
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Algorithms for Query Processing

and Optimization

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Introduction to Query Processing (1)

Slide 15- 3

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 4

Introduction to Query Processing (2)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 5

Introduction to Query Processing (2)

◼ A query expressed in a high-level query language such as SQL must first be

scanned, parsed, and validated

◼ The scanner - identifies the query tokens—such as SQL keywords, attribute

names, and relation names

◼ The parser - checks the query syntax to determine whether it is formulated

according to the syntax rules

◼ The query must also be validated by checking that all attribute and relation

names are valid and semantically meaningful names

◼ An internal representation of the query is then created, usually as a tree data

structure called a query tree

◼ The DBMS must then devise an execution strategy or query plan for

retrieving the results of the query from the database files

◼ A query typically has many possible execution strategies, and the process of

choosing a suitable one for processing a query is known as query optimization

◼ The runtime database processor has the task of running (executing) the query

code, whether in compiled or interpreted mode, to produce the query result

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query processing in Database

Slide 15- 6

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 7

Cost-based query optimization

Measures of Query Cost:

◼ Cost-based query optimization:

◼ The main aim of query optimization is to choose the most

efficient way of implementing the relational algebra operations

at the lowest possible cost.

◼ Estimate and compare the costs of executing a query using

different execution strategies and choose the strategy with the

lowest cost estimate.

◼ The method of optimizing the query by choosing a strategy

those results in minimum cost is called cost-based query

optimization

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 8

◼ Cost Components for Query Execution

• Access cost to secondary storage

• Disk I/O Cost – cost of transferring blocks to and from disk to memory

• The cost of searching for records in a disk file (access structure)

• Contiguous/non-contiguous blocks allocation

• Storage cost

• cost of storing on disk any intermediate files that are generated by an

execution strategy for the query

• Computation cost

◼ Cost of performing in-memory operations on the records within the data

buffers during query execution

Cost-based query optimization

Measures of Query Cost:

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 9

◼ Cost Components for Query Execution (contd..)

• Memory usage cost

◼ Cost pertaining to the number of main memory buffers needed

during query execution

• Communication cost

◼ The cost of shipping the query and its results from the database

site to the site or terminal where the query originated

**Note: Different database systems may focus on different

cost components.

Cost-based query optimization

Measures of Query Cost:

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 10

Translating SQL Queries into Relational

Algebra (1)

◼ Query block: An SQL query is first translated into an equivalent extended

relational algebra expression—represented as a query tree data structure—

that is then optimized.

◼ The basic unit that can be translated into the algebraic operators and

optimized.

◼ A query block contains a single SELECT-FROM-WHERE expression, as well

as GROUP BY and HAVING clause if these are part of the block.

◼ Nested queries within a query are identified as separate query blocks.

◼ Aggregate operators in SQL must be included in the extended algebra.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 11

Translating SQL Queries into Relational

Algebra (2)

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > (SELECT MAX (SALARY)

FROM EMPLOYEE

WHERE DNO = 5);

SELECT MAX (SALARY)

FROM EMPLOYEE

WHERE DNO = 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > C

πLNAME, FNAME (σSALARY>C(EMPLOYEE)) ℱMAX SALARY (σDNO=5 (EMPLOYEE))

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 12

Translating SQL Queries into Relational

Algebra (3)

◼ The query optimizer would then choose an execution plan for

each query block. Notice that in the above example, the inner

block needs to be evaluated only once to produce the maximum

salary of employees in department 5, which is then used—as the

constant c—by the outer block.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 13

Algorithms for SELECT Operations (1)

◼ Implementing the SELECT Operation

◼ A number of search algorithms are possible for selecting records

from a file. These are also known as file scans, because they

scan the records of a file to search for and retrieve records that

satisfy a selection condition

◼ If the search algorithm involves the use of an index, the index

search is called an index scan

◼ Examples:

◼ (OP1): s SSN='123456789' (EMPLOYEE)

◼ (OP2): s DNUMBER>5(DEPARTMENT)

◼ (OP3): s DNO=5(EMPLOYEE)

◼ (OP4): s DNO=5 AND SALARY>30000 AND SEX=F(EMPLOYEE)

◼ (OP5): s ESSN=123456789 AND PNO=10(WORKS_ON)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 14

Algorithms for SELECT Operations (2)

Implementing the SELECT Operation (contd.):

◼ Search Methods for Simple Selection:

◼ S1 Linear search (brute force):

◼ Retrieve every record in the file, and test whether its attribute

values satisfy the selection condition.

◼ Since the records are grouped into disk blocks, each disk

block is read into a main memory buffer, and then a search

through the records within the disk block is conducted in main

memory.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 15

Algorithms for SELECT Operations (3)

Implementing the SELECT Operation (contd.):

◼ Search Methods for Simple Selection:

◼ S2 Binary search:

◼ If the selection condition involves an equality comparison on a

key attribute on which the file is ordered, binary search (which

is more efficient than linear search) can be used.

◼ For ex. (OP1): s SSN='123456789' (EMPLOYEE)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 16

Algorithms for SELECT Operations (4)

Implementing the SELECT Operation (contd.):

◼ Search Methods for Simple Selection:

◼ S3 Using a primary index or hash key to retrieve a

single record:

◼ If the selection condition involves an equality comparison on a

key attribute with a primary index (or a hash key), use the

primary index (or the hash key) to retrieve the record.

◼ For ex. (OP1): s SSN='123456789' (EMPLOYEE)

(Note*** : Single record = equality condition)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 17

Algorithms for SELECT Operations (5)

Implementing the SELECT Operation (contd.):

◼ Search Methods for Simple Selection:

◼ S4 Using a primary index to retrieve multiple records:

◼ If the comparison condition is >, ≥, <, or ≤ on a key field with a

primary index, use the index to find the record satisfying the

corresponding equality condition, then retrieve all subsequent records

in the (ordered) file.

◼ For ex. (OP2): s DNUMBER>5(DEPARTMENT) – use initially index to

satisfy equality condition s DNUMBER = 5 then find records which are

s DNUMBER > 5

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 18

Algorithms for SELECT Operations (6)

Implementing the SELECT Operation (contd.):

◼ Search Methods for Simple Selection:

◼ S5 Using a clustering index to retrieve multiple records:

◼ If the selection condition involves an equality comparison on a non-

key attribute with a clustering index, use the clustering index to

retrieve all the records satisfying the selection condition.

◼ For ex. (OP3): s DNO=5(EMPLOYEE) - use the index to retrieve all the records

satisfying the condition.

(Note*** : Multiple records = comparison condition)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 19

Algorithms for SELECT Operations (7)

Implementing the SELECT Operation (contd.):

◼ Search Methods for Simple Selection:

◼ S6 Using a secondary (B+-tree) index:

◼ On an equality comparison, this search method can be used to

retrieve a single record if the indexing field has unique values

(is a key) or to retrieve multiple records if the indexing field is

not a key.

◼ In addition, it can be used to retrieve records on conditions

involving >,>=, <, or <=. (FOR RANGE QUERIES)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 20

Algorithms for SELECT Operations (8)

Implementing the SELECT Operation (contd.):

◼ Search Methods for Simple Selection:

◼ S7 Conjunctive selection:

◼ If an attribute involved in any single simple condition in the

conjunctive condition has an access path that permits the use of one

of the methods S2 to S6, use that condition to retrieve the records

and then check whether each retrieved record satisfies the remaining

simple conditions in the conjunctive condition.

◼ For ex. (OP4): s DNO=5 AND SALARY>30000 AND SEX=F(EMPLOYEE)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 21

Algorithms for SELECT Operations (9)

Implementing the SELECT Operation (contd.):

◼ Search Methods for Simple Selection:

◼ S8 Conjunctive selection using a composite index

◼ If two or more attributes are involved in equality conditions in the

conjunctive condition and a composite index (or hash structure) exists

on the combined field, we can use the index directly.

◼ for example, if an index has been created on the composite key

(Essn, Pno) of the WORKS_ON file for OP5—we can use the index

directly.

◼ For ex. (OP5): s ESSN=123456789 AND PNO=10(WORKS_ON)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 22

Algorithms for SELECT Operations (10)

◼ Implementing the SELECT Operation (contd.):

◼ Search Methods for Complex Selection:

◼ S9 Conjunctive selection by intersection of record pointers:

◼ This method is possible if secondary indexes are available on all (or some of) the

fields involved in equality comparison conditions in the conjunctive condition and if

the indexes include record pointers (rather than block pointers).

◼ Each index can be used to retrieve the record pointers that satisfy the individual

condition.

◼ The intersection of these sets of record pointers gives the record pointers that

satisfy the conjunctive condition, which are then used to retrieve those records

directly.

◼ If only some of the conditions have secondary indexes, each retrieved record is

further tested to determine whether it satisfies the remaining conditions.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 23

Algorithms for SELECT Operations (11)

◼ Implementing the SELECT Operation (contd.):

In brief:

◼ Whenever a single condition specifies the selection, we can only check

whether an access path exists on the attribute involved in that condition.

◼ If an access path exists, the method corresponding to that access path is used;

otherwise, the “brute force” linear search approach of method S1 is used. (See

OP1, OP2 and OP3)

◼ For conjunctive selection conditions, whenever more than one of the

attributes involved in the conditions have an access path, query optimization

should be done to choose the access path that retrieves the fewest records

in the most efficient way.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 24

Algorithms for SELECT Operations (12)

◼ Implementing the SELECT Operation (contd.):

◼ Disjunctive selection conditions

◼ For ex. (OP4): s DNO=5 OR SALARY>30000 OR SEX=F(EMPLOYEE)

◼ The disjunctive condition are the union of the records satisfying the

individual conditions

◼ If any one of the conditions does not have an access path, use linear

search approach

◼ If an access path exists on every simple condition in the disjunction,

optimize the selection by retrieving the records satisfying each

condition—or their record ids—and then applying the union operation to

eliminate duplicates.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 25

Algorithms for PROJECT Operations (1)

◼ Algorithm for PROJECT operations (Figure 15.3b) <attribute list>(R)

1. If <attribute list> has a key of relation R, extract all tuples from R

with only the values for the attributes in <attribute list>.

2. If <attribute list> does NOT include a key of relation R,

duplicated tuples must be removed from the results.

◼ Methods to remove duplicate tuples

1. Sorting

2. Hashing

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 26

Algorithms for PROJECT Operations (2)

◼ Methods to remove duplicate tuples

1. Sorting

the result of the operation and then eliminating duplicate tuples,

which appear consecutively after sorting.

2. Hashing

search record is hashed and inserted into a bucket of the hash

file in memory, it is checked against those records already in the

bucket; if it is a duplicate, it is not inserted in the bucket.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Reference

◼ Navathe

Slide 15- 27

