
Hashing

- By

Jyoti Tryambake

1

Hashing

• In a huge database structure, it is very inefficient to

search all the index values and reach the desired data.

– Hashing technique is used to calculate the direct location

of a data record on the disk without using index structure.

• In this technique, data is stored at the data blocks

whose address is generated by using the hashing

function.

• The memory location where these records are stored is

known as data bucket or data blocks.
2

Hashing (cont.)
• In this, a hash function can choose any of the

column value to generate the address.

– Most of the time, the hash function uses the primary

key to generate the address of the data block. A hash

function is a simple mathematical function to any

complex mathematical function.

– the primary key itself can be considered as the

address of the data block. That means each row

whose address will be the same as a primary key

stored in the data block. 3

Hash File Organization

• Also known as ‘Direct File Organization’

• Records are stored at known addresses

• To write a record, an address is first calculated by

applying mathematical function to the search key

of record, record is stored at generated address

• Records stored in buckets = unit of storage that

stores one or more records
4

• One way- The diagram shows data block addresses same as
primary key value.

5

• 2nd way- Hash function can also be a simple mathematical function like
exponential, mod, cos, sin, etc. Let, mod (5) hash function to determine
the address of the data block.

• In this case, it applies mod (5) hash function on the primary keys and
generates 3, 3, 1, 4 and 2 respectively, and records are stored in those
data block addresses.

6

Types of Hashing

• Static Hashing : size of bucket is fixed

• Dynamic Hashing: size of bucket is not fixed

7

Static Hashing

• The hash function, h, is a function from the set of all search-

keys, K, to the set of all bucket addresses, B

• The searching time of Linear and binary searching techniques

depends on the number of elements.

• Hashing is a search technique, its searching time does not

depend on the number of elements.

• Search time is independent of the position of the record in

the file. Insertion, deletion, and lookup are done in constant

time
8

Static Hashing Example

• In static hashing, the resultant data bucket

address will always be the same.

– That means if we generate an address for EMP_ID

=103 using the hash function mod (5) then it will

always result in same bucket address 3. Here,

there will be no change in the bucket address.

9

Properties of the Hash Function

• The distribution should be uniform.

– An ideal hash function should assign the same

number of records in each bucket.

• The distribution should be random.

– Regardless of the actual search-keys, the each bucket

has the same number of records on average

– Hash values should not depend on any ordering or the

search-keys

10

Bucket Overflow

• How does bucket overflow occur?

– Insufficient buckets

– Few buckets have considerably more records

than others. This is referred to as skew.

• Multiple records have the same hash value

• Non-uniform hash function distribution.

11

Bucket Overflow
• Overflow chaining –

– When buckets are full, a new bucket is allocated for the same hash

result and is linked after the previous one. the overflow buckets of a

given bucket are chained together in a linked list.

– Above scheme is called closed hashing

12

Bucket Overflow – closed chaining example

Suppose R3 is a new address which needs to be inserted into the table,

the hash function generates address as 110 for it. But this bucket is full to

store the new data. In this case, a new bucket is inserted at the end of

110 buckets and is linked to it.

13

Bucket Overflow
• Linear Probing:

– When hash function generates an address at

which data is already stored, the next free bucket

is allocated to it.

– This mechanism is called Open Hashing.

14

Bucket Overflow – open hashing example

• Suppose R3 is a new address which needs to be inserted, the

hash function generates address as 110 for R3. But the

generated address is already full. So the system searches next

available data bucket, 113 and assigns R3 to it.

15

Problem with Static Hashing

• It doesn’t expand or shrink dynamically as the

size of database grows or shrinks..

16

Dynamic Hashing- Extendable Hashing

• Good for database that grows and shrinks in size – overcomes the

problem of bucket overflow.

• Allows the hash function to be modified dynamically

• Extendable hashing – one form of dynamic hashing

– Hash function generates values over a large range — typically b-bit

integers, with b = 32.

– At any time use only a prefix of the hash function to index into a table

of bucket addresses.

– Let the length of the prefix be i bits, 0  i  32.

• Bucket address table size = 2i. Initially i = 0

• Value of i grows and shrinks as the size of the database grows and shrinks.

17

General Structure-Extensible Hashing

18

Use of Extendable Hash Structure: Example

19

Use of Extendable Hash Structure: Example

20

Example (Cont.)

Initial Hash structure; bucket size = 2

It holds 2records, 10101 , dept- comp sci. and 12121 dept.
Finance

Insert :

Global depth

Local depth

10101

12121

21

Example (Cont.)
Hash structure after insertion of “Mozart”, “Srinivasan”,
and “Wu” records

Insert:

Global
depth

Local depth

0

1

Global depth = 0 +1 =1 (considering 1 bit 0
and/or 1)
Local depth of bucket 1= 0+1 = 1
(considering 0 and/or 1 bit)
Local depth of bucket 2 = 1 (considering 0
and/or 1 bit)

Prefix 0

Prefix 1

Bucket 1

Bucket 2

22

Example (Cont.)
Compare 4 records, records with ’10’ goes in same bucket and with ‘11’ goes in

new bucket.

Below is ;Hash structure after insertion of Einstein record

Insert:

00

01

10

11

Global depth = 1+1 =2 (considering
two bits 22 = 00,01,10 and 11)
Local depth of bucket 1 = 1 (same)
(considering one bit 0 – prefix 0)
Local depth of bucket 2 = 1+1 = 2
(prefix is 10)
Local depth of bucket 3 = 2

Prefix 0

Prefix 0

Prefix 10

Bucket 1

Bucket 2

Bucket 3

Prefix 11

23

Example (Cont.)
Compare records, records with ’10’ goes in same bucket and with ‘11’ goes in

new bucket.

Below is ;Hash structure after insertion of Einstein record

Insert:

00

01

10

11

Global depth = 1+1 =2
Local depth of bucket 1 = 1 (same)
Local depth of bucket 2 = 1+1 = 2
Local depth of bucket 3 = 2

Prefix 0

Prefix 0

Prefix 10

Bucket 1

Bucket 2

Bucket 3

Prefix 11

24

Example (Cont.)
Compare WU, Einstein and gold record for three prefix bits

Hash structure after insertion of Gold and El Said records

Insert:

000

001

010

011

100

101

110

111

Global depth = 3
Local depth of bucket 1 = 1 (same)
Local depth of bucket 4 = 2 (same)
Local depth of bucket 2 = 2 + 1 =3
Local depth of bucket 3 = 3

Bucket 1

Bucket 2

Bucket 4

Bucket 3

Prefix 0

Prefix
100

Prefix 101

Prefix 11

Prefix 11

25

Example (Cont.)
Compare Shrinivasan, El Said and katz

Hash structure after insertion of Katz record

000

001

010

011

100

101

110

111

Bucket 1

Bucket 2

Bucket 4

Bucket 3

Bucket 5

Global depth = 3 (same)
Local depth of bucket 1 = 1 (same)
Local depth of bucket 2 = 3
Local depth of bucket 3 = 3
Local depth of bucket 4 = 2+1 = 3
Local depth of bucket 5 = 3

Prefix 0

Prefix 100

Prefix 101

Prefix 110

Prefix 111

26

Example (Cont.)
Hash structure after insertion of

000

001

010

011

100

101

110

111

Bucket 1

Bucket 2

Bucket 4

Bucket 3

Bucket 5

Prefix 0

Prefix 100

Prefix 101

Prefix 110

Prefix 111

27

Example (Cont.)
Hash structure after insertion of

000

001

010

011

100

101

110

111

Bucket 1

Bucket 2

Bucket 4

Bucket 3

Bucket 5

Prefix 0

Prefix 100

Prefix 101

Prefix 110

Prefix 111

28

Example (Cont.)
Hash structure after insertion of

000

001

010

011

100

101

110

111

Bucket 1

Bucket 2

Bucket 4

Bucket 3

Bucket 5

Prefix 0

Prefix 100

Prefix 101

Prefix 110

Prefix 111

29

Example (Cont.)

And after insertion of
eleven records

000
001

010
011

100
101
110

111

Hash structure after insertion of

30

Example (Cont.)
Hash structure after insertion of

Prefix 00

Prefix 01

31

Note:

• When Depth is 1 = it considers 1 bit only
either 0 or 1 from prefix (MSB) of given hash
value

• When Depth is 2 = considers two bits 22 =
00,01,10,11 as prefix from given hash value

• When Depth is 3 = considers two bits 23 = 000
to 111 as prefix from given hash value

32

Ordered Indexing Vs Hashing

Indexing Hashing

It is a technique that allows to quickly
retrieve records from database file.

It is a technique that allows to quickly
retrieve records from database file.

It is generally used to optimize or increase
performance of database simply by
minimizing number of disk accesses that
are required when a query is processed.

It is generally used to index and retrieve
items in database as it is faster to search
that specific item using shorter hashed key
rather than using its original value.

It is not considered best for large
databases and its good for small
databases.

It is considered best for large databases.

It uses data reference to hold address of
disk block.

It uses mathematical functions known as
hash function to calculate direct location
of records on disk.

33

References

Korth

34

