
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Algorithms for Query Optimization

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Optimization

◼ Query: A query is a request for information from a database.

◼ Query Plans: A query plan (or query execution plan) is an ordered

set of steps used to access data in a SQL relational database

management system.

◼ Query Optimization:

◼ A single query can be executed through different algorithms or re-

written in different forms and structures.

◼ Hence, the question of query optimization comes into the picture –

Which of these forms or pathways is the most optimal?

Slide 15- 3

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Optimizer

◼ A query optimizer is a critical database management

system (DBMS) component that analyzes Structured

Query Language (SQL) queries and determines efficient

execution mechanisms.

◼ A query optimizer generates one or more query plans for

each query, each of which may be a mechanism used to

run a query. The most efficient query plan is selected and

used to run the query.

Slide 15- 4

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query optimization – 2 ways

◼ Analyze and transform equivalent relational expressions:

◼ Try to minimize the tuple and column counts of the

intermediate and final query processes.

◼ Using different algorithms for each operation:

◼ These underlying algorithms determine how tuples are

accessed from the data structures they are stored in,

indexing, hashing, data retrieval and hence influence

the number of disk and block accesses

Slide 15- 5

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Optimization Types

◼ Query optimization divided into two types:

Heuristic (sometimes called Rule based)

and Systematic (Cost based).

◼ Heuristic Query Optimization

◼ Oracle calls this Rule Based optimization.

◼ A query can be represented as a tree data structure.

Operations are at the interior nodes and data items

(tables, columns) are at the leaves.

◼ The query is evaluated in a depth-first pattern.
Slide 15- 6

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ Analyze and transform equivalent relational

expressions

Slide 15- 7

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 8

Using Heuristics in Query Optimization

◼ Uses heuristic algorithms to evaluate relational algebra expressions

◼ Process for heuristics optimization

1. The parser of a high-level query generates an initial internal representation

(estimating the cost of a relational algebra expression)

2. Apply heuristics rules to optimize the internal representation (transforming one

relational algebra expression to an equivalent one).

3. A query execution plan is generated to execute groups of operations based

on the access paths available on the files involved in the query.

◼ The main heuristic is to apply first the operations that reduce the size of

intermediate results.

◼ E.g., Apply SELECT and PROJECT operations before applying the JOIN or other

binary operations.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Equivalence Preserving Transformation

◼ To transform a relational expression into another

equivalent expression we need transformation rules that

preserve equivalence known as ‘Equivalence Rules’

◼ These generate equivalent expressions for a query written

in relational algebra.

◼ To optimize a query, convert the query into its equivalent

form as long as an equivalence rule is satisfied.

Slide 15- 9

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 10

General Transformation Rules for

Relational Algebra Operations

1. Cascade of s: A conjunctive selection condition can be broken up into

a cascade (sequence) of individual s operations:

◼ s c1 AND c2 AND ... AND cn(R) = sc1 (sc2 (...(scn(R))...))

◼ Explanation:

◼ Applying condition c1 intersection c2 is expensive. Instead, filter out

tuples satisfying condition (inner selection) and then apply

condition (outer selection) to the resulting fewer tuples.

◼ This leaves us with less tuples to process the second time. This can

be extended for two or more intersecting selections. Since we are

breaking a single condition into a series of selections or cascades, it

is called a “cascade”.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 11

General Transformation Rules for

Relational Algebra Operations (cont.)

2. Commutativity of s: The s (selection) operation is commutative:

◼ sc1 (sc2(R)) = sc2 (sc1(R))

◼ Explanation:
◼ condition is commutative in nature. This means, it does not matter

whether we apply c1 first or c2 first. In practice, it is better and more
optimal to apply that selection first which yields a fewer number of
tuples. This saves time on our outer selection.

3. Cascade of p: In a cascade (sequence) of p operations, all following
projections can be omitted, only the first projection is required. This is
called a pi-cascade.

◼ pList1 (pList2 (...(pListn(R))...)) = pList1(R)

◼ Explanation:
◼ A cascade or a series of projections is meaningless. This is because

in the end, we are only selecting those columns which are specified in
the last, or the outermost projection. Hence, it is better to collapse all
the projections into just one i.e. the outermost projection.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 12

General Transformation Rules for

Relational Algebra Operations (cont.)

4. Commuting s with p: If the selection condition c involves only the
attributes A1, ..., An in the projection list, the two operations can be
commuted:

◼ pA1, A2, ..., An (sc (R)) = sc (pA1, A2, ..., An (R))

◼ Explanation:
◼ Permitted if attr in p ⊇ all attributes in sc

5. Commutativity of (and x): The operation is commutative as is
the x operation:

◼ R C S = S C R; R x S = S x R

◼ Explanation:

◼ although the order of attributes may not be the same in the relations

resulting from the two joins (or two Cartesian products), the meaning

is the same because the order of attributes is not important in the

alternative definition of relation.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 13

General Transformation Rules for

Relational Algebra Operations (contd.):

6. Commuting s with (or x): If all the attributes in the selection
condition c involve only the attributes of one of the relations being
joined—say, R—the two operations can be commuted as follows:

◼ sc (R S) = (sc (R)) S

◼ Alternatively, if the selection condition c can be written as (c1 and c2),
where condition c1 involves only the attributes of R and condition c2
involves only the attributes of S, the operations commute as follows:

◼ sc (R S) = (sc1 (R)) (sc2 (S))

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 14

General Transformation Rules for

Relational Algebra Operations (contd.):

7. Commuting p with (or x): Suppose that the projection list

is L = {A1, ..., An, B1, ..., Bm}, where A1, ..., An are

attributes of R and B1, ..., Bm are attributes of S. If the

join condition c involves only attributes in L, the two

operations can be commuted as follows:

◼ pL (R C S) = (pA1, ..., An (R)) C (p B1, ..., Bm (S))

◼ If the join condition C contains additional attributes not in

L, these must be added to the projection list, and a final p
operation is needed.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 15

General Transformation Rules for

Relational Algebra Operations (contd.):

8. Commutativity of set operations: The set operations υ and
∩ are commutative but “–” is not.

9. Associativity of , x, υ, and ∩ : These four operations are
individually associative; that is, if q stands for any one of
these four operations (throughout the expression), we
have
◼ (R q S) q T = R q (S q T)

10. Commuting s with set operations: The s operation
commutes with υ , ∩ , and –. If q stands for any one of
these three operations, we have
◼ sc (R q S) = (sc (R)) q (sc (S))

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 16

General Transformation Rules for

Relational Algebra Operations (contd.):

11. The p operation commutes with υ.

pL (R υ S) = (pL (R)) υ (pL (S))

12. Converting a (s, x) sequence into : If the condition c of

a s that follows a x Corresponds to a join condition,

convert the (s, x) sequence into a as follows:

(sC (R x S)) = (R C S)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples

◼ Assume the following tables:

instructor(ID, name, dept_name, salary)

teaches(ID, course_id, sec_id, semester, year)

course(course_id, title, credits)

Query 1: Find the names of all instructors in the Music

department, along with the titles of the courses that they

teach

Here, dept_name is a field of only the instructor table. Hence, we can

select out the Music instructors before joining the tables, hence reducing

query time.
Slide 15- 17

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Examples (contd..)

Here, dept_name is a field of only the instructor table. Hence, we can

select out the Music instructors before joining the tables, hence reducing

query time.

Optimized Query:

Using rule 6a, and Performing the selection as early as possible

reduces the size of the relation to be joined.

Slide 15- 18

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 19

Outline of a Heuristic Algebraic Optimization
Algorithm:

1. Using rule 1, break up any select operations with conjunctive
conditions into a cascade of select operations.

2. Using rules 2, 4, 6, and 10 concerning the commutativity of select
with other operations, move each select operation as far down the
query tree as is permitted by the attributes involved in the select
condition.

3. Using rule 9 concerning associativity of binary operations, rearrange
the leaf nodes of the tree so that the leaf node relations with the most
restrictive select operations are executed first in the query tree
representation.

4. Using Rule 12, combine a Cartesian product operation with a
subsequent select operation in the tree into a join operation.

5. Using rules 3, 4, 7, and 11 concerning the cascading of project and
the commuting of project with other operations, break down and
move lists of projection attributes down the tree as far as possible by
creating new project operations as needed.

6. Identify subtrees that represent groups of operations that can be
executed by a single algorithm.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 20

Using Heuristics in Query Optimization (2)

◼ Query tree:

◼ A tree data structure that corresponds to a relational algebra expression.

◼ It represents the input relations of the query as leaf nodes of the tree,

and represents the relational algebra operations as internal nodes.

◼ The root relation represents the answer to the query

◼ Two query trees are equivalent if their root relations are the same

◼ Query graph:

◼ A graph data structure that corresponds to a relational calculus

expression. It does not indicate an order on which operations to perform

first. There is only a single graph corresponding to each query.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 21

Query Tree

◼ Example:

◼ For every project located in ‘Stafford’, retrieve the project number,
the controlling department number and the department manager’s
last name, address and birthdate.

◼ SQL query:

Q2: SELECT P.NUMBER,P.DNUM,E.LNAME,
E.ADDRESS, E.BDATE

FROM PROJECT AS P,DEPARTMENT AS D,
EMPLOYEE AS E

WHERE P.DNUM=D.DNUMBER AND
D.MGRSSN=E.SSN AND
P.PLOCATION=‘STAFFORD’;

◼ Relation algebra:

pPNUMBER, DNUM, LNAME, ADDRESS, BDATE

(((sPLOCATION=‘STAFFORD’(PROJECT))

DNUM=DNUMBER (DEPARTMENT)) MGRSSN=SSN (EMPLOYEE))

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 22

Query Tree

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Graph

Slide 15- 23

◼ Nodes represents Relations

◼ Edges represents Join & Selection conditions

◼ Attributes to be retrieved from relations represented in square
brackets.

◼ Drawback :- Does not indicate an order on which operations are
performed

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 24

Query Tree Optimization Example

◼ Heuristic Optimization of Query Trees:

◼ The same query could correspond to many different

relational algebra expressions — and hence many different

query trees.

◼ The task of heuristic optimization of query trees is to find a

final query tree that is efficient to execute.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 25

Query Tree Optimization Example

◼ Example: Find the last names of employees born after 1957

who work on a project named ‘Aquarius’.

Q: SELECT LNAME

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE PNAME = ‘AQUARIUS’ AND

PNMUBER=PNO AND ESSN=SSN

AND BDATE > ‘1957-12-31’;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 26

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Tree Optimization Example

Slide 15- 27

◼ INITIAL QUERY TREE
Q: SELECT LNAME

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE PNAME = ‘AQUARIUS’ AND
PNMUBER=PNO AND ESSN=SSN
AND BDATE > ‘1957-12-31’;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Tree Optimization Example

(cont.)

Slide 15- 28

◼ MOVE SELECT DOWN THE TREE USING CASCADE &
COMMUTATIVITY RULE OF SELECT OPERATION

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Tree Optimization Example

(cont.)

Slide 15- 29

◼ REARRANGE OF LEAF NODES, USING COMMUTATIVITY &
ASSOCIATIVITY OF BINARY OPERATIONS.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Tree Optimization Example

(cont.)

Slide 15- 30

◼ CONVERTING SELECT & CARTESIAN PRODUCT INTO JOIN

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Tree Optimization Example

(cont.)

Slide 15- 31

◼ BREAK-MOVE OF PROJECT USING CASCADE & COMMUTING
RULES OF PROJECT OPERATIONS.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of heuristic query

optimization

◼ PROJECT TABLE

◼ PNAME PNUMBER PLOCATION DNUM

◼ DEPARTMENT TABLE:

◼ DNAME DNUMBER MGREMPID MGRSTARTD

◼ EMPLOYEE TABLE

◼ FNAME MI LNAME EMPID BDATE ADDRESS S

SALARY SUPERMPID DNO

Query:

◼ SELECT PNUMBER, DNUM, LNAME FROM PROJECT,

DEPARTMENT, EMPLOYEE WHERE

DNUM=DNUMBER and MGREMPID=EMPID and

PLOCATION = 'Stafford';

Slide 15- 32

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of heuristic query

optimization(contd..)

Relational Algebra:

Which of the following query tree is more efficient?

Slide 15- 33

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of heuristic query

optimization(contd..)

◼ Note the two cross product operations. These

require lots of space and time (nested loops) to

build.

◼ After the two cross products, we have a

temporary table with 144 records (6 projects * 3

departments * 8 employees).

◼ An overall rule for heuristic query optimization is

to perform as many select and project operations

as possible before doing any joins.

Slide 15- 34

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of heuristic query

optimization(contd..)

Use Rule 1 to Break up Cascading Selections

Slide 15- 35

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example of heuristic query

optimization(contd..)

Use Rule 2 Commute Selection with Cross Product

Slide 15- 36

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example (contd..)

Combine Cross Product and Selection to form Joins

Slide 15- 37

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 38

Summary of Heuristics in Query

Optimization

◼ Summary of Heuristics for Algebraic Optimization:

1. The main heuristic is to apply first the operations that
reduce the size of intermediate results.

2. Perform select operations as early as possible to reduce
the number of tuples and perform project operations as
early as possible to reduce the number of attributes. (This
is done by moving select and project operations as far
down the tree as possible.)

3. The select and join operations that are most restrictive
should be executed before other similar operations. (This
is done by reordering the leaf nodes of the tree among
themselves and adjusting the rest of the tree
appropriately.)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 39

Query Execution Plans

◼ An execution plan for a relational algebra query consists of

a combination of the relational algebra query tree and

information about the access methods to be used for each

relation as well as the methods to be used in computing the

relational operators stored in the tree.

◼ Two approaches for Execution Plan

◼ Materialized evaluation

◼ Pipelined evaluation

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 40

Using Heuristics in Query Optimization

◼ Query Execution Plans -

◼ Materialized evaluation: the result of an operation is stored as a

temporary relation.

◼ Evaluate one operation at a time, starting at the lowest- level.

◼ Use intermediate results materialized into temporary relations to evaluate

next-level operations.

◼ The cost of materialization is the sum of the individual operations plus the

cost of writing the intermediate results to disk

◼ Example:

◼ Evaluate the expression (selection condition) in the figure below. Compute

and store

◼ Then compute and store its join with customer

◼ Finally, compute the projections on customer-name.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 41

Using Heuristics in Query Optimization

◼ Query Execution Plans -

◼ Pipelined evaluation: as the result of an operator is produced, it

is forwarded to the next operator in sequence.

◼ Example:

◼ Do not store the result of (selection condition) Instead, pass tuples

directly to the join.

◼ Similarly, don’t store result of join, pass tuples directly to projection.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 42

Cost-based query optimization

Measures of Query Cost:

◼ Cost-based query optimization:

◼ The main aim of query optimization is to choose the

most efficient way of implementing the relational

algebra operations at the lowest possible cost.

◼ Estimate and compare the costs of executing a query

using different execution strategies and choose the

strategy with the lowest cost estimate.

◼ The method of optimizing the query by choosing a

strategy those results in minimum cost is called cost-

based query optimization

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 43

◼ Cost Components for Query Execution

• Access cost to secondary storage

• Disk I/O Cost – cost of transferring blocks to and from disk to

memory

• The cost of searching for records in a disk file (access

structure)

• Contiguous/non-contiguous blocks allocation

• Storage cost

• cost of storing on disk any intermediate files that are

generated by an execution strategy for the query

• Computation cost

◼ Cost of performing in-memory operations on the records within

the data buffers during query execution

Cost-based query optimization

Measures of Query Cost:

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 44

◼ Cost Components for Query Execution

(contd..)

• Memory usage cost

◼ Cost pertaining to the number of main memory

buffers needed during query execution

• Communication cost

◼ The cost of shipping the query and its results from

the database site to the site or terminal where the

query originated

**Note: Different database systems may focus on

different cost components.

Cost-based query optimization

Measures of Query Cost:

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 45

Cost-based query optimization

◼ Catalog Information Used in Cost Functions

◼ Information about the size of a file

◼ number of records (tuples) (r),

◼ record size (R),

◼ number of blocks (b)

◼ blocking factor (bfr)

◼ Information about indexes and indexing attributes of a

file

◼ Number of levels (x) of each multilevel index

◼ Number of first-level index blocks (bI1)

◼ Number of distinct values (d) of an attribute

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 46

Cost-based query optimization

◼ Catalog Information Used in Cost Functions (contd..)

◼ Information about indexes and indexing attributes of a file (contd..)

◼ Selectivity (sl) of an attribute, the fraction of records satisfying an equality

condition on the attribute,

◼ For key attribute, sl = 1/r . For non-key, sl = 1/d (d distinct values are uniformly

distributed among the records)

◼ Selection cardinality (s) of an attribute, average number of records that will

satisfy an equality selection condition on that attribute.

◼ S = sl * r

◼ (For a nonkey attribute with d distinct values, it is often the case that the records

are not uniformly distributed among these values

◼ For example, suppose that a company has 5 departments numbered 1 through 5, and

200 employees who are distributed among the departments as follows: (1, 5), (2, 25), (3,

70), (4, 40), (5, 60)

◼ In such cases, the optimizer can store a histogram that reflects the distribution of

employee records over different departments in a table with the two attributes (Dno,

Selectivity), which would contain the following values for our example:

(1, 0.025), (2,0.125), (3, 0.35), (4, 0.2), (5, 0.3).)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Reference

◼ Navathe

Slide 15- 47

