
- By Jyoti Tryambake

1

Types:

1. Inner Joins

2. Outer Joins

1. Left outer

2. Right outer

3. Full outer

3. Natural Join

4. Cross Join

5. Self joins
2

• A SQL JOIN combines records from two tables.

• A JOIN locates related column values in the two tables.

• A query can contain zero, one, or multiple JOIN operations.

• INNER JOIN is the same as JOIN; the keyword INNER is optional.

1. Inner Join

SELECT columns FROM table1 INNER JOIN table2

ON table1.column = table2.column;

3

Example:

customer_id last_name first_name favorite_website

4000 Jackson Joe
techonthenet.co
m

5000 Smith Jane
digminecraft.co
m

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen
checkyourmath.c
om

8000 Anderson Paige NULL

9000 Johnson Derek
techonthenet.co
m

order_id customer_id order_date

1 7000 2016/04/18

2 5000 2016/04/18

3 8000 2016/04/19

4 4000 2016/04/20

5 NULL 2016/05/01
4

Example:

SELECT customers.customer_id, orders.order_id, orders.order_date

FROM customers INNER JOIN orders ON customers.customer_id =

orders.customer_id ORDER BY customers.customer_id;

customer_id order_id order_date

4000 4 2016/04/20

5000 2 2016/04/18

7000 1 2016/04/18

8000 3 2016/04/19

5

Outer Join:

• returns all rows from the participating tables which satisfy the
condition and also those rows which do not match the condition
will appear in this operation. This result set can appear in three
types of format -

• LEFT OUTER JOIN - all the rows from a left table of JOIN clause
and the unmatched rows from a right table with NULL values for
selected columns.

• RIGHT OUTER JOIN - all rows from the right of JOIN cause and the
unmatched rows from the left table with NULL values for selected
columns.

• FULL OUTER JOIN -includes the matching rows from the left and
right tables of JOIN clause and the unmatched rows from left and
right table with NULL values for selected columns.

6

Left Outer Join:

This type of join returns all rows from the LEFT-hand table specified in the

ON condition and only those rows from the other table where the joined

fields are equal (join condition is met).

Syntax:

SELECT columns FROM table1 LEFT [OUTER] JOIN table2 ON table1.column

= table2.column;

Query:

SELECT customers.customer_id, orders.order_id, orders.order_date FROM

customers LEFT OUTER JOIN orders ON

customers.customer_id = orders.customer_id

ORDER BY customers.customer_id;
7

Left Outer Join:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

order_id customer_id order_date

1 7000 2016/04/18

2 5000 2016/04/18

3 8000 2016/04/19

4 4000 2016/04/20

5 NULL 2016/05/01

customer_id order_id order_date

4000 4 2016/04/20

5000 2 2016/04/18

6000 NULL NULL

7000 1 2016/04/18

8000 3 2016/04/19

9000 NULL NULL
8

Right Outer Join:

This type of join returns all rows from the RIGHT-hand table specified in

the ON condition and only those rows from the other table where the

joined fields are equal (join condition is met).

Syntax:

SELECT columns FROM table1 Right [OUTER] JOIN table2 ON

table1.column = table2.column;

Query:

SELECT customers.customer_id, orders.order_id, orders.order_date FROM

customers RIGHT OUTER JOIN orders ON

customers.customer_id = orders.customer_id

ORDER BY customers.customer_id;
9

Right Outer Join:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

order_id customer_id order_date

1 7000 2016/04/18

2 5000 2016/04/18

3 8000 2016/04/19

4 4000 2016/04/20

5 NULL 2016/05/01

customer_id order_id order_date

NULL 5 2016/05/01

4000 4 2016/04/20

5000 2 2016/04/18

7000 1 2016/04/18

8000 3 2016/04/19

10

Full Outer Join:

This type of join returns all rows from the LEFT-hand table and RIGHT-hand

table with NULL values in place where the join condition is not met.

Syntax:

SELECT columns FROM table1 Full [OUTER] JOIN table2 ON table1.column

= table2.column;

Query:

SELECT customers.customer_id, orders.order_id, orders.order_date FROM

customers FULL OUTER JOIN orders ON

customers.customer_id = orders.customer_id

ORDER BY customers.customer_id;

11

Full Outer Join:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

order_id customer_id order_date

1 7000 2016/04/18

2 5000 2016/04/18

3 8000 2016/04/19

4 4000 2016/04/20

5 NULL 2016/05/01

customer_i
d

order_id order_date

NULL 5 2016/05/01

4000 4 2016/04/20

5000 2 2016/04/18

6000 NULL NULL

7000 1 2016/04/18

8000 3 2016/04/19

9000 NULL NULL12

Natural join:

The SQL NATURAL JOIN is a type of EQUI JOIN and is structured in

such a way that, columns with the same name of associated tables

will appear once only.

Query:

SELECT * FROM foods NATURAL JOIN company

13

Natural join example:

14

Cross join:

• The number of rows in the first table multiplied by the number of rows in the

second table if no WHERE clause is used along with CROSS JOIN.

• This kind of result is called as Cartesian Product.

• If WHERE clause is used with CROSS JOIN, it functions like an INNER JOIN.

• An alternative way of achieving the same result is to use column names

separated by commas after SELECT and mentioning the table names involved,

after a FROM clause.

Syntax:

SELECT * FROM table1 CROSS JOIN table2;

15

Cross join:

16

Cross join:

• SQL Code:

SELECT foods.item_name,foods.item_unit,

company.company_name,company.company_city FROM foods

CROSS JOIN company;

or

• SQL Code:

SELECT foods.item_name,foods.item_unit,

company.company_name,company.company_city FROM

foods,company;

17

Cross join:

18

Self join:

• A table is joined with itself (which is also called Unary

relationships), especially when the table has a FOREIGN KEY

which references its own PRIMARY KEY.

• To join a table itself means that each row of the table is combined

with itself and with every other row of the table.

• The self join can be viewed as a join of two copies of the same

table.

19

Self join:

Example - a table EMPLOYEE, that has one-to-many relationship.

Code to create the table EMPLOYEE

SQL Code:

CREATE TABLE employee

(emp_id varchar(5) NOT NULL,

emp_name varchar(20) NULL,

dt_of_join date NULL,

emp_supv varchar(5) NULL,

CONSTRAINT emp_id PRIMARY KEY(emp_id) ,

CONSTRAINT emp_supv FOREIGN KEY(emp_supv) REFERENCES
20

https://www.w3resource.com/sql/question-answer.php

Self join:

21

Self join:

SQL Code:

SELECT a.emp_id AS "Emp_ID",a.emp_name AS "Employee Name",

b.emp_id AS "Supervisor ID",b.emp_name AS "Supervisor Name"

FROM employee a, employee b WHERE a.emp_supv = b.emp_id;

22

Self join:

o/p: shown below for the previous query

23

▪ In some cases, it is not desirable for all users to see the entire
logical model (that is, all the actual relations stored in the
database.)

▪Consider a person who needs to know an instructors name
and department, but not the salary. This person should see a
relation described, in SQL, by

select ID, name, dept_name
from instructor

▪A view provides a mechanism to hide certain data from the
view of certain users.

▪Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

24

▪A VIEW (virtual table) is actually a query and the output of the

query becomes the content of the view.

▪The VIEW can be treated as a base table and it can be QUERIED,

UPDATED, INSERTED INTO, DELETED FROM and JOINED with other

tables and views.

▪A VIEW is a data object which does not contain any data. Its

contents are the resultant of a base table.

▪A view can be accessed with the use of SQL SELECT statement like

a table.

CREATE VIEW - create view v as < query expression > 25

Syntax:

CREATE VIEW view_name AS

SELECT column_list

FROM table_name

WHERE condition;

For Example: To create a view on the product table the sql query would
be like

CREATE VIEW view_product
AS
SELECT product_id, product_name
FROM product;

Query: To access view

Select * from view_product;
26

▪A view of instructors without their salary

create view faculty as
select ID, name, dept_name
from instructor

▪ Find all instructors in the Biology department
select name
from faculty …………….. Accessing view
where dept_name = ‘Biology’

▪Create a view of department salary totals
create view departments_total_salary(dept_name,

total_salary) as
select dept_name, sum (salary)
from instructor
group by dept_name;

27

▪ Example of view with more than one table :

List employees associated with design department

CREATE VIEW vw_Design_Emp AS

SELECT e.EMP_ID, e.EMP_FIRST_NAME, e.EMP_LAST_NAME, d.DEPT_ID,

d.DEPT_NAME

FROM EMPLOYEE e, DEPARTMENT d

WHERE e.DEPT_ID = d.DEPT_ID AND d.DEPT_NAME = ‘DESIGN’;

Query:

Select * from vw_Design_Emp;

28

▪create view physics_fall_2009 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id

and course.dept_name = ’Physics’
and section.semester = ’Fall’
and section.year = ’2009’;

For a physics_fall_2009 course, get course ID and room_number only
in building ‘watson’

▪create view physics_fall_2009_watson as
select course_id, room_number
from physics_fall_2009
where building= ’Watson’;

29

UPDATE VIEW:

▪Modify the definition of a SQL VIEW without dropping it by using

the SQL CREATE OR REPLACE VIEW Statement.

▪ Syntax:

CREATE OR REPLACE VIEW view_name

AS SELECT columns FROM table

[WHERE conditions];

30

▪ Example of view with more than one table :

List employees associated with design department

CREATE VIEW vw_Design_Emp AS

SELECT e.EMP_ID, e.EMP_FIRST_NAME, e.EMP_LAST_NAME, d.DEPT_ID,
d.DEPT_NAME

FROM EMPLOYEE e, DEPARTMENT d

WHERE e.DEPT_ID = d.DEPT_ID AND d.DEPT_NAME = ‘DESIGN’;

UPDATE VIEW:

CREATE or REPLACE VIEW vw_Design_Emp AS

SELECT e.EMP_ID, e.EMP_FIRST_NAME, e.EMP_LAST_NAME,
d.DEPT_ID, d.DEPT_NAME

FROM EMPLOYEE e, DEPARTMENT d

WHERE e.DEPT_ID = d.DEPT_ID AND d.DEPT_NAME = ‘ENGINEER’;

31

▪ WITH CHECK OPTION

WITH CHECK OPTION is a CREATE VIEW statement option. The
purpose is to ensure that all UPDATE and INSERTs satisfy the
condition(s) in the view definition.

▪Example:

CREATE VIEW CUSTOMERS_VIEW AS

SELECT name, age FROM CUSTOMERS

WHERE age IS NOT NULL

WITH CHECK OPTION;

(Explanation: SELECT name, age FROM CUSTOMERS

WHERE age IS NOT NULL

-> select all records where age tuple is not null and

WITH CHECK OPTION;

-> it won’t allow further in insert and update statement to enter null
value)

32

Insert, delete , update possible
with view

But…….

33

34

35

36

37

Adding any data (not as per view) to actual table through view

38

Adding any data (not as per view) to actual table through view

39

Update data through view

40

Update data through view - example

41

Update data through view - example

42

WITH CHECK OPTION

43

WITH CHECK OPTION – ex – view with sales department

44

INSERT to emp_sales view

45

UPDATE to emp_sales view

46

View – Reference

https://www.geeksforgeeks.org/postgresql-creating-
updatable-views-using-with-check-option-clause/

▪Updating/Inserting values in a View:

A view can be updated under certain conditions which are
given below −

▪The SELECT clause may not contain the keyword DISTINCT.

▪The SELECT clause may not contain summary functions.

▪The SELECT clause may not contain set operators.

▪The SELECT clause may not contain an ORDER BY clause.

▪The FROM clause may not contain multiple tables.

▪The WHERE clause may not contain subqueries.

▪The query may not contain GROUP BY or HAVING.

▪Calculated columns may not be updated.

▪All NOT NULL columns from the base table must be included in
the view in order for the INSERT query to function.

47

Inserting values in a View:

INSERT INTO vw_dept VALUES (6,'hss')

Deleting values in a View:

delete from vw_dept where deptno = 6

DROP VIEW:

Syntax:

DROP VIEW view_name;

48

Example:

-create view vw_dept_without_check

as select deptno, dname, loc from dept

where loc is not null

-select * from vw_dept_without_check

-insert into vw_dept_without_check values(7,'arts','')

(it will add data in base table too. If with check option is provided
while creating a view then it won’t allow to add null value

)

-select * from vw_dept_without_check

(it will show only not null records as per view created)
49

▪Materialized views are also the logical view of our data-driven

by the select query but the result of the query will get stored

in the table or disk, also the definition of the query will also

store in the database.

▪The performance of Materialized view it is better than normal

View because

▪ the data of materialized view will be stored in table and table may be

indexed so faster for joining also joining is done at the time of

materialized views refresh time so no need to every time fire joins

statement as in case of view.
50

51

View

query result is
not stored in

the disk or
database

we always get
the latest data

it's only the logical
view of the table no
separate copy of the

table

Auto method
not required

Materialized

stores the query result in
disk or table.

need to refresh the
view for getting the

latest data

a physically separate
copy of the table

need an extra trigger or
some automatic method so

that we can keep MV
refreshed,

▪Database integrity refers to the validity and consistency of stored

data.

▪ Integrity is usually expressed in terms of constraints, which are

consistency rules that the database is not permitted to violate.

▪Constraints may apply to each attribute or they may apply to

relationships between tables.

▪ Integrity constraints ensure that changes (update deletion,

insertion) made to the database by authorized users do not result

in a loss of data consistency. Thus, integrity constraints guard

against accidental damage to the database.
52

TYPES OF INTEGRITY CONSTRAINTS

▪Domain Integrity

▪Entity Integrity Constraint

▪Referential Integrity Constraint

53

Domain Integrity

▪Domain integrity means the definition of a valid set of values for
an attribute.

▪Data type, length or size, is null value allowed , is the value unique
or not for an attribute ,the default value, the range (values in
between) and/or specific values for the attribute.

▪Example

create a table “student_info” with “stu_id” field having value
greater than 100,

Query:

create domain id_value int constraint id_test check(value > 100);

create table student_info (stu_id id_value PRIMARY KEY, stu_name
varchar(30), stu_age int);

54

Domain Integrity – postgres example

Example 1

55

Domain Integrity – postgres example

Example 2

-- create domain

Query: CREATE DOMAIN baseknowledge VARCHAR(90) NOT NULL
DEFAULT 'N/A’;

-- add new column in existing table

Query: alter table course add column course_base baseknowledge

-- check the result (select * from course)

-- drop column first

Query: alter table course drop column course_base

-- then domain can be dropped

Query: drop domain baseknowledge 56

Domain Integrity – postgres example

Reference:

https://www.sqlines.com/postgresql/statements/create_domain

57

▪Entity Integrity Constraint

This integrity ensures that each record in the table
is unique and has primary key which is not NULL.

58

Referential Integrity Constraint

▪Let r1 and r2 be relations whose set of attributes are R1

and R2, respectively, with primary keys K1 and K2. We say

that a subset of R2 is a foreign key referencing K1 in

relation r1 if it is required that, for every tuple t2 in r2,

there must be a tuple t1 in r1 such that t1.K1 = t2..

▪Requirements of this form are called referential-integrity

constraints, or subset dependencies.

59

▪Triggers are stored programs, which are automatically executed

or fired when some events occur.

▪Triggers are written to be executed in response to any of the

following events −

▪A database manipulation (DML) statement (DELETE, INSERT, or

UPDATE)

▪A database definition (DDL) statement (CREATE, ALTER, or

DROP).

▪Triggers can be defined on the table, view, schema, or database

with which the event is associated. 60

A typical trigger has three components:

1. Event: insert/delete/update operation

2. Condition: Test whether trigger should run or not.

Once the triggering event has occurred, an optional

condition may be evaluated.

3. Action: The action is usually a sequence of SQL

statements, but it could also be a database transaction

or an external program that will be automatically

executed. 61

Creating Triggers

▪The syntax for creating a trigger is −

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name] ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE Declaration-statements

BEGIN Executable-statements

EXCEPTION Exception-handling-statements

END;

/ 62

Where,

▪ CREATE [OR REPLACE] TRIGGER trigger_name − Creates or replaces an
existing trigger with the trigger_name.

▪ {BEFORE | AFTER | INSTEAD OF} − This specifies when the trigger will be
executed. The INSTEAD OF clause is used for creating trigger on a view.

▪ {INSERT [OR] | UPDATE [OR] | DELETE} − This specifies the DML operation.

▪ [OF col_name] − This specifies the column name that will be updated.

▪ [ON table_name] − This specifies the name of the table associated with the
trigger.

▪ [REFERENCING OLD AS o NEW AS n] − This allows you to refer new and old
values for various DML statements, such as INSERT, UPDATE, and DELETE.

▪ [FOR EACH ROW] − This specifies a row-level trigger, i.e., the trigger will be
executed for each row being affected. Otherwise the trigger will execute
just once when the SQL statement is executed, which is called a table level
trigger.

▪ WHEN (condition) − This provides a condition for rows for which the trigger
would fire. This clause is valid only for row-level triggers.

63

Row vs. Statement Triggers
• A trigger can be invoked (by the DBMS) before or after

the triggering event.

• There are two types of triggers:

– a row level trigger and

– a statement level trigger.

• A row level trigger is defined using the clause FOR EACH
ROW. If this clause is not given, the trigger is assumed to be a
statement trigger.

• A row trigger executes once for each row after (or before) the
event.

• In contrast, a statement trigger is executed once after (or
before) the event, independent of how many rows are affected
by the event. 64

Row Triggers
• Only with a row trigger it is possible to access the attribute values of a

tuple before and after the modification

– This is because the trigger is executed once for each tuple.

• For an update trigger, the old attribute value can be accessed using
:old.<column>

• and the new attribute value can be accessed using

:new.<column>

• For an insert trigger, only :new.<column> can be used.

• For a delete trigger only :old.<column> can be used.

• In a row trigger thus it is possible to specify comparisons between old
and new attribute values in e.g.,

if :old.sal != :new.sal then . . .
65

▪Let’s create the following two tables:
CREATE TABLE T1 (

a INTEGER,

b CHAR(10)

);

CREATE TABLE T2 (

c CHAR(10),

d INTEGER

);

▪Problem:
▪We create a trigger that may insert a tuple into T2

when a tuple is inserted into T1.

▪Specifically, the trigger checks whether the new tuple
has a first component 10 or less, and if so inserts the
reverse tuple into T2:

66

CREATE OR REPLACE TRIGGER trig1

AFTER INSERT ON T1

FOR EACH ROW

WHEN (new.a <= 10)

BEGIN

INSERT INTO T2 VALUES(:new.b, :new.a);

END trig1;

/

▪Notice that we end the CREATE TRIGGER statement
with a /, as for all PL/SQL statements in general.
▪This only creates the trigger; it does not execute the trigger.

Only a triggering event, such as an insertion into T1 in this
example, causes the trigger to execute.

Try now:
insert into T1 values(8, 'Uvic');

The tuple ('Uvic',8) is
automatically
inserted into T2.

67

▪Triggers can often be used to enforce constraints.

▪The WHEN clause or body of the trigger can check for

the violation of certain conditions and signal an

error accordingly using the Oracle built-in function

RAISE_APPLICATION_ERROR.

▪The action that activated the trigger (insert, update,

or delete) would be aborted.

68

▪ For example, the following trigger enforces the constraint
Person.age >= 0:

CREATE TABLE Person (age INT);

CREATE TRIGGER PersonCheckAge

BEFORE INSERT OR UPDATE OF age ON Person

FOR EACH ROW

BEGIN

IF (:new.age < 0) THEN

RAISE_APPLICATION_ERROR(-20000, 'no negative age

allowed');

END IF;

END;

/

69

▪ If we attempted to execute the insertion:

INSERT INTO Person VALUES (-3);

we would get the error message:

ERROR at line 1:

ORA-20000: no negative age allowed

ORA-06512: at "MYNAME.PERSONCHECKAGE", line 3

ORA-04088: error during execution of trigger

'MYNAME.PERSONCHECKAGE'

and nothing would be inserted.

In general, the effects of both the trigger and the triggering statement are
rolled back.

70

▪ Example 1: - to keep previous and current records

CREATE OR REPLACE TRIGGER tr_marks_log

AFTER UPDATE ON MARKS

FOR EACH ROW

BEGIN

INSERT INTO marks_log (ROLLNO, OLD_MARK, NEW_MARK)

VALUES (:old.rollno,:old.marks, :new.marks);

END;

/

▪ Marks table = columns roll_no and marks with values (1513101, 75)

Queries:

▪ update marks set marks = 90 where rollno = 1513101

▪ select * from marks_log

output:

ROLLNO OLD_MARK NEW_MARK

1513101 75 90
71

▪Example 2:

If the employee salary increased by more than 10%, make sure the
‘rank’ field is not empty and its value has changed, otherwise reject
the update (rank should be increased with increase in salary)

Query:

Create or Replace Trigger EmpSal

Before Update On emp

For Each Row

Begin

IF (:new.sal > (:old.sal * 1.1)) Then

IF (:new.rank is null or :new.rank = :old.rank) Then

RAISE_APPLICATION_ERROR(-20004, 'rank field not correct');

End IF;

End IF;

End;

/
72

Queries:

1. update emp set sal= 7000, rank = 1 where empno = 7782

o/p:

ORA-20004: rank field not correct

ORA-06512: at "COLLEGE.EMPSAL", line 4

ORA-04088: error during execution of trigger 'COLLEGE.EMPSAL‘

2. update emp set sal= 7000, rank = 2 where empno = 7698

o/p:

1 row updated

73

Example 3:

If the newly inserted record in employee has null hireDate field,
fill it in with the current date

Create Trigger EmpDate

Before Insert On Employee

For Each Row

Declare

temp date;

Begin

Select sysdate into temp from dual;

IF (:new.hiredate is null) Then

:new.hiredate := temp;

End IF;

End;

/

74

Example 3:

Queries:

insert into emp(empno, ename) values(123, 'abc')

o/p;

123 abc 2/25/2020

75

Example 4:

To calculate derived attribute

Create Trigger studentage

Before Insert Or Update On student

For Each Row

Begin

:new.age := SYSDATE - :new.dob ;

End;

/

Queries:

Sysdate: ‘3/2/2020’

update student set dob = '3/1/2020' where rollno = 102

o/p: age value in days

102 xyz - - 03/02/2020 2 76

CREATE OR REPLACE TRIGGER emp_alert_trig

BEFORE INSERT ON emp

BEGIN

DBMS_OUTPUT.PUT_LINE(

'New employees are about to be added');

END;

/

Don’t forget:

SET SERVEROUTPUT ON

77

Inserting

• The following INSERT is constructed so that several new rows

are inserted upon a single execution of the command.

• For each row that has an employee id between 7900 and 7999, a

new row is inserted with an employee id incremented by 1000.

INSERT INTO emp (empno, ename, deptno)

SELECT empno + 1000, ename, 40

FROM emp

WHERE empno BETWEEN 7900 AND 7999;

Trigger fired - New employees are about to

be added

Result

SELECT empno, ename, deptno

FROM emp

WHERE empno BETWEEN 8900 AND 8999;

EMPNO ENAME DEPTNO

---------- ---------- ----------

8900 JAMES 40

8902 FORD 40

8934 MILLER 40

After Statement-Level Trigger

• Whenever an insert, update, or delete operation occurs

on the emp table, a row is added to the empauditlog

table recording the date, user, and action.

• First let’s create the empauditlog table:

CREATE TABLE empauditlog (

audit_date DATE,

audit_user VARCHAR2(20),

audit_desc VARCHAR2(20)

);

Now the trigger
CREATE OR REPLACE TRIGGER emp_audit_trig

AFTER INSERT OR UPDATE OR DELETE ON emp

DECLARE

v_action VARCHAR2(20);

BEGIN

IF INSERTING THEN

v_action := 'Added employee(s)';

ELSIF UPDATING THEN

v_action := 'Updated employee(s)';

ELSIF DELETING THEN

v_action := 'Deleted employee(s)';

END IF;

INSERT INTO empauditlog VALUES (SYSDATE, USER,

v_action);

END;

/

Let’s trigger it…
INSERT INTO emp VALUES (9001,'SMITH',50);

INSERT INTO emp VALUES (9002,'JONES',50);

UPDATE emp

SET ename = 'SMITH BROWN'

WHERE empno=9001;

DELETE FROM emp WHERE empno IN (9001, 9002);

SELECT TO_CHAR(AUDIT_DATE,'DD-MON-YY HH24:MI:SS') AS "AUDIT DATE",

audit_user, audit_desc

FROM empauditlog

ORDER BY 1 ASC;

AUDIT DATE AUDIT_USER AUDIT_DESC

------------------ -------------------- --------------------

31-OCT-06 11:11:30 THOMO Added employee(s)

31-OCT-06 11:11:30 THOMO Deleted employee(s)

31-OCT-06 11:11:30 THOMO Updated employee(s)

31-OCT-06 11:11:30 THOMO Added employee(s)

• Benefits of Triggers

– Generating some derived column values

automatically

– Enforcing referential integrity

– Event logging and storing information on table access

– Auditing

– Synchronous replication of tables

– Imposing security authorizations

– Preventing invalid transactions

Trigger

▪ Specifying General Constraints as Assertions

▪ Declarative assertions, using the CREATE ASSERTION statement of the
DDL.

▪ Each assertion is given a constraint name and is specified via a condition
similar to the WHERE clause of an SQL query

▪ For example, to specify the constraint that the salary of an employee
must not be greater than the salary of the manager of the department
that the employee works for in SQL, write the following assertion:

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS

(SELECT *

FROM EMPLOYEE E, EMPLOYEE M,

DEPARTMENT D

WHERE E.Salary>M.Salary

AND E.Dno=D.Dnumber

AND D.Mgr_ssn=M.Ssn));

▪ If the result of the query is not empty, the assertion is violated.
87

▪DCL languages are used to control the user access to the
database, tables, views, procedures, functions and packages.

▪ It gives different levels of access to the objects in the
database.

▪Privileges and Roles:

▪Permits only certain users to access, process or alter data.

▪Applying varying limitations on user accounts/actions.

▪Privilege:

▪ System: for performing admin task. It can create tablespace, user,
drop tablespace etc. It should be restricted.

▪Object: Managing of privileges for different database objects.
Select, update, execute etc.

All privileges are granted and revoked by GRANT and REVOKE
Commands. 88

▪Roles:
▪ Created by users (DBA) to group together privileges or other roles.

▪ Used for quick and easy grant permissions to users.

▪ Command:

Create role Manager identified by manager123;

89

GRANT Command:

▪GRANT provides the privileges to the users on the database
objects.

▪The privileges could be select, delete, update and insert on the
tables and views.

▪On the procedures, functions and packages it gives select and
execute privileges.

▪We can either give all the privileges or any one or more privileges
to the objects.

The syntax of GRANT is as below:

GRANT privilege_name ON object_name TO {user_name
|role|public}

[IDENTIFIED BY password] [WITH GRANT OPTION]

90

Where,

▪ Privilege_name is the level of access given to the users. Some of the
access rights are ALL, DELETE, UPDATE, INSERT, EXECUTE and SELECT.

▪Object_name is the name of a database object like TABLE, VIEW,
PROCEDURE, FUNCTION, PACKAGE and SEQUENCE.

▪User_name is the name of the user to whom an access is being
granted.

▪With Grant option: that user can grant permissions to some other
user

▪ Examples:

1. SELECT and INSERT grants are given to Mathew on STUDENT table.

GRANT SELECT, INSERT ON STUDENT TO Mathew;

2. grant gives the execution rights to Joseph on the stored procedure
sp_getStudentNames.

GRANT EXECUTE on sp_getStudentNames to Joseph;
91

▪Examples:

3. Grant create table right to user

GRANT CREATE TABLE TO Mathew;

4. grant all privileges to user

sysdba is a set of priviliges which has all the permissions in it. So if
we want to provide all the privileges to any user, we can simply grant
them the sysdba permission.

GRANT sysdba TO username

5. Grant permission to create any table

GRANT CREATE ANY TABLE TO username

6. Grant permission to drop any table

GRANT DROP ANY TABLE TO username 92

REVOKE Command:

REVOKE removes the privileges given on the database objects.

The syntax of REVOKE is as below:

REVOKE privilege_name ON object_name TO {user_name }

Examples:

1. Removes the INSERT grant from Mathew on STUDENT Table

REVOKE INSERT ON STUDENT FROM Mathew;

2. Removes the CREATE TABLE grant from Mathew

REVOKE CREATE TABLE FROM Mathew

(Note: Refer document for queries and o/p)

93

▪Authorization in SQL is achieved by Data
Control Language Commands (DCL) are

▪Refer upcoming slides to learn more
about authorization

94

©Silberschatz, Korth and Sudarshan4.95Database System Concepts - 6th Edition

Authorization

Forms of authorization on parts of the database:

Read - allows reading, but not modification of data.

Insert - allows insertion of new data, but not modification of existing

data.

Update - allows modification, but not deletion of data.

Delete - allows deletion of data.

Forms of authorization to modify the database schema

Index - allows creation and deletion of indices.

Resources - allows creation of new relations.

Alteration - allows addition or deletion of attributes in a relation.

Drop - allows deletion of relations.

95

©Silberschatz, Korth and Sudarshan4.96Database System Concepts - 6th Edition

Authorization Specification in SQL

The grant statement is used to confer authorization

grant <privilege list>

on <relation name or view name> to <user list>

<user list> is:

a user-id

public, which allows all valid users the privilege granted

A role (more on this later)

Granting a privilege on a view does not imply granting any

privileges on the underlying relations.

The grantor of the privilege must already hold the privilege on

the specified item (or be the database administrator).

96

©Silberschatz, Korth and Sudarshan4.97Database System Concepts - 6th Edition

Privileges in SQL

select: allows read access to relation,or the ability to query

using the view

Example: grant users U1, U2, and U3 select

authorization on the instructor relation:

grant select on instructor to U1, U2, U3

insert: the ability to insert tuples

update: the ability to update using the SQL update

statement

delete: the ability to delete tuples.

all privileges: used as a short form for all the allowable

privileges

97

©Silberschatz, Korth and Sudarshan4.98Database System Concepts - 6th Edition

Revoking Authorization in SQL

The revoke statement is used to revoke authorization.

revoke <privilege list>

on <relation name or view name> from <user list>

Example:

revoke select on branch from U1, U2, U3

<privilege-list> may be all to revoke all privileges the revokee

may hold.

If <revokee-list> includes public, all users lose the privilege

except those granted it explicitly.

If the same privilege was granted twice to the same user by

different grantees, the user may retain the privilege after the

revocation.

All privileges that depend on the privilege being revoked are

also revoked.

98

©Silberschatz, Korth and Sudarshan4.99Database System Concepts - 6th Edition

Roles

create role instructor;

grant instructor to Amit;

Privileges can be granted to roles:

grant select on takes to instructor;

Roles can be granted to users, as well as to other roles

create role teaching_assistant

grant teaching_assistant to instructor;

 Instructor inherits all privileges of teaching_assistant

Chain of roles

create role dean;

grant instructor to dean;

grant dean to Satoshi;

99

©Silberschatz, Korth and Sudarshan4.100Database System Concepts - 6th Edition

Authorization on Views

create view geo_instructor as

(select *

from instructor

where dept_name = ’Geology’);

grant select on geo_instructor to geo_staff

Suppose that a geo_staff member issues

select *

from geo_instructor;

What if

geo_staff does not have permissions on instructor?

creator of view did not have some permissions on

instructor?

100

©Silberschatz, Korth and Sudarshan4.101Database System Concepts - 6th Edition

Other Authorization Features

references privilege to create foreign key

grant reference (dept_name) on department to Mariano;

why is this required?

transfer of privileges

grant select on department to Amit with grant option;

revoke select on department from Amit, Satoshi cascade;

revoke select on department from Amit, Satoshi restrict;

101

©Silberschatz, Korth and Sudarshan4.102Database System Concepts - 6th Edition

Security in SQL

A DBMS system always has a separate system for security

which is responsible for protecting database against

accidental or intentional loss, destruction or misuse.

Security Levels:

Database level:- DBMS system should ensure that the

authorization restriction needs to be there on users.

Operating system Level:- Operating system should not

allow unauthorized users to enter in system.

Network Level:- Database is at some remote place and

it is accessed by users through the network so security

is required.

102

©Silberschatz, Korth and Sudarshan4.103Database System Concepts - 6th Edition

Security Mechanisms

Access Control(Authorization)

Which identifies valid users who may have any

access to the valid data in the Database and which

may restrict the operations that the user may

perform?

For Example The movie database might designate

two roles: “users” (query the data only) and

“designers”(add new data)user must be assigned to

a role to have the access privileges given to that

role.

Each applications is associated with a specified

role. Each role has a list of authorized users who

may execute/Design/administers the application.

103

©Silberschatz, Korth and Sudarshan4.104Database System Concepts - 6th Edition

Security Mechanisms

Cryptographic control/Data Encryption:

Encode data in a cryptic form(Coded)so that

although data is captured by unintentional user still

he can’t decode the data.

Used for sensitive data, usually when transmitted

over communications links but also may be used to

prevent by passing the system to gain access to the

data.

104

©Silberschatz, Korth and Sudarshan4.105Database System Concepts - 6th Edition

Security Mechanisms

Authenticate the User:

Which identify valid users who may have any

access to the data in the Database?

Restrict each user’s view of the data in the

database

This may be done with help of concept of views in

Relational databases.

Inference control:

Ensure that confidential information can’t be

retrieved even by deduction.

Prevent disclosure of data through statistical

summaries of confidential data.

105

©Silberschatz, Korth and Sudarshan4.106Database System Concepts - 6th Edition

Security Mechanisms

Flow control or Physical Protection:

Prevents the copying of information by unauthorized

person.

Computer systems must be physically secured

against any unauthorized entry.

Virus control:

At user level authorization should be done to avoid

intruder attacks through humans.

There should be mechanism for providing protection

against data virus.

106

©Silberschatz, Korth and Sudarshan4.107Database System Concepts - 6th Edition

Security Mechanisms

User defined control:

Define additional constraints or limitations on the

use of database.

These allow developers or programmers to

incorporate their own security procedures in

addition to above security mechanism.

107

©Silberschatz, Korth and Sudarshan4.108Database System Concepts - 6th Edition

References

Navathe

Korth

108

