Database
Systems

Fundamentals of

Elmasri ' Navathe

PEARSON

Addison
Wesley

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter Outline

s Types of Single-level Ordered Indexes
= Primary Indexes
= Clustering Indexes
= Secondary Indexes

s Multilevel Indexes

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 3

Indexing

Search Key Block pointer

’ INDEX 1 Address of block 1
Chapter 1 > 10 Address of block 2
Analogy
Chapter 2 40
> 21 Address of block 3
Chapter n
Index page of a book Index file of a database file

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S| [de 14- 4

Indexing

Indexing is a way to optimize the performance of a database by

minimizing the number of disk accesses required when a

qguery is processed.

m Itis a data structure technique which is used to quickly locate

and access the data in a database.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Structure of an Index in Database

Search Key

(|

Key

Data Reference 7

Value

A single index

Indexes as Access Paths

= A single-level index is an auxiliary file that makes it more

efficient to search for a record Iin the data file.

= The index is usually specified on any one field of the file

(although it could be specified on several fields)

m One form of an index Is a file of entries <field value,

pointer to record>, which is ordered by field value

= The index is called an access path on the field.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S| | de 14- 6

Types of Single-Level Indexes

= Primary/Ordered Index
s Ordering key field from ordered file record and unique
m Clustering Index
= Ordering field is not key field, field with non-distinct tuples
(Atmost one primary index or clustering index but not both)
= Secondary Index
= Index can be on any non-ordering field of file

s File can have many secondary index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14-7

Index

Secondary

Clustering

=

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S| | de 14- 8

Type of Index
(X : Search Key)

r

| |

Single Level Index [Multilevel Index [
X:Sorted field of DB [X : Unsorted field of DB [
X : Primary Key X:Non Key X : Primary Key X: Non Key
Primary Tndexivg Clustered Tndexing Secondary Twdexing Secondary Twdexivg
(Key) (Nou-Key)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S| | de 14-9

Indexes as Access Paths (contd.)

m 1. Ordered Index File:

= In this, the indices are based on a sorted ordering of the
values.
s These are generally fast and a more traditional type of

storing mechanism.

s These Ordered or Sequential file organization might store

the data in a dense or sparse format:

Slide 14- 10

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Primary/Ordered Index

i. Dense Index:

For every search key value in the data file, there is an index record.

This record contains the search key and also a reference to the first

data record with that search key value.

a B
Dense Index
A For every search
A B value in a Data File,
= C
[
g . — 5D There is an
E E Index Record.
F S =
G 1. & Hence the name
H = Dense Index.
Data File Index Record G

Copyright © 2007 \. J Slide 14- 11

Primary/Ordered Index

i. Sparse Index:

The index record appears only for a few items in the data file. Each

item points to a block as shown.

The sparse index can be built only on the ordered field of the database

file. The first record of the block is called the anchor record.

Search Key Pointer @ - Blocks
Block1 | 2 " .
6 - Block
- — ock2
Block 2 8
14 .|
Block M | : - Block 3
12
Index File - Block 4
16
- Block N
Anchor Records l Database File

Copyright © 2007 Ramez Elm Ordered Field

Primary/Ordered Index

Sparse Index

10 =1 10
30 \ 20
30

50
40

[

90

110
130
150

50
60

J)))

70
80 (7

170
190
210
230

% Sparse Index

100

)

e w ww

For very few
search value
in a Data File,

B

There is an
Index Record.

Hence the name
Sparse Index.

Data File Index Record oG
Copyright © 2007 Ramez Elmasri and Shamkant B. Navath _ J

T|Of [mm| |O(O]| |@W|>

IT|O(MMmMOO|m|>

Primary/Ordered Index - Brief

Defined on an ordered data file

= The data file is ordered on a key field

= Includes one index entry for each block in the data file; the index entry has
the key field value for the first record in the block, which is called the block

anchor

= A primary index is a non-dense (sparse) index, since it includes an entry for
each disk block of the data file and the keys of its anchor record rather than

for every search value.
s Note: no. of entries in index file = no. of blocks in data file

s Complexity: (logzn + 1)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 14- 14

Primary index on the ordering key field

Figure 14.1
Primary index on the ordering key field of
the file shown in Figure 13.7.

Index file
(<K(i), P(i)> entries)

Block anchor

Data file
(Primary
key field)
Name Ssn |Birth_date | Job | Salary | Sex
Aaron, Ed

Abbot, Diane

Acosta, Marc

Adams, John

Adams, Robin

Akers, Jan

Alexander, Ed

Alfred, Bob

Allen, Sam

Allen, Troy

Anders, Keith

Anderson, Rob |

primary key Block
value pointer
Aaron, Ed [23
Adams, John -
Alexander, Ed -
Allen, Troy L
Anderson, Zach -
Arnold, Mack

L]

Anderson, Zach

Angel, Joe

Archer, Sue

Arnold, Mack

Arnold, Steven

Atkins, Timothy

Wong, James

Wood, Donald

Wong, James
Wright, Pam

Woods, Manny

Wright, Pam

Wyatt, Charles

Zimmer, Byron

slide 14- 15

Numerical

= The value of Blocking Factor (bfr) called as fan-out (fo)

Example 1. Suppose that we have an ordered file with r = 30,000 records stored on
a disk with block size B = 1024 bytes. File records are of fixed size and are
unspanned, with record length R = 100 bytes. The blocking factor for the file would
be bfr = L(BIR}J = L{IUZMIGU)J = 10 records per block. The number of blocks
needed for the file is b = r(rfbﬁ'ﬂ = HSDGGHH[}}] = 3000 blocks. A binary search on
the data file would need approximately rlung}]z r(lugz?:ﬂﬂﬂ}-' = 12 block accesses.

Now suppose that the ordering key field of the file is V = 9 bytes long, a block
pointer is P = 6 bytes long, and we have constructed a primary index for the file. The
size of each index entry is R. = (9 + 6) = 15 bytes, so the blocking factor for the index
is bﬁ'}- = L{BJ’RI-}J = L(lUEﬁ}f]S}J = 68 entries per block. The total number of index
entries r, is equal to the number of blocks in the data file, which is 3000. The num-
ber of index blocks is hence bi = r(rffﬁlfrjﬂ = |-{3UDD.J"68)-| = 45 blocks. To perform a
binary search on the index file would need rilugjbfﬂ = r(lugzrﬁﬂ = 6 block
accesses. To search for a record using the index, we need one additional block access
to the data file for a total of 6 + 1 = 7 block accesses—an improvement over binary
search on the data file, which required 12 disk block accesses.

Clustering Index

s Defined on an ordered data file

= The data file is ordered on a non-key field unlike primary index, which
requires that the ordering field of the data file have a distinct value for

each record.

= Includes one index entry for each distinct value of the field; the index
entry points to the first data block that contains records with that field

value.

= [tis another example of nondense index where Insertion and Deletion is

relatively straightforward with a clustering index.

= Note: no. of entries in index file = no. of distinct values of non-key field in

data file

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 14- 17

A Clustering Index Example

m For example, students studying in each semester are grouped
together. i.e. 15t Semester students, 2"d semester students,
3"¥ semester students etc. are grouped.

|
SEMESTER |INDEX ADDRESS| I Data Blocks in Memory l
1 2= 100 Joseph |Alaisedon Township 20
2 % 101
a3 . LY D T [e
a 1‘\ 110|allen Fraser Township 20| 2004
5 \ 111
120 Chris Clinton Township 21 2004
121
- 200|Patty [Troy 22| 205
201
\ 210[Jack __ |Fraser Township 21| 202
N\ 211
5 300

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl | de 14- 18

Non-clustered or Secondary Index

= Unordered data file

= The secondary index may be on a field which is a candidate key and has

a unique value in every record, or a non-key with duplicate values.

= Theindex is an ordered file with two fields.

= The first field is of the same data type as some non-ordering field of the data

file that is an indexing field.
= The second field is either a block pointer or a record pointer.
= There can be many secondary indexes (and hence, indexing fields) for the
same file.
= Includes one entry for each record in the data file; hence, it is a dense

index

= Note: no. of entries in index file = no. of records Iin data file

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 19

Non-clustered or Secondary Index

= A non clustered index just tells us where the data lies, i.e. it
gives us a list of virtual pointers or references to the location
where the data is actually stored.
= Data is not physically stored in the order of the index.
= Instead, data is present in leaf nodes.
= |t requires more time as compared to the clustered index

because some amount of extra work is done in order to

extract the data by further following the pointer.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 20

- e

Lname SSN Job Salary

Secondary Index Block
Key attnibute value || Address Block | S e
/’ / Akers 1002
Anders 1003
Lname Block Mo
Block 2 | Alex 1024
o : Wong 1055
A |
S Atkins 1086
Acosta n T
Amo 1y
I P Block 3 2
Nathan 1208
Akers 1
Jacobs 1239
Black 4 | Anderson | 1310
Allen 5 Adams 1321
Al 5 Aaron 1412
Block § .)I Allen 1413
Zimmer | 1514
SEE s Al 1615
Waong . 0
Block n) Acosta | 2085
Zimmer |5

P Y
le:iﬂsﬁpmmm
LAINPLE LELRNING

Slide 14- 21

Copyright ©

Example of a Dense Secondary Index

Search | Attr
Search Pointer 1202 Key
Key Alice
| Alice 1202 Adfian
Search Pointer Ben 1203
1203 Search Attr
Koy | Bethany | 1204 o
Alice 1102 1102
! Ben
Bob 1103 Search | Pointer —
Key Benjamin
Christie 1104 _ _ :
Billie 1500
Root Node A }S(zarch Attr
Bob 1501 y
Charlie | 1502 | Bethany |
1103 1204 BetY
Intermediate
Nodes Leaf Nodes

Non clustered index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 14- 22

Numerical

Example 2. Consider the file of Example 1 with r = 30,000 fixed-length records of
size R = 100 bytes stored on a disk with block size B = 1024 bytes. The file has b =
3000 blocks, as calculated in Example 1. Suppose we want to search for a record with
a specific value for the secondary key—a nonordering key field of the file that is V =
9 bytes long. Without the secondary index, to do a linear search on the file would
require b/2 = 3000/2 = 1500 block accesses on the average. Suppose that we con-
struct a secondary index on that nonordering key field of the file. As in Example 1, a
block pointer is P = 6 bytes long, so each index entry is R. = (9 + 6) = 15 bytes, and
the blocking factor for the index is bfr, = L(B."R;}J = L(1024/15)] = 68 entries per
block. In a dense secondary index such as this, the total number of index entries r; is
equal to the number of records in the data file, which is 30,000. The number of blocks
needed for the index is hence b, = r{r;i’ bﬁ"iﬂ = r{SUUUJ’ 68}-| = 442 blocks.

A binary search on this secondary index needs r(lﬂgzbjﬂ = r{lugl442}_| = 9 block
accesses. To search for a record using the index, we need an additional block access
to the data file for a total of 9 + 1 = 10 block accesses—a vast improvement over the
1500 block accesses needed on the average for a linear search, but slightly worse than
the 7 block accesses required for the primary index. This difference arose because
the primary index was nondense and hence shorter, with only 45 hlacks in length.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 23

Multi-Level Indexes

s With the growth of the size of the database, indices also grow.

m As the index is stored in the main memory, a single-level index
might become too large a size to store with multiple disk

dCCesses.

m The multilevel indexing segregates the main block into various

smaller blocks so that the same can stored in a single block.

m The outer blocks are divided into inner blocks which in turn are
pointed to the data blocks. This can be easily stored in the main

memory with fewer overheads.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 14- 24

Multi-Level Indexes

s Because a single-level index is an ordered file, we can create a

primary index to the index itself.

= In this case, the original index file is called the first-level
Index and the index to the index is called the second-level

index.

= We can repeat the process, creating a third, fourth, ..., top level

until all entries of the top level fit in one disk block

= A multi-level index can be created for any type of first-level index
(primary, secondary, clustering) as long as the first-level index

consists of more than one disk block

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl | de 14- 25

Multi-Level Indexes

= The value of Blocking Factor (bfr) called as fan-out (fo) of multilevel

index

s Searching a multilevel index requires approximately (logrbi) block

accesses.

= First level requires (r1/fo) blocks, which is no. of entries of index at 2nd

level

m Increase no. of levels until all the entries at some index level ‘t’ fitin a

single block, known as top level index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl [de 14- 26

Multi-Level Indexes

= Each level reduces the no. of entries at the previous level

by factor of fo.
= To calculate t, use formula 1<=(r1/(fo)"t)

s Hence, multilevel index with rl first level entries will have
approximately t levels,
Where, t = ceil(logro(rl))

(Note**: Refer numerical examples from Navathe to calculate no. of

block accesses for primary, secondary and multilevel indexing).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl | de 14- 27

Multi-Level Indexes

= A common file organization used In business data
processing is an ordered file with a multilevel primary
Index on its ordering key field. Such an organization is
called an indexed sequential file — Indexed Sequential
Access Method(ISAM) and was used In a large

number of early IBM systems.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl | de 14- 28

A Two-level Primary Index

Two-level index Data file

Primary
key field
r 2
5

8
12

15
21

24
29

B 35
36

39
41

44
46

51
52

I 55
58

63
66

71
78

80
82

85
: : 89

Figure 14.6 2 14- 29

Coa two-level primary index resembling ISAM (Index Sequential Access Method) organization.

A Two-level Primary Index

Two-level index Data file
First (base) Primary
level key field
r 2 -1 2
8 - 5
15 e
24 . = 8
12
E— 15
21
— 24
29
3 35 L I 35
39 . 36
44
51 - L 39
41
L 44
46
— 51
52
3 55 -— 55
63 ° 58
71 -
80 - — 63
66
L 71
78
85 R 80
] 82
—— 85
89
Figure 14.6 N 14_ 30

Coa two-level primary index resembling ISAM (Index Sequential Access Method) organization.

A Two-level Primary Index

Two-level index Data file
First (base) Primary
level key field
- 2 -— 1 2
8 - 5
15 -
o4 - R 8
12
L = 15
21
= 24
Second (top) 29
level
2 - 4|—> 35 O 35
35 L 39 - 36
55 44
a5 - 51 - —== 39
41
— 44
46
R 51
52
— 55 -~ 55
63 - 58
71 -
80 - — = 63
66
R 71
78
- 80
= 85 - 8o
o 85
89
Figure 14.6 2 14_ 31

Coa two-level primary index resembling ISAM (Index Sequential Access Method) organization.

Multi-Level Indexes

x Such a multi-level index Is a form of search tree

= However, insertion and deletion of new index
entries is a severe problem because every level of
the index Is an ordered file.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 32

Indexes as Access Paths (contd.)

= Example: Given the following data file EMPLOYEE(NAME, SSN, ADDRESS,
JOB, SAL, ...)
= Suppose that:
= record size R=150 bytes block size B=512 bytes r=30000 records
= Then, we get:
= Dblocking factor Bfr= B div R= 512 div 150= 3 records/block
= number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks
= For an index on the SSN field, assume the field size V=9 bytes, assume
the record pointer size P,=7 bytes. Then:
= index entry size R=(Vgsnt Pr)=(9+7)=16 bytes
= index blocking factor Bfr,= B div R= 512 div 16= 32 entries/block
= number of index blocks b= (r/ Bfr,)= (30000/32)= 938 blocks
= binary search needs log,bl=109,938= 10 block accesses
= Thisis compared to an average linear search cost of:
= (b/2)=30000/2= 15000 block accesses
= If the file records are ordered, the binary search cost would be:
» log,b= 10g,30000= 15 block accesses

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 33

s Navathe

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl Ide 14- 34

