
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Indexing Structures

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 3

Chapter Outline

◼ Types of Single-level Ordered Indexes

◼ Primary Indexes

◼ Clustering Indexes

◼ Secondary Indexes

◼ Multilevel Indexes

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Indexing

Slide 14- 4

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Indexing

◼ Indexing is a way to optimize the performance of a database by

minimizing the number of disk accesses required when a

query is processed.

◼ It is a data structure technique which is used to quickly locate

and access the data in a database.

Slide 14- 5

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 6

Indexes as Access Paths

◼ A single-level index is an auxiliary file that makes it more

efficient to search for a record in the data file.

◼ The index is usually specified on any one field of the file

(although it could be specified on several fields)

◼ One form of an index is a file of entries <field value,

pointer to record>, which is ordered by field value

◼ The index is called an access path on the field.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 7

Types of Single-Level Indexes

◼ Primary/Ordered Index

◼ Ordering key field from ordered file record and unique

◼ Clustering Index

◼ Ordering field is not key field, field with non-distinct tuples

(Atmost one primary index or clustering index but not both)

◼ Secondary Index

◼ Index can be on any non-ordering field of file

◼ File can have many secondary index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 8

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 9

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 10

Indexes as Access Paths (contd.)

◼ 1. Ordered Index File:

◼ In this, the indices are based on a sorted ordering of the

values.

◼ These are generally fast and a more traditional type of

storing mechanism.

◼ These Ordered or Sequential file organization might store

the data in a dense or sparse format:

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 11

Primary/Ordered Index

i. Dense Index:

• For every search key value in the data file, there is an index record.

• This record contains the search key and also a reference to the first

data record with that search key value.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 12

Primary/Ordered Index

ii. Sparse Index:

• The index record appears only for a few items in the data file. Each

item points to a block as shown.

• The sparse index can be built only on the ordered field of the database

file. The first record of the block is called the anchor record.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Primary/Ordered Index

Slide 14- 13

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 14

Primary/Ordered Index - Brief

◼ Defined on an ordered data file

◼ The data file is ordered on a key field

◼ Includes one index entry for each block in the data file; the index entry has

the key field value for the first record in the block, which is called the block

anchor

◼ A primary index is a non-dense (sparse) index, since it includes an entry for

each disk block of the data file and the keys of its anchor record rather than

for every search value.

◼ Note: no. of entries in index file = no. of blocks in data file

◼ Complexity: (log2 n + 1)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 15

Primary index on the ordering key field

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Numerical

◼ The value of Blocking Factor (bfr) called as fan-out (fo)

Slide 14- 16

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 17

Clustering Index

◼ Defined on an ordered data file

◼ The data file is ordered on a non-key field unlike primary index, which

requires that the ordering field of the data file have a distinct value for

each record.

◼ Includes one index entry for each distinct value of the field; the index

entry points to the first data block that contains records with that field

value.

◼ It is another example of nondense index where Insertion and Deletion is

relatively straightforward with a clustering index.

◼ Note: no. of entries in index file = no. of distinct values of non-key field in

data file

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 18

A Clustering Index Example

◼ For example, students studying in each semester are grouped
together. i.e. 1st Semester students, 2nd semester students,
3rd semester students etc. are grouped.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 19

Non-clustered or Secondary Index

◼ Unordered data file

◼ The secondary index may be on a field which is a candidate key and has

a unique value in every record, or a non-key with duplicate values.

◼ The index is an ordered file with two fields.

◼ The first field is of the same data type as some non-ordering field of the data

file that is an indexing field.

◼ The second field is either a block pointer or a record pointer.

◼ There can be many secondary indexes (and hence, indexing fields) for the

same file.

◼ Includes one entry for each record in the data file; hence, it is a dense

index

◼ Note: no. of entries in index file = no. of records in data file

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 20

Non-clustered or Secondary Index

◼ A non clustered index just tells us where the data lies, i.e. it

gives us a list of virtual pointers or references to the location

where the data is actually stored.

◼ Data is not physically stored in the order of the index.

◼ Instead, data is present in leaf nodes.

◼ It requires more time as compared to the clustered index

because some amount of extra work is done in order to

extract the data by further following the pointer.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 21

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 22

Example of a Dense Secondary Index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Numerical

Slide 14- 23

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 24

Multi-Level Indexes

◼ With the growth of the size of the database, indices also grow.

◼ As the index is stored in the main memory, a single-level index

might become too large a size to store with multiple disk

accesses.

◼ The multilevel indexing segregates the main block into various

smaller blocks so that the same can stored in a single block.

◼ The outer blocks are divided into inner blocks which in turn are

pointed to the data blocks. This can be easily stored in the main

memory with fewer overheads.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 25

Multi-Level Indexes

◼ Because a single-level index is an ordered file, we can create a

primary index to the index itself.

◼ In this case, the original index file is called the first-level

index and the index to the index is called the second-level

index.

◼ We can repeat the process, creating a third, fourth, ..., top level

until all entries of the top level fit in one disk block

◼ A multi-level index can be created for any type of first-level index

(primary, secondary, clustering) as long as the first-level index

consists of more than one disk block

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 26

Multi-Level Indexes

◼ The value of Blocking Factor (bfr) called as fan-out (fo) of multilevel

index

◼ Searching a multilevel index requires approximately (logfobi) block

accesses.

◼ First level requires (r1/fo) blocks, which is no. of entries of index at 2nd

level

◼ Increase no. of levels until all the entries at some index level ‘t’ fit in a

single block, known as top level index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 27

Multi-Level Indexes

◼ Each level reduces the no. of entries at the previous level

by factor of fo.

◼ To calculate t, use formula 1<=(r1/(fo)^t)

◼ Hence, multilevel index with r1 first level entries will have

approximately t levels,

Where, t = ceil(logfo(r1))

(Note**: Refer numerical examples from Navathe to calculate no. of

block accesses for primary, secondary and multilevel indexing).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 28

Multi-Level Indexes

◼ A common file organization used in business data

processing is an ordered file with a multilevel primary

index on its ordering key field. Such an organization is

called an indexed sequential file – Indexed Sequential

Access Method(ISAM) and was used in a large

number of early IBM systems.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 29

A Two-level Primary Index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 30

A Two-level Primary Index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 31

A Two-level Primary Index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 32

Multi-Level Indexes

◼ Such a multi-level index is a form of search tree

◼ However, insertion and deletion of new index

entries is a severe problem because every level of

the index is an ordered file.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 33

Indexes as Access Paths (contd.)

◼ Example: Given the following data file EMPLOYEE(NAME, SSN, ADDRESS,
JOB, SAL, ...)

◼ Suppose that:
◼ record size R=150 bytes block size B=512 bytes r=30000 records

◼ Then, we get:
◼ blocking factor Bfr= B div R= 512 div 150= 3 records/block

◼ number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks

◼ For an index on the SSN field, assume the field size VSSN=9 bytes, assume
the record pointer size PR=7 bytes. Then:
◼ index entry size RI=(VSSN+ PR)=(9+7)=16 bytes

◼ index blocking factor BfrI= B div RI= 512 div 16= 32 entries/block

◼ number of index blocks b= (r/ BfrI)= (30000/32)= 938 blocks

◼ binary search needs log2bI= log2938= 10 block accesses

◼ This is compared to an average linear search cost of:
◼ (b/2)= 30000/2= 15000 block accesses

◼ If the file records are ordered, the binary search cost would be:
◼ log2b= log230000= 15 block accesses

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Reference

◼ Navathe

Slide 14- 34

