
Chapter 5 Relational
Database Design

- By

Jyoti Tryambake

1

Relational Database
Design

In general, the goal of a relational-database design is

to

• Generate a set of relation schemas that allows us to

store information without unnecessary redundancy, yet

also allows us to retrieve information easily.

• One approach is to design schemas that are in an

appropriate normal form.

2

The Database Design
Process

• At a high-level, the database design process is driven by the

level of normalization of a relational scheme.

• If relational scheme R is not sufficiently normalized,

decompose it into a set of relational schemes {R1, R2, ..., Rn}

such that:

o Each relational scheme is sufficiently normalized.

o The decomposition has a lossless-join.

o All functional dependencies are preserved.

• So what are normalization, lossless-join, functional

dependencies, and what does preserving them mean?

3

Pitfalls in Relational-
Database Design

Among the undesirable properties that a bad design

may have are.

4

① Repetition of information

② Inability to represent certain information

Example:

The information concerning loans is now kept in one

single relation, lending, which is defined over the relation

schema.

Lending-schema=(branch-name, branch-city, assets,

customer-name, loan-number, amount)

Pitfalls in Relational-
Database Design

5

branch-

name

branch-city assets customer

-name

loan-

number

amount

Downtown Brooklyn 9000000 Jones L-17 1000

Redwood Palo Alto 2100000 Smith L-23 2000

Perryridge Horseneck 1700000 Hayes L-15 1500

Downtown Brooklyn 9000000 Jackson L-14 1500

Mianus Horseneck 400000 Jones L-93 500

Round Hill Horseneck 8000000 Turner L-11 900

Lending Figure A

Pitfalls in Relational-
Database Design

Problems:

6

① add a new loan

The loan is made by the Perryridge branch to Adams

in the amount of $1500. Let the loan-number be L-31.

We add the tuple

(Perryridge, Horseneck, 1700000,Adams, L-31, 1500)

ⅰRepeating information wastes space.

ⅱRepeating information creates Update, deletion, and

insertion anomalies.

Pitfalls in Relational-Database

Design - anomalies

• Update Anomalies:

o Modify the asset value for the branch of loan L-17.

• Insertion Anomalies:

o Cannot store information about a branch if no loans exist
without using null values.

o This is particularly bad since loan-number is part of the primary
key.

• Deletion Anomalies:

o Deleting L-17 and L-14 might result in all Downtown branch
information being deleted.

7

Pitfalls in Relational-
Database Design

② we cannot represent directly the information

concerning a branch.(branch-name, branch-

city,assets) unless there exists at least one loan at the

branch. The problem is that tuples in the lending

relation require values for loan-number, amount and

customer-name.

8

Decomposition
• Decomposition is the process of breaking down in parts or

elements.

• It replaces a relation with a collection of smaller relations.

• It breaks the table into multiple tables in a database.

• It should always be lossless, because it confirms that the

information in the original relation can be accurately

reconstructed based on the decomposed relations.

• Types:

o Lossless join decomposition

o Lossy decomposition

9

Decomposition

10

Example:

Consider an alternative design in which Lending-

schema is decomposed into the following two schemas:

Branch-customer-schema=(branch-name, branch-city,

assets,customer-name)

Customer-loan-schema=(customer-name,loan-number,

amount)

Decomposition

11

branch-

name

branch-city assets customer

-name

Downtown Brooklyn 9000000 Jones

Redwood Palo Alto 2100000 Smith

Perryridge Horseneck 1700000 Hayes

Downtown Brooklyn 9000000 Jackson

Mianus Horseneck 400000 Jones

Round Hill Horseneck 8000000 Turner

customer

-name

loan-

number

amount

Jones L-17 1000

Smith L-23 2000

Hayes L-15 1500

Jackson L-14 1500

Jones L-93 500

Turner L-11 900

Branch-customer B Customer-loan C

• Suppose that we wish to find all branches that

have loans with amount less than $1000.
o Original table - o/p Mianus, round hill

o Decomposed table – o/p- Mianus, round hill, downtown

Decomposition

12

branch-

name

branch-city assets customer-

name

loan-

number

amount

Downtown Brooklyn 9000000 Jones L-17 1000

Downtown Brooklyn 9000000 Jones L-93 500

Redwood Palo Alto 2100000 Smith L-23 2000

Perryridge Horseneck 1700000 Hayes L-15 1500

Downtown Brooklyn 9000000 Jackson L-14 1500

Mianus Horseneck 400000 Jones L-17 1000

Mianus Horseneck 400000 Jones L-93 500

Round Hill Horseneck 8000000 Turner L-11 900

Figure D

Additional tuples:

(Downtown, Brooklyn, 9000000,Jones, L-93, 500)

(Mianus, Horsereck, 400000,Jones, L-17, 1000)

Decomposition
Lossy decomposition:

• Example shows how we lose information

o we cannot reconstruct the original relation

o and so, this is a lossy decomposition.

• The decomposition of Lending-schema into

Branch-customer-schema and customer-

loan-schema a lossy decomposition, or a

lossy-join decomposition.

13

A Lossy Decomposition-

example

employee1
employee2

Example of Non Lossless-Join Decomposition

• Decomposition of R = (A, B)

R2 = (A) R2 = (B)

A B







1

2

1

A





B

1

2

r
A(r) B(r)

A (r) B (r)
A B









1

2

1

2

Decomposition
Lossless-join decomposition: All attributes of an original
schema (R) must appear in the decomposition (R1, R2):

R = R1  R2

And For all possible relations r on schema R

r = R1 (r) R2 (r)

Properties:

1. R1  R2 = R

2. R1 ∩ R2 should not be Φ

3. R1 ∩ R2 -> R1, that is: all attributes common to both R1 and
R2 functionally determine ALL the attributes in R1 .

R1 ∩ R2 -> R2 , that is: all attributes common to both R1 and
R2 functionally determine ALL the attributes in R2

(If R1 ∩ R2 forms a superkey of either R1 or R2 , the
decomposition of R is a lossless decomposition)

16

Example of Lossless-Join Decomposition

• Lossless join decomposition
• Decomposition of R = (A, B, C) ➔ R1 = (A, B), R2 = (B, C)

A B





1

2

A





B

1

2

r

B,C(r)

A (r) B (r)

A B





1

2

C

A

B

B

1

2

C

A

B

C

A

B

A,B(r)

Goal — Devise a Theory for
the Following

• Decide whether a particular relation R is in

“good” form.

• In the case that a relation R is not in “good”

form, decompose it into a set of relations {R1,

R2, ..., Rn} such that
o each relation is in “good” form

o the decomposition is a lossless-join decomposition

Functional Dependencies

• Constraints on the set of legal relations.

• Require that the value for a certain set of

attributes determines uniquely the value

for another set of attributes.

• A functional dependency is a

generalization of the notion of a key.

19

Functional Dependencies

20

⚫ Let R be a relation schema :   R and   R

⚫ The functional dependency  →  holds on R if and only
if for any legal relations r(R), whenever any two tuples t1

and t2 of r agree on the attributes , they also agree on the
attributes .

That is,

t1[] = t2 []  t1[] = t2 []

⚫ Example: Consider R(A,B) with the following instance r of
R

⚫ On this instance, A→ B does NOT hold, but B→ A does hold.

1 4

1 5

3 7

Slide 10- 21

Examples of FD
constraints (1)

• Social security number determines
employee name
o SSN -> ENAME

• Project number determines project name
and location
o PNUMBER -> {PNAME, PLOCATION}

• Employee ssn and project number
determines the hours per week that the
employee works on the project
o {SSN, PNUMBER} -> HOURS

Slide 10- 22

Examples of FD
constraints (2)

• An FD is a property of the attributes in the

schema R

• The constraint must hold on every relation

instance r(R)

• If K is a key of R, then K functionally

determines all attributes in R
o (since we never have two distinct tuples with t1[K]=t2[K])

Inference rules =
Armstrong Axioms

23

Slide 10- 24

2.2 Inference Rules for
FDs (1)

• Given a set of FDs F, we can infer additional FDs
that hold whenever the FDs in F hold

• Armstrong's inference rules:

o IR1. (Reflexive) If Y subset-of X, then X -> Y

o IR2. (Augmentation) If X -> Y, then XZ -> YZ

• (Notation: XZ stands for X U Z)

o IR3. (Transitive) If X -> Y and Y -> Z, then X -> Z

• IR1, IR2, IR3 form a sound and complete set of
inference rules

o These are rules hold and all other rules that hold can
be deduced from these

Slide 10- 25

Inference Rules for FDs
(2)

• Some additional inference rules that
are useful:
o Decomposition: If X -> YZ, then X -> Y and X -> Z

o Union: If X -> Y and X -> Z, then X -> YZ

o Psuedo transitivity: If X -> Y and WY -> Z, then WX -
> Z

• The last three inference rules, as well as
any other inference rules, can be
deduced from IR1, IR2, and IR3
(completeness property)

Slide 10- 26

Inference Rules for FDs
(3)

• Closure of a set F of FDs is the set F+ of all FDs that

can be inferred from F

• Closure of a set of attributes X with respect to F is

the set X+ of all attributes that are functionally

determined by X

• X+ can be calculated by repeatedly applying IR1,

IR2, IR3 using the FDs in F

Trivial Functional
Dependencies

• A functional dependency is trivial if it is

satisfied by all instances of a relation

o Example:

• ID, name → ID

• name → name

o In general,  →  is trivial if   

27

Functional Dependencies
- Example

• Find F.D.

28

6.3 Normalization Using
Functional Dependence

F={A→B,C→F,E→A,CE→D}

29

A B C D E F

CF b11 b12 a3 b14 b15 a6

BE b21 a2 b23 b24 a5 b26

ECD b31 b32 a3 a4 a5 b36

AB a1 a2 b43 b44 b45 b46

b21
a6a2

Another Algorithm:

Lossy-join decomposition

6.3 Normalization Using
Functional Dependence

F={A→B,C→F,E→A,CE→D}

30

A B C D E F

ABE a1 a2 b13 b14 a5 b16

CDEF b21 b22 a3 a4 a5 a6
a1 a2

Lossless-join decomposition

6.3 Normalization Using
Functional Dependence

Dependency Preservation:

31

There is another goal in relational-database design:

dependency preservation.

Let F be a set of functional dependencies on a

schema R, and let R1,R2……Rn be a decomposition of R.

The restriction of F to Ri is the set Fi of all functional

dependencies in F+ that include only attributes of Ri.

6.3 Normalization Using
Functional Dependence

Let F’=F1∪ F2∪…… ∪ Fn. F’ is a set of functional

dependencies on schema R. if F’+= F+ is true, then

every dependency in F is logically implied by F’, and,

if we verify that F’ is satisfied, we have verified that F is

satisfied. We say that a decomposition having the

property F’+= F+ is a dependency-preserving

decomposition.

32

Normalization

Normal Form:

33

A relation is said to be in a particular normal form if it

satisfies a certain prescribed set of conditions.

Normalization
① First normal form: A relation is in 1NF

if and only if, in every legal value of that relation ,

every tuple contains exactly one value for each

attribute (every attribute in that relation is singled

valued attribute.)

Every cell must contain atomic value

34

Customer-

name

Customer-

city

Customer-

street

Jones Brooklyn Ray

Hayes Palo Alto Heroes

Customer-

name Customer-

city

Customer

-street

Jones

Hayes

Brooklyn

Palo Alto

Ray

Heroes

City

Normalization
① First normal form: example 2

35

Normalization
② Second normal form:

- i. A relation is in 2NF if and only if it is in 1NF

- ii. every non key attribute is fully functionally

dependent on the primary key.

That means No partial dependency - i.e., no non-prime

attribute (attributes which are not part of any

candidate key) is dependent on any proper subset of

any candidate key of the table.

36

Normalization
• ② Second normal form – example

• Partial dependency: If proper subset of candidate
key determines non-prime attribute, it is called
partial dependency.

• Candidate Key: {STUD_NO, COURSE_NO}

• FD set: {COURSE_NO->COURSE_NAME}

• Prime attributes = STUD_NO, COURSE_NO

• Non-Prime attributes = COURSE_NAME
37

Normalization
• ② Second normal form – example

• COURSE_NO->COURSE_NAME,

o COURSE_NO (proper subset of candidate key) is

determining COURSE_NAME (non-prime

attribute).

o Hence, it is partial dependency and relation is

not in second normal form.

38

Normalization
• ② Second normal form – example

• To convert it to second normal form, decompose the
relation

STUDENT_COURSE (STUD_NO, COURSE_NO, COURSE_NAME) as
:

o STUDENT_COURSE (STUD_NO, COURSE_NO)

o COURSE (COURSE_NO, COURSE_NAME)

Note – This decomposition will be lossless join
decomposition as well as dependency preserving.

39

40

Normalization
③ Third normal form(definition assuming only one
candidate key, which we further assume is the primary
key):

A relation is in 3NF if and only

- if it is in 2NF and

- every non key attribute is non-transitively dependent
on the primary key.

- No transitive dependency

Transitive dependency – If A->B and B->C are two FDs
then A->C is called transitive dependency.

(No non-prime attribute should determine other non-
prime attribute)

41

Normalization
③ Third normal form: Example:

Candidate Key: {STUD_NO}

FD set:

STUD_NO -> STUD_NAME

STUD_NO -> STUD_STATE,

STUD_NO -> STUD_AGE,

STUD_STATE -> STUD_COUNTRY

42

Normalization
③ Third normal form: Example:

▪STUD_NO -> STUD_STATE & STUD_STATE -> STUD_COUNTRY are true.

▪So STUD_COUNTRY is transitively dependent on STUD_NO. It violates

third normal form.

▪To convert it in third normal form, decompose the relation STUDENT

(STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE,

STUD_COUNTRY_STUD_AGE) as:

▪ STUDENT (STUD_NO, STUD_NAME, STUD_STATE, STUD_AGE)

STATE_COUNTRY (STUD_STATE, STUD_COUNTRY)
43

44

Normalization
④ Boyce/codd normal form(BCNF):

A table complies with BCNF if

- it is in 3NF

- and for every functional dependency X->Y, X should

be the super key of the table.

(X cannot be a non-prime attribute, if Y is a prime

attribute.)

45

https://beginnersbook.com/2015/04/functional-dependency-in-dbms/

Normalization
④ Boyce/codd normal form(BCNF):

Example: Employees work in more than one
department

• Functional dependencies in the table above:
emp_id -> emp_nationality
emp_dept -> {dept_type, dept_no_of_emp}

• Candidate key: {emp_id, emp_dept}
46

Normalization
④ Boyce/codd normal form(BCNF):

Example: Employees work in more than one
department

• Functional dependencies in the table above:
emp_id -> emp_nationality
emp_dept -> {dept_type, dept_no_of_emp}

The table is not in BCNF as neither emp_id nor emp_dept

alone are keys.

•

47

Normalization
④ Boyce/codd normal form(BCNF):

Example: To make the table comply with BCNF ,
break the table in three tables like this:

• 1. emp_nationality table:

• 2. emp_dept table:

48

Normalization
④ Boyce/codd normal form(BCNF):

Example: To make the table comply with BCNF ,
break the table in three tables like this:

• 3. emp_dept_mapping table:

•

• Candidate keys:

For first table: emp_id

For second table: emp_dept

For third table: {emp_id, emp_dept}
49

Normalization
④ Boyce/codd normal form(BCNF):
Example 2:

50

51

Normalization
Fourth normal form(4NF):

• A relation will be in 4NF if it is in Boyce Codd normal form and has

no multi-valued dependency.

• For a dependency A → B, if for a single value of A, multiple

values of B exists, then the relation will be a multi-valued

dependency.

Example:

It is not in 4NF
52

Normalization
Fourth normal form(4NF):

Example:

• to make the above table into 4NF, we can

decompose it into two tables:

53

Normalization
Fifth normal form(5NF):

• A table is in the 5NF

o if it’s in 4NF and

o if it can’t have a lossy decomposition in to any number of

smaller tables.

• It’s also known as Project-join normal form(PJ/NF).

• Fifth normal form is satisfied when all tables are broken

into as many tables as possible in order to avoid

redundancy.

54

Normalization
Fifth normal form(5NF):

55

Normalization
Fifthnormal form(5NF):

56

Normalization
Fifth normal form(5NF):

• From above tables or relations, perform natural join

between any of two above relations i.e P1⋈P2 ,

P2⋈P3 or P1⋈P3 then extra rows are added so this

decomposition is called lossy decomposition.

• But if no extra rows are added so this decomposition is

called loseless decomoposition.

• So, above three tables P1,P2 and P3 are in 5NF.

57

• Link for examples:

• http://www.questionsolves.com/Website-

Content/Normalization.php

58

http://www.questionsolves.com/Website-Content/Normalization.php

