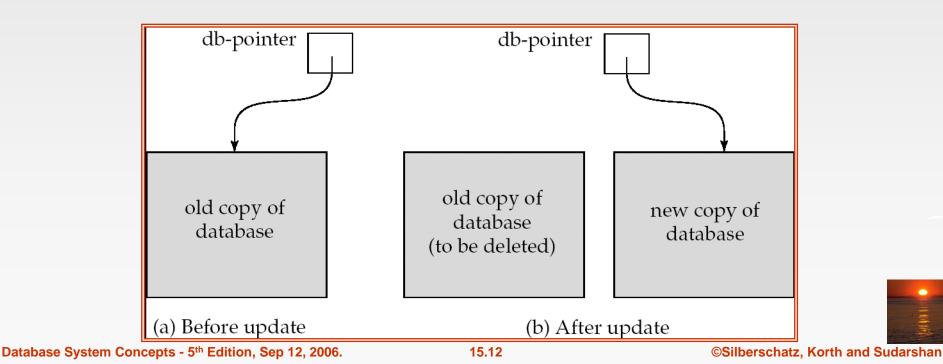



## **Transaction State**

- Active the initial state; the transaction stays in this state while it is executing
- Partially committed after the final statement has been executed.
- **Failed** -- after the discovery that normal execution can no longer proceed.
- Aborted after the transaction has been rolled back and the database restored to its state prior to the start of the transaction. Two options after it has been aborted:
  - restart the transaction
    - can be done only if no internal logical error
  - kill the transaction
- **Committed** after successful completion.



# 1


## **Transaction State (Cont.)**





## Implementation of Atomicity and Durability

- The recovery-management component of a database system implements the support for atomicity and durability.
- □ E.g. the *shadow-database* scheme:
  - all updates are made on a *shadow copy* of the database
    - **db\_pointer** is made to point to the updated shadow copy after
      - the transaction reaches partial commit and
      - all updated pages have been flushed to disk.





#### Implementation of Atomicity and Durability (Cont.)

- □ db\_pointer always points to the current consistent copy of the database.
  - In case transaction fails, old consistent copy pointed to by db\_pointer can be used, and the shadow copy can be deleted.
- The shadow-database scheme:
  - Assumes that only one transaction is active at a time.
  - Assumes disks do not fail
  - Useful for text editors, but
    - extremely inefficient for large databases (why?)
      - Variant called shadow paging reduces copying of data, but is still not practical for large databases
  - Does not handle concurrent transactions
- □ Will study better schemes in Chapter 17.





#### **Concurrent Executions**

- Multiple transactions are allowed to run concurrently in the system.
  Advantages are:
  - Increased processor and disk utilization, leading to better transaction *throughput*
    - E.g. one transaction can be using the CPU while another is reading from or writing to the disk
  - Reduced average response time for transactions: short transactions need not wait behind long ones.





#### **Concurrent Executions**

- □ Advantages are (cont.):
  - **Waiting time –** less if multiple transactions executed concurrently.
  - Response time less for concurrent executions. (It is the time at which process comes for execution and the time at which it gets response from CPU)
  - Resource utilization high
  - **Efficiency-** high





- Schedule a sequences of instructions that specify the chronological order in which instructions of concurrent transactions are executed
  - a schedule for a set of transactions must consist of all instructions of those transactions
  - must preserve the order in which the instructions appear in each individual transaction.
- A transaction that successfully completes its execution will have a commit instructions as the last statement
  - by default transaction assumed to execute commit instruction as its last step
- A transaction that fails to successfully complete its execution will have an abort instruction as the last statement





- Let  $T_1$  transfer \$50 from A to B, and  $T_2$  transfer 10% of the balance from A to B.
- □ A serial schedule in which  $T_1$  is followed by  $T_2$ :

| $T_1$       | <i>T</i> 2      |
|-------------|-----------------|
| read(A)     |                 |
| A := A - 50 |                 |
| write (A)   |                 |
| read(B)     |                 |
| B := B + 50 |                 |
| write(B)    |                 |
|             | read(A)         |
|             | temp := A * 0.1 |
|             | A := A - temp   |
|             | write(A)        |
|             | read(B)         |
|             | B := B + temp   |
|             | write(B)        |



Database System Concepts - 5<sup>th</sup> Edition, Sep 12, 2006.



• A serial schedule where  $T_2$  is followed by  $T_1$ 

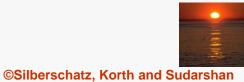
| $T_1$       | $T_2$           |
|-------------|-----------------|
|             | read(A)         |
|             | temp := A * 0.1 |
|             | A := A - temp   |
|             | write( $A$ )    |
|             | read(B)         |
|             | B := B + temp   |
|             | write(B)        |
| read(A)     |                 |
| A := A - 50 |                 |
| write(A)    |                 |
| read(B)     |                 |
| B := B + 50 |                 |
| write(B)    |                 |





Let T<sub>1</sub> and T<sub>2</sub> be the transactions defined previously. The following schedule is not a serial schedule, but it is *equivalent* to Schedule 1.

| T <sub>1</sub> | T <sub>2</sub>  |
|----------------|-----------------|
| read(A)        |                 |
| A := A - 50    |                 |
| write $(A)$    |                 |
|                | read(A)         |
|                | temp := A * 0.1 |
|                | A := A - temp   |
|                | write(A)        |
| read(B)        |                 |
| B := B + 50    |                 |
| write(B)       |                 |
|                | read(B)         |
|                | B := B + temp   |
|                | write(B)        |


In Schedules 1, 2 and 3, the sum A + B is preserved.





**The following concurrent schedule does not preserve the value of** (A + B)**.** 

| $T_1$       | $T_2$           |
|-------------|-----------------|
| read(A)     |                 |
| A := A - 50 |                 |
|             | read(A)         |
|             | temp := A * 0.1 |
|             | A := A - temp   |
|             | write $(A)$     |
|             | read(B)         |
| write $(A)$ |                 |
| read(B)     |                 |
| B := B + 50 |                 |
| write $(B)$ |                 |
|             | B := B + temp   |
|             | write(B)        |



Database System Concepts - 5<sup>th</sup> Edition, Sep 12, 2006.



# **Problems due to Concurrency**

- Dirty-read problem reading uncommitted value
- Unrepeatable Read two different values for same variable
- Phantom read inconsistency in data is being read and retrieved
- Lost-update Updates made by one transaction
  - may be lost due to overriding by other transaction.





### **Serializability**

- Serial execution of a set of transactions preserves database consistency.
- A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule. Different forms of schedule equivalence give rise to the notions of:
  - 1. Conflict serializability
  - 2. View serializability
- Simplified view of transactions
  - Our simplified schedules consist of only read and write instructions.





# **Conflicting Instructions**

Instructions  $I_i$  and  $I_j$  of transactions  $T_i$  and  $T_j$  respectively, **conflict** if and only if there exists some item Q accessed by both  $I_i$  and  $I_j$ , and at least one of these instructions wrote Q.

1. 
$$I_i = \mathbf{read}(Q)$$
,  $I_j = \mathbf{read}(Q)$ .  $I_i$  and  $I_j$  don't conflict.

2. 
$$I_i = \mathbf{read}(Q), I_j = \mathbf{write}(Q)$$
. They conflict.

3. 
$$I_i = write(Q), I_j = read(Q)$$
. They conflict

4. 
$$I_i = write(Q), I_j = write(Q)$$
. They conflict

- Intuitively, a conflict between  $I_i$  and  $I_j$  forces a (logical) temporal order between them.
  - If *I<sub>i</sub>* and *I<sub>j</sub>* are consecutive in a schedule and they do not conflict, their results would remain the same even if they had been interchanged in the schedule.





# **Conflict Serializability**

- If a schedule S can be transformed into a schedule S´by a series of swaps of non-conflicting instructions, we say that S and S´are conflict equivalent.
- We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule





# **Conflict Serializability (Cont.)**

- Schedule 3 can be transformed into Schedule 6, a serial schedule where  $T_2$  follows  $T_1$ , by series of swaps of non-conflicting instructions.
  - Therefore Schedule 3 is conflict serializable.

| $T_1$       | $T_2$             |     | $T_1$       | $T_2$       |
|-------------|-------------------|-----|-------------|-------------|
| read(A)     |                   |     | read(A)     |             |
| write $(A)$ |                   |     | write $(A)$ |             |
| · · · ·     | read(A)           |     | read(B)     |             |
|             | write $(A)$       |     | write(B)    |             |
| read(B)     | × ,               |     |             | read(A)     |
| write $(B)$ |                   |     |             | write $(A)$ |
|             | read(B)           |     |             | read(B)     |
|             | write( <i>B</i> ) |     |             | write(B)    |
| Scheo       | ~ /               | Ľ , | Sche        | dule 6      |

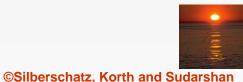




# **Conflict Serializability (Cont.)**

• Example of a schedule that is not conflict serializable:

| $T_3$       | $T_4$       |
|-------------|-------------|
| read(Q)     |             |
|             | write $(Q)$ |
| write $(Q)$ |             |


□ We are unable to swap instructions in the above schedule to obtain either the serial schedule <  $T_3$ ,  $T_4$  >, or the serial schedule <  $T_4$ ,  $T_3$  >.





## **Conflict Serializability Examples**

### With precedence graph approach





# **View Serializability**

Let *S* and *S*' be two schedules with the same set of transactions. *S* and *S*' are **view equivalent** if the following three conditions are met, for each data item Q,

- 1. If in schedule S, transaction  $T_i$  reads the initial value of Q, then in schedule S' also transaction  $T_i$  must read the initial value of Q.
- 2. If in schedule S transaction *T<sub>i</sub>* executes **read**(*Q*), and that value was produced by transaction *T<sub>j</sub>* (if any), then in schedule S' also transaction *T<sub>i</sub>* must read the value of *Q* that was produced by the same **write**(*Q*) operation of transaction *T<sub>i</sub>*.
- The transaction (if any) that performs the final write(Q) operation in schedule S must also perform the final write(Q) operation in schedule S'.

As can be seen, view equivalence is also based purely on  $\ensuremath{\textit{reads}}$  and  $\ensuremath{\textit{writes}}$ 



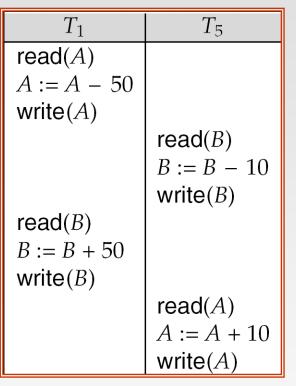


# View Serializability (Cont.)

- A schedule S is view serializable if it is view equivalent to a serial schedule.
- Every conflict serializable schedule is also view serializable.
- Below is a schedule which is view-serializable but *not* conflict serializable.

| <i>T</i> <sub>3</sub> | $T_4$       | $T_6$    |
|-----------------------|-------------|----------|
| read(Q)               |             |          |
| write(Q)              | write $(Q)$ |          |
|                       |             | write(Q) |

- What serial schedule is above equivalent to?
- Every view serializable schedule that is not conflict serializable has blind writes.



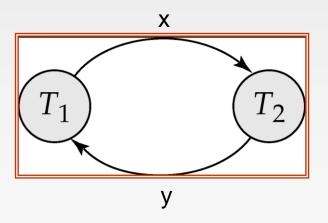



# **Other Notions of Serializability**

The schedule below produces same outcome as the serial schedule  $< T_1, T_5 >$ , yet is not conflict equivalent or view

equivalent to it.




Determining such equivalence requires analysis of operations other than read and write.

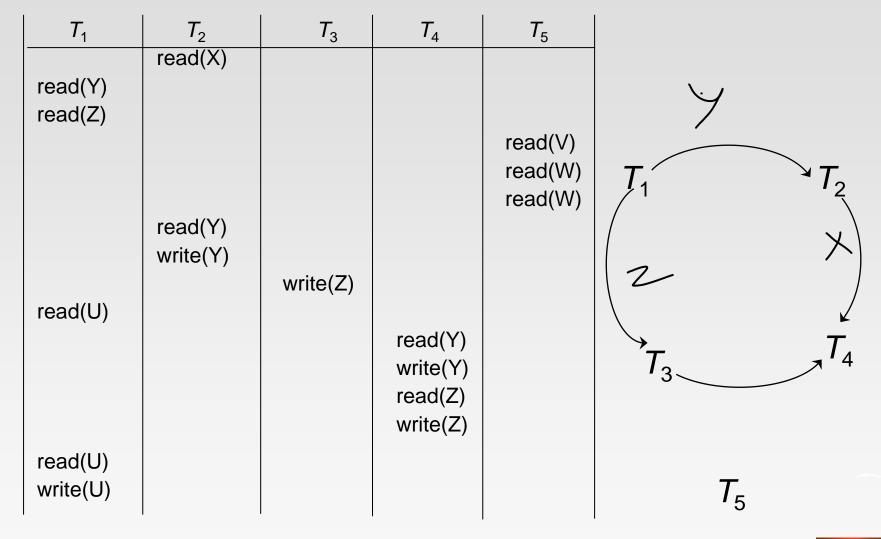




# **Testing for Serializability**

- Consider some schedule of a set of transactions  $T_1, T_2, ..., T_n$
- Precedence graph a direct graph where the vertices are the transactions (names).
- We draw an arc from  $T_i$  to  $T_j$  if the two transaction conflict, and  $T_i$  accessed the data item on which the conflict arose earlier.
- We may label the arc by the item that was accessed.
- Example 1



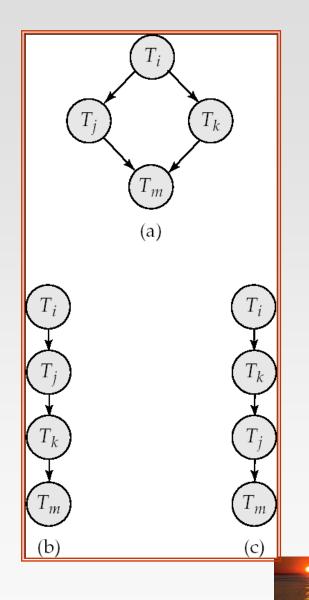



Database System Concepts - 5<sup>th</sup> Edition, Sep 12, 2006.

©Silberschatz, Korth and Sudarshan



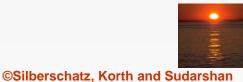
#### Example Schedule (Schedule A) + Precedence Graph








# **Test for Conflict Serializability**


- A schedule is conflict serializable if and only if its precedence graph is acyclic.
- Cycle-detection algorithms exist which take order n<sup>2</sup> time, where n is the number of vertices in the graph.
  - (Better algorithms take order n + e where e is the number of edges.)
- If precedence graph is acyclic, the serializability order can be obtained by a topological sorting of the graph.
  - This is a linear order consistent with the partial order of the graph.
  - For example, a serializability order for Schedule A would be  $T_5 \rightarrow T_1 \rightarrow T_3 \rightarrow T_2 \rightarrow T_4$ 
    - Are there others?





# **Test for View Serializability**

- The precedence graph test for conflict serializability cannot be used directly to test for view serializability.
  - Extension to test for view serializability has cost exponential in the size of the precedence graph.
- The problem of checking if a schedule is view serializable falls in the class of NP-complete problems.
  - Thus existence of an efficient algorithm is *extremely* unlikely.
- However practical algorithms that just check some sufficient conditions for view serializability can still be used.





#### **Recoverable Schedules**

Need to address the effect of transaction failures on concurrently running transactions.

- Recoverable schedule if a transaction  $T_j$  reads a data item previously written by a transaction  $T_i$ , then the commit operation of  $T_i$ appears before the commit operation of  $T_j$ .
- The following schedule (Schedule 11) is not recoverable if  $T_9$  commits immediately after the read

| $T_8$    | $T_9$   |
|----------|---------|
| read(A)  |         |
| write(A) |         |
|          | read(A) |
| read(B)  |         |

If  $T_8$  should abort,  $T_9$  would have read (and possibly shown to the user) an inconsistent database state. Hence, database must ensure that schedules are recoverable.





# **Cascading Rollbacks**

Cascading rollback – a single transaction failure leads to a series of transaction rollbacks. Consider the following schedule where none of the transactions has yet committed (so the schedule is recoverable)

| $T_{10}$    | $T_{11}$     | <i>T</i> <sub>12</sub> |
|-------------|--------------|------------------------|
| read(A)     |              |                        |
| read(B)     |              |                        |
| write $(A)$ |              |                        |
|             | read(A)      |                        |
|             | write $(A)$  |                        |
|             | , <i>,</i> , | read(A)                |

If  $T_{10}$  fails,  $T_{11}$  and  $T_{12}$  must also be rolled back.

Can lead to the undoing of a significant amount of work





### **Cascadeless Schedules**

- Cascadeless schedules cascading rollbacks cannot occur; for each pair of transactions  $T_i$  and  $T_j$  such that  $T_j$  reads a data item previously written by  $T_i$ , the commit operation of  $T_i$  appears before the read operation of  $T_j$ .
- Every cascadeless schedule is also recoverable
- It is desirable to restrict the schedules to those that are cascadeless





# **Concurrency Control**

- A database must provide a mechanism that will ensure that all possible schedules are
  - either conflict or view serializable, and
  - are recoverable and preferably cascadeless
- A policy in which only one transaction can execute at a time generates serial schedules, but provides a poor degree of concurrency
  - Are serial schedules recoverable/cascadeless?
- Testing a schedule for serializability *after* it has executed is a little too late!
- Goal to develop concurrency control protocols that will assure serializability.





### **Concurrency Control vs. Serializability Tests**

- Concurrency-control protocols allow concurrent schedules, but ensure that the schedules are conflict/view serializable, and are recoverable and cascadeless.
- Concurrency control protocols generally do not examine the precedence graph as it is being created
  - Instead a protocol imposes a discipline that avoids nonseralizable schedules.
  - We study such protocols in Chapter 16.
- Different concurrency control protocols provide different tradeoffs between the amount of concurrency they allow and the amount of overhead that they incur.
- Tests for serializability help us understand why a concurrency control protocol is correct.





### **Weak Levels of Consistency**

- Some applications are willing to live with weak levels of consistency, allowing schedules that are not serializable
  - E.g. a read-only transaction that wants to get an approximate total balance of all accounts
  - E.g. database statistics computed for query optimization can be approximate (why?)
  - Such transactions need not be serializable with respect to other transactions
- Tradeoff accuracy for performance

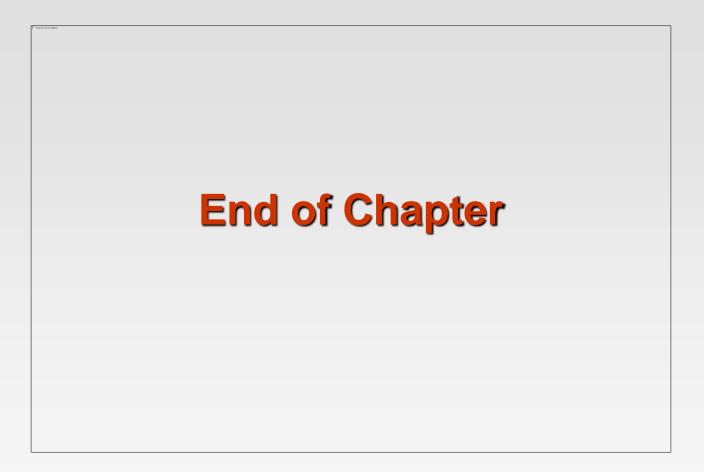




# **Levels of Consistency in SQL-92**

- Serializable default
- Repeatable read only committed records to be read, repeated reads of same record must return same value. However, a transaction may not be serializable – it may find some records inserted by a transaction but not find others.
- Read committed only committed records can be read, but successive reads of record may return different (but committed) values.
- **Read uncommitted** even uncommitted records may be read.
- Lower degrees of consistency useful for gathering approximate information about the database
- Warning: some database systems do not ensure serializable schedules by default
  - E.g. Oracle and PostgreSQL by default support a level of consistency called snapshot isolation (not part of the SQL standard)






### **Transaction Definition in SQL**

- Data manipulation language must include a construct for specifying the set of actions that comprise a transaction.
- In SQL, a transaction begins implicitly.
- A transaction in SQL ends by:
  - Commit work commits current transaction and begins a new one.
  - **Rollback work** causes current transaction to abort.
- In almost all database systems, by default, every SQL statement also commits implicitly if it executes successfully
  - Implicit commit can be turned off by a database directive
    - E.g. in JDBC, connection.setAutoCommit(false);







Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use





| $T_1$       | $T_2$       |
|-------------|-------------|
| read(A)     |             |
| write $(A)$ |             |
| read(B)     |             |
| write(B)    |             |
|             | read(A)     |
|             | write $(A)$ |
|             | read(B)     |
|             | write(B)    |



Database System Concepts - 5<sup>th</sup> Edition, Sep 12, 2006.

©Silberschatz, Korth and Sudarshan



| $T_1$    | $T_2$    |
|----------|----------|
| read(A)  |          |
| write(A) |          |
|          | read(A)  |
| read(B)  |          |
|          | write(A) |
| write(B) |          |
|          | read(B)  |
|          | write(B) |



Database System Concepts - 5<sup>th</sup> Edition, Sep 12, 2006.

©Silberschatz, Korth and Sudarshan

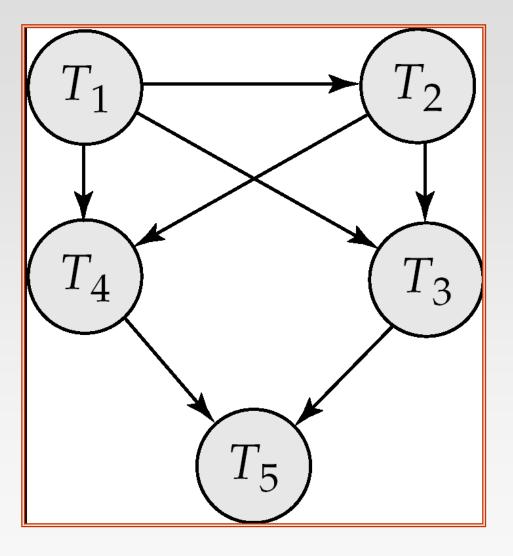


#### **Schedule 7**

| $T_3$    | $T_4$        |
|----------|--------------|
| read(Q)  |              |
|          | write( $Q$ ) |
| write(Q) |              |





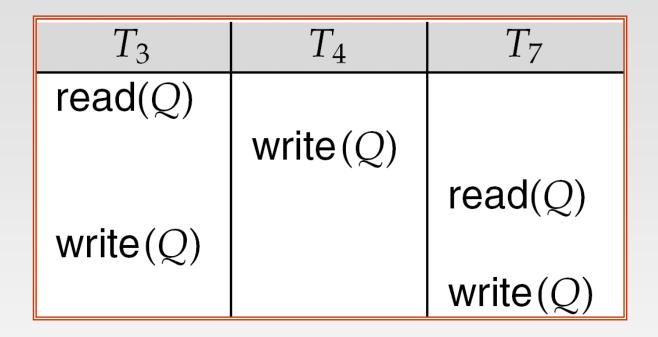

#### Precedence Graph for (a) Schedule 1 and (b) Schedule 2

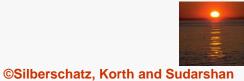






### **Precedence Graph**

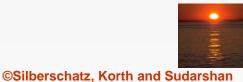



Database System Concepts - 5<sup>th</sup> Edition, Sep 12, 2006.












### **Implementation of Isolation**

- Schedules must be conflict or view serializable, and recoverable, for the sake of database consistency, and preferably cascadeless.
- A policy in which only one transaction can execute at a time generates serial schedules, but provides a poor degree of concurrency.
- Concurrency-control schemes tradeoff between the amount of concurrency they allow and the amount of overhead that they incur.
- Some schemes allow only conflict-serializable schedules to be generated, while others allow view-serializable schedules that are not conflict-serializable.





### Figure 15.6

| $T_1$       | $T_2$           |
|-------------|-----------------|
| read(A)     |                 |
| A := A - 50 |                 |
|             | read(A)         |
|             | temp := A * 0.1 |
|             | A := A - temp   |
|             | write $(A)$     |
|             | read(B)         |
| write $(A)$ |                 |
| read(B)     |                 |
| B := B + 50 |                 |
| write $(B)$ |                 |
|             | B := B + temp   |
|             | write(B)        |



Database System Concepts - 5<sup>th</sup> Edition, Sep 12, 2006.

©Silberschatz, Korth and Sudarshan