Chapter 5 Relational
Database Design

_ By
Jyoti Tryambake

Relational Database
Design
In general, the goal of a relational-database design is

to

Generate a set of relation schemas that allows us to
store information without unnecessary redundancy, yet

also allows us to retrieve information easily.

One approach is to design schemas that are in an

appropriate normal form.

The Database Design
Process

- At ahigh-level, the database design process is driven by the

level of normalization of a relational scheme.

 If relational scheme R is not sufficiently normalized,
decompose it into a set of relational schemes {R;, R,, R}
such that:
o Each relational scheme is sufficiently normalized.
o The decomposition has a lossless-join.

o All functional dependencies are preserved.

« So what are normalization, lossless-join, functional

dependencies, and what does preserving them mean?

Pitfalls in Relational-
Database Design

Among the undesirable properties that a bad design
may have are.

® Repetition of information

@ Inability to represent certain information

Example:

The information concerning loans is now kept in one
single relation, lending, which is defined over the relation
schema.

Lending-schema=(branch-name, branch-city, assets,
customer-name, loan-number, amount)

° o4

Pitfalls in Relational-
Database Design

Downtown | Brooklyn 9000000 |Jones L-17 1000
Redwood Palo Alto 2100000 | Smith L-23 2000
Perryridge | Horseneck | 1700000 | Hayes L-15 1500
Downtown | Brooklyn 9000000 |Jackson |L-14 1500
Mianus Horseneck |400000 |Jones L-93 500
Round Hill | Horseneck | 8000000 | Turner L-11 900

Lending Figure A

5

Pitfalls in Relational-
Database Design

Problems:
@ add a new loan

The loan is made by the Perryridge branch to Adams
In the amount of $1500. Let the loan-number be L-31.

We add the tuple

(Perryridge, Horseneck, 1700000,Adams, L-31, 1500)

| Repeating information wastes space.

il Repeating information creates Update, deletion, and

Insertion anomalies.
04

Pitfalls in Relational-Database
Design - anomalies

branch-name

branch-city

assets

customer-
name

Downtown
Redwood
Perryridge
Downtown

Brooklyn
Palo Alto
Horseneck
Brooklyn

Update Anomalies:

o Modify the asset value for the branch of loan L-17.

Insertion Anomalies:
o Cannot store information about a branch if no loans exist

9000000
2100000
1700000
9000000

without using null values.
o This is parficularly bad since loan-number is part of the primary

key.

Deletion Anomalies:
o Deleting L-17 and L-14 might result in all Downtown branch

information being deleted.

Jones
Smith
Hayes
Jackson

o/

Pitfalls in Relational-
Database Design

@ we cannot represent directly the information
concerning a branch.(branch-name, branch-
city,assets) unless there exists at least one loan at the
branch. The problem is that tuples in the lending
relation require values for loan-number, amount and

customer-name.

o3

Decomposition

Decomposition is the process of breaking down in parts or

elements.
It replaces a relation with a collection of smaller relations.
It breaks the table info multiple tables in a database.

It should always be lossless, because it confirms that the
information in the original relation can be accurately

reconstructed based on the decomposed relations.

Types:
o Lossless join decomposition

o Lossy decomposition

9

Decomposition

Example:

Consider an alternative design in which Lending-
schema is decomposed into the following two schemas:

Branch-customer-schema=(branch-name, branch-city,
assets,customer-name)

Customer-loan-schema=(customer-name,loan-number,
amount)

10

Decomposition

branch- branch-city | assets customer customer | loan- amount
name -name -name number
Downtown | Brooklyn 9000000 | Jones Jones L-17 1000
Redwood | Palo Alto 2100000 | Smith Smith L-23 2000
Perryridge | Horseneck | 1700000 | Hayes Hayes L-15 1500
Downtown | Brooklyn 9000000 | Jackson Jackson | L-14 1500
Mianus Horseneck | 400000 Jones Jones L-93 500
Round Hill | Horseneck | 8000000 | Turner Turner L-11 900

Branch-customer B

Customer-loan C

« Suppose that we wish to find all branches that

have loans with amount less than $1000.
o Original table - o/p Mianus, round hill
o Decomposed table - o/p- Mianus, round hill, downtown

Decomposition

branch- branch-city assets customer- | loan- amount
name name number
Downtown Brooklyn 9000000 Jones L-17 1000
Downtown Brooklyn 9000000 Jones L-93 500
Redwood Palo Alto 2100000 Smith L-23 2000
Perryridge Horseneck 1700000 Hayes L-15 1500
Downtown Brooklyn 9000000 Jackson L-14 1500
Mianus Horseneck 400000 Jones L-17 1000
Mianus Horseneck 400000 Jones L-93 500
Round Hill Horseneck 8000000 Turner L-11 900
Figure D

Additional tuples:

(Downtown, Brooklyn, 9000000,Jones, L-93, 500)
(Mianus, Horsereck, 400000,Jones, L-17, 1000)

]2

Decomposition

Lossy decomposition:

 Example shows how we lose information
o we cannot reconstruct the original relation
o and so, this is a lossy decomposition.

 The decomposition of Lending-schema into
Branch-customer-schema and customer-

loan-schema a lossy decomposition, or a
lossy-join decomposition.

13

A Lossy Decomposition-

example

ID name | street city salary
57766 | Kim | Main | Perryridge | 75000
98776 | Kim North | Hampton 67000
employee
Y Y
ID name name | street city salary
57766 | Kim Kim | Main | Perryridge | 75000
98776 | Kim Kim | North | Hampton 67000
\ natural join /
ID name | street city salary
57766 | Kim | Main Perryridge | 75000
57766 | Kim | North | Hampton 67000
98776 | Kim | Main | Perryridge | 75000
98776 | Kim | North | Hampton 67000

Example of Non Lossless-Join Decomposition

 Decomposition of R = (A, B)
R,=(A) R,=(B)

A |B A B
a |1 o 1
o |2 B 2
b1 [14(r) [g)
r
[Ta (1) g () ALB

T R R
NEFEDN PR

Decomposition

Lossless-join decomposition: All attributes of an original
schema (R) must appear in the decomposition (R, R,):

R=R,UR,
And For all possible relations r on schema R

r=IlIgy (r) X IIgs (r)

Properties:
1. RTUR2=R
2. R1 N R2 should not be ©

3. R1 N R2->R1, that is: all attributes common to both R1 and
R2 functionally determine ALL the attributes in R1 .

R1 N R2 -> R2, that is: all attributes common to both R1 and
R2 functionally determine ALL the atiributes in R2

(If R1 N R2 forms a superkey of either R1 or R2, the
decomposition of R is a lossless decomposition)

° ®16

Example of Lossless-Join Decomposition

* Lossless join decomposition
« Decompositionof R=(A, B, C) = R;=(A, B), R, = (B, C)
r |A|B|C
all|A
Bl2|B
Al B Bl C
a1l 1 | A
B2 2 | B
[Tap(r) /HB,C(r)
A|B|C
al|l|A
[1a (N 1g () 5128

Goal — Devise a Theory for
the Following

 Decide whether a particular relation R is in
“good” form.

* In the case that a relation R is not in “good”
form, decompose it into a set of relations {R,,
R,, R .} such that

o eachrelationis in “good” form
o the decomposition is a lossless-join decomposition

Functional Dependencies

« Consiraints on the set of legal relations.

* Require that the value for a certain set of
attributes determines uniquely the value
for another set of atiributes.

« A functional dependency is a
generalization of the notion of a key.

®19

Functional Dependencies

Let R be a relation schema: o cR and fc<R

The functional dependency a — f holds on R if and only
if for any legal relations r(R), whenever any two tuples t,
and t, of r agree on the attributes a, they also agree on the
attributes /.

That is,
tla]l =t o] = Hlf] =601

Example: Consider R(A,B) with the following instance r of

R 1 4
1 5
3 7

On this instance, A — B does NOT hold, but B — A does hold. %

Examples of FD
constraints (1)

Social security number determines
employee name

o SSN -> ENAME

Project number determines project name
and location

o PNUMBER -> {PNAME, PLOCATION}

Employee ssn and project number
deftermines the hours per week that the

employee works on the project
o {SSN, PNUMBER} -> HOURS

Slide 10- 21 @

Examples of FD

constraints (2)

An FD is a property of the attributes in the
schema R

The constraint must hold on every relation
instance r(R)

It Kis a key of R, then K functionally
determines all attributes in R

o (since we never have two distinct tuples with 11[K]=t2[K])

Slide 10-22 @

Inference rules =
Armstrong Axioms

®23

2.2 Inference Rules for
FDs (1)

Given a set of FDs F, we can infer additional FDs
that hold whenever the FDs in F hold
Armstrong’'s inference rules:

o IR1. (Reflexive) If Y subset-of X, then X ->Y

o IR2. (Augmentation) If X -> Y, then XZ -> Y/
» (Notation: XZ stands for X U 7)

o IR3. (Transitive) It X->Y and Y -> Z, then X -> £

IRT, IR2, IR3 form a sound and complete set of
inference rules

o These are rules hold and all other rules that hold can
be deduced from these

Slide 10-24 @

Inference Rules for FDs

(2)

« Some additional inference rules that
are useful:
o Decomposition: If X ->YZ, then X->Y and X->/
o Union: If X->Y and X -> Z, then X -> Y/

e Ps%.ledo transitivity: If X -> Y and WY -> 7, then WX -
>

* The last three inference rules, as well as
any other inference rules, can be

deduced from IR1, IR2, and IR3
(completeness property)

° Slide 10-25 @

Inference Rules for FDs

(3)

Closure of a set F of FDs is the set F* of all FDs that
can be inferred from F

Closure of a set of attributes X with respect to Fis
the set X* of all atftributes that are functionally
determined by X

X* can be calculated by repeatedly applying IRT,
IR2, IR3 using the FDs in F

Slide 10-26 ®

Trivial Functional
Dependencies

» A functional dependency is trivial if it is
satisfied by all instances of a relation
o Example:
 ID, name — ID
° ndame — ndme
o In general, a — gis trivial if fc

° e/

Functional Dependencies

* Find F.D.

- Example
building | room_number | capacity
Packard 101 500
Painter 514 10
Taylor 3128 70
Watson 100 30
Watson 120 50

28

6.3 Normalization Using
Functional Dependence

Another Algorithm:
F={A—B,C—F E—A,CE—D}

CF | Dy | By | @3 | Dy | D15 | &
BE | Dy | @y | Dyg | Doy | @5 | Dy
ECD ygzl 22 a, | a, | a: 26

AB | a; | a; | by | by | bys | by

, Lossy-join decomposition

6.3 Normalization Using
Functional Dependence

F={A—B,C—F ,E—A,CE—-D}

A B C D E F

ABE | a; | a, | byz | by | a5 | Dy

CDEF | i1 he'? a, a. | ag

Lossless-join decomposition

6.3 Normalization Using
Functional Dependence

Dependency Preservation:

There is another goal in relational-database design:
dependency preservation.

Let F be a set of functional dependencies on a
schema R, and let R1,Ro...... Rn be a decomposition of R.
The restriction of Fto Ri Is the set Fi of all functional
dependencies in F* that include only attributes of Ri.

e 3]

6.3 Normalization Using
Functional Dependence

Let F=F1U Fau...... U Fn. F is a set of functional
dependencies on schema R. if F*= F* is true, then
every dependency in F is logically implied by F’, and,
if we verify that F'is satisfied, we have verified that F is
satisfied. We say that a decomposition having the
property F*= F* is a dependency-preserving
decomposition.

32

Normalization

Normal Form:

A relation is said to be in a particular normal form if it
satisfies a certain prescribed set of conditions.

®33

Normalization

@ First normal form: A relation is in TNF

if and only if, in every legal value of that relation,

every tuple contains exactly one value for each

atfribute (every attribute in that relation is singled

valued attribute.)

Every cell must contain atomic value

City
Customer-
name Customer-| Customer
city -street
Jones Brooklyn Ray
Hayes Palo Alto Heroes

Customer- | Customer- | Customer-
name city street
Jones Brooklyn Ray
Hayes Palo Alto Heroes

34

Normalization

@ First normal form: example 2

Students
FirstName | LastName | Knowledge
Thomas Mueller Java, C++, PHP
Ursula Meter PHP, Java
Igor Mueller C++, Java
Startsituation

Result atter Normahsation
Students
FirstName | LastName | Knowledge
Thomas MMueller C++
Thomas Mueller PHFP
Thomas Mueller Java
Ursula Meier Java
Ursula Meiler PHP
Igor Mueller Java
Igor Mueller C++ e

Normalization

@ Second normal form:

- 1. Arelationisin 2NFif and only if it is in TNF

- li. every non key afttribute is fully functionally

dependent on the primary key.
That means No partial dependency - i.e., N0 non-prime
attribute (attributes which are not part of any
candidate key) is dependent on any proper subset of

any candidate key of the table.

° ® 364

Normalization

2 Second normal form — example

Partial dependency: If proper subset of candidate
key determines non-prime afttribute, it is called

partial dependency.

STUD NO COURSE_NO COURSE_NAME
1 C1 DBMS

2 C2 Computers Network
1 C2 Computers Network

Candidate Key: {STUD_NO, COURSE_NO}
FD set: {COURSE_NO->COURSE_NAME}
Prime attributes = STUD_NO, COURSE_NO
Non-Prime attributes = COURSE_NAME

® 37

Normalization

e (@ Second normal form — example

STUD_NO COURSE_NO COURSE_NAME
1 C1 DBMS

2 C2 Computers Network
1 C2 Computers Network

e COURSE_NO->COURSE_NAME,
o COURSE_NO (proper subset of candidate key) is

determining COURSE_NAME (non-prime

attribute).

o Hence, it is partial dependency and relation is
not in second normal form.

38

Normalization

« (@ Second normal form - example

STUD_NO COURSE_NO COURSE_NAME
1 C1 DBMS

2 C2 Computers Network
1 C2 Computers Network

 To convert it to second normal form, decompose the
relation

STUDENT_COURSE (STUD_NO, COURSE_NO, COURSE_NAME) as

o STUDENT_COURSE (STUD_NO, COURSE_NO)
o COURSE (COURSE_NO, COURSE_NAME)

Note — This decomposition will be lossless join
decomposition as well as dependency preserving.
° ® 39

Normalization

® Third normal form(definition assuming only one
candidate key, which we further assume is the primary
key):

A relation is in 3NF if and only

- ifitis in 2NF and

- every non key atiribute is non-transitively dependent
on the primary key.

- No transitive dependency

Transitive dependency - If A->B and B->C are two FDs
then A->C is called transitive dependency.

(No non-prime attribute should determine other non-
prime atiribute)

® 0 4]

Normalization

® Third normal form: Example:

STUD_NO

STUD_NAME

STUD_STATE

STUD_COUNTRY

STUD_AGE

1

RAM

HARYANA

INDIA

20

2

RAM

PUNJAB

INDIA

19

3

SURESH

PUNJAB

INDIA

21

Candidate Key: {STUD_NO}

FD set:

STUD_NO -> STUD_NAME
STUD_NO -> STUD_STATE,

STUD_NO -> STUD_AGE,

STUD_STATE -> STUD_COUNTRY

® 42

Normalization

® Third normal form: Example:

STUD_NO STUD_NAME STUD_STATE STUD_COUNTRY | STUD_AGE
1 RAM HARYANA INDIA 20
2 RAM PUNJAB INDIA 19
3 SURESH PUNJAB INDIA 21

=STUD_NO -> STUD_STATE & STUD_STATE -> STUD_COUNTRY are frue.

=So STUD_COUNTRY is transitively dependent on STUD_NO. It violates
third normal form.

=To convert it in third normal form, decompose the relation STUDENT
(STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE,
STUD_COUNTRY_STUD_AGE) as:
= STUDENT (STUD_NO, STUD_NAME, STUD_STATE, STUD_AGE)

STATE_COUNTRY (STUD_STATE, STUD_COUNTRY)

® 43

Normalization
@ Boyce/codd normal form(BCNF):

A table complies with BCNF if
- itisin 3NF

- and for every funciional dependency X->Y, X should

be the super key of the table.

(X cannot be a non-prime attribute, if Y is a prime
attribute.)

® 45

https://beginnersbook.com/2015/04/functional-dependency-in-dbms/

Normalization

@ Boyce/codd normal form(BCNF):
Example: Employees work in more than one

department

emp id |emp nationality
1001 Austrian
1001 Austrian
1002 American

1002 American

emp _dept

Production and planning
stores

design and technical support

Purchasing department

dept_type
D001
D001
D134

D134

dept no of emp
200
250
100

600

Functional dependencies in the table above:
emp_id -> emp_nationality
emp_dept -> {dept_type, dept_no_of_emp}

 Candidate key: {emp_id, emp_dept}

® 46

Normalization

@ Boyce/codd normal form(BCNF):
Example: Employees work in more than one

department

emp id |emp nationality emp _dept dept type |(dept no of emp
1001 Austrian Production and planning D001 200

1001 Austrian stores D001 250

1002 American design and technical support D134 100

1002 American Purchasing department D134 600

« Functional dependencies in the table above:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}
The table is not in BCNF as neither emp_id nor emp_dept
e alone are keys. 047

Normalization
@ Boyce/codd normal form(BCNF):

Example: To make the table comply with BCNF,
break the table in three tables like this:

1. emp_nationality table:

emp id
1001

1002

2. emp_dept table:

emp _nationality
Austrian

American

emp dept

Production and planning
stores

design and technical support

Purchasing department

dept type
D001
D001
D134

D134

dept no_of emp
200
250
100

600

® 48

Normalization
@ Boyce/codd normal form(BCNF):

Example: To make the table comply with BCNF,

break the table in three tables like this:
« 3. emp_dept_mapping table:

emp id
1001
1001
1002

1002

 Candidate keys:
For first fable: emp_id

emp dept

Production and planning
stores

design and technical support

Purchasing department

For second table: emp_dept
For third table: {emp_id, emp_dept}

® 49

Normalization

@ Boyce/codd normal form(BCNF):
Example 2:

Consider the following relationship : R (A,B,C,D)

and following dependencies :

A ->BCD
BC-> AD
D ->B

Above relationship is already in 3rd NF. Keys are A and BC.

Hence, in the functional dependency, A -> BCD, A is the super key.
in second relation, BC -> AD, BC is also a key.

but in, D -> B, D is not a key.

Hence we can break our relationship R into two relationships R1 and R2.

R(A, B, C, D)

R1 (A, D, C) R2(D, B)

Breaking, table into two tables, one with A, D and C while the other with D and B. ®50

Normalization

Fourth normal form(4NF):

« Arelation will be in 4NF if it is in Boyce Codd normal form and has
no multi-valued dependency.

 For a dependency A — B, if for a single value of A, multiple
values of B exists, then the relation will be a multi-valued
dependency.

Example:
STU ID COURSE HOBBY
21 Computer Dancing
21 Math Singing
34 Chemistry Dancing
74 Biology Cricket
59 Physics Hockey

It is not in 4NF

052

Normalization

Fourth normal form(4NF):
Example:

 to make the above table into 4NF, we can
decompose it intfo two tables:

STU ID COURSE
21 Computer
21 Math
34 Chemistry
74 Biology
59 Physics

STUDENT_HOBBY

STU ID HOBBY
21 Dancing
21 Singing
34 Dancing
74 Cricket

59 Hockey

Normalization

Fifth normal form(5NF):

« A fableisin the 5NF
o ifit'sin 4NF and

o If it can't have a lossy decomposition in to any number of

smaller tables.

« |t's also known as Project-join normal form(PJ/NF).

* Fifth normal form is safisfied when all tables are broken
INto as many tables as possible in order 1o avoid

redundancy.

® ® 54

Normalization
Fifth normal form(5NF):

* The table is in 4NF because it contains no multi-valued
dependency.

« Suppose that table is decomposed into it's three relations
P1,P2 & P3.

®55

Normalization
Fithnormal form(5NF):

Suneet Suneet

Suneet CDE Suneet Bnlt

Raj Raj Bolt
Raj Nut

Company Product

ABC Nut
ABC Bolt
CDE Bolt

° ® 564

Normalization

Fifth normal form(5NF):

* From above tables or relations, perform natural join
between any of two above relations i.e P1xP2,
P2xP3 or P1xP3 then exira rows are added so this

decomposition is called lossy decomposition.

« Butif no extra rows are added so this decomposition is

called loseless decomoposition.

« SO, above three tables P1,P2 and P3 are in 5NF.

o ®57

* Link for examples:

e hitp://www.qguestionsolves.com/Website-
Content/Normalization.php

) ® 58

http://www.questionsolves.com/Website-Content/Normalization.php

