Network Forensics

Collecting Network-based Evidence

Prof. Zaheed Shaikh

Department of Computer Engineering

Network Forensics

Network based Attacks, Prevention & Allied Tools

Surveillance

- to confirm suspicion,
- to accumulate evidence,
- to identify co-conspiritors.

Goals

- Examine suspicion of incident.
- Accumulate additional evidence.
- Verify scope of compromise.
- Identify additional parties involved.
- Determine a timeline.

Network Monitoring

- Based on intrusiveness we distinguish:
 - Event Monitoring
 - Looks for certain types of packets representing events.
 - Trap-and-Trace Monitoring
 - Non-content monitoring.
 - Date, Time, Protocol, Source, Destination
 - Full-Content Monitoring
 - Get complete packages.

Network Monitoring System

- Match technologies and capabilities to the situation.
 - Goals of network surveillance.
 - Ensure proper legal standing.
 - Acquire proper hardware and software.
 - Ensure the security of the platform.
 - Evaluate the network monitor.

Network Monitoring Goals

- Watch traffic to and from a specific host.
- Monitor traffic to and from a specific network.
- Monitor a specific person's actions.
- Verify intrusion attempts.
- Look for specific attack signatures.
- Focus on a specific protocol.

Network Monitoring Tools

- Match hardware power to the task.
 - T3 need 1GHz processor, 1GB RAM
 - Implement proper chain of custody for backup storage.
- Match software properties to the task.
 - OS
 - Remote access?
 - Silent Sniffer?
 - Capture files in portable format?
 - Technical skills needed for monitor.
 - Amount of data

- Develop a threat model before deploying Network Security Monitoring
 - Internal / External Attacker
 - Wireless / Wired / ...
- Develop Monitoring zoning
 - Demilitarized zone
 - Wireless zone
 - Intranet zones

- Wired monitoring
 - Hubs
 - SPAN ports
 - Taps
 - Inline devices

- Hubs
 - Broadcasts incoming data on all interfaces.
 - Be careful about NIC capacity (10/100/1000 Mb/sec)
 - Be careful about hub quality
- Are inexpensive, but can introduce collisions on the links where the hub sits.

- Switched Port Analyzer (SPAN)
 - A.k.a. Port mirroring, Port monitoring.
 - SPAN port located on enterprise class switches.
 - Copy traffic between certain ports to SPAN port.
 - Configurable
- Easy access to traffic.
- Can make mistakes with configuration.
- Under heavy load, SPAN port might not get all traffic.
- SPAN only allows monitoring of a single switch.

- Test Access Port (TAP)
 - Networking device specifically designed for monitoring applications.
 - Typically four ports:
 - Router
 - Firewall
 - Monitor traffic on remaining ports.
 - One port sees incoming, the other outgoing traffic.
- Moderately high costs.

- Specialized inline devices:
 - Server or hardware device
 - Filtering bridges
 - E.g. server with OpenBSD and two NICs

OS for Sniffing

- Requirements:
 - Robust implementation of TCP/IP.
 - SSH for remote access.
 - Simple to disable services.
 - Simple to run local firewall.

Remote Access

- Network connection.
 - Network adapter.
 - VLAN
 - SSH
 - Firewall restricts IP addresses.
- Modem /"Out of Band" communications
 - User ID / password
 - Calls from specific phone numbers.

Silent Sniffing

- Sniffing can be detected:
 - Test for cards in promiscuous mode.
 - Sniffers providing name-lookup make DNS queries.
 - Sniffing machines have a higher response rate if the network is flooded.
 - Incorrect implemented TCP/IP stacks react to packets with correct IP address but wrong ethernet address.
- Physically disable traffic from the card.

Data File Formats

- Captured traffic goes into a data file.
- Capture files have different formats.
- Proprietary formats can lock you in.
- We will use windump and ethereal.
 - Free
 - Work well.
 - Runs on most platforms.

Deploying the Network Monitor

- Physical Security
 - Physical Access => Logical Access.
 - Chain of Custody: Capture files need to be authenticated.

Evaluating the Monitor

- Check Load.
- Check File System.

Trap-And-Trace

- Monitors only IP header and TCP header, but no content.
- Legal Issues:
 - Without user supplied data, less privacy violation for corporate users.
 - Without user supplied data, less need for a warrant.
- Tcpdump to screen protects private data.

- Sniffers can capture complete packages.
- Use a filter to block out noise.
- Protect capture files to maintain chain of custody. (file naming, scripting, md5)

Network-Based Logs

Most network traffic leaves an audit trail.

- Routers, firewalls, servers, ... maintain logs
- DHCP log IP leases
- Firewalls offer logging.
- IDS can capture part of an attack.
- Host-based sensors detect alteration of libraries
- Login attempts are logged.