
File System & its Forensic

Analysis

Prof. Zaheed Shaikh

Objectives

 Investigative Process
 Analysis Framework

 File Systems
 FAT

 NTFS

 EXT3

Investigative process

Investigative process

Physical Media
Analysis

Hard Disk Sectors of Data

Volume Analysis Volume

File System
Analysis

File

Application
Analysis

Analysis Framework

 Brian Carrier, File System Forensic Analysis

 Data Categories provide a basic reference model
 Good for comparing different file system types

 Also allows us to understand how to search using various tool

types

Categories

 File System Category

 Content Category

 Metadata Category

 File Name Category

 Application Category

Layout and Size
Information

Quota Data

File System Category Application Category

File1.txt

File Name Category

File2.txt

Times and Addresses

Metadata Category

Times and Addresses

Content Data #1

Content Category

Content Data #2

Content Data #1

Analysis by Category

 Categories are important as they allow us to filter and search

for files

 For example, if we want to search for all images

 GIF, JPEG

 Search for all files ending in .gif or .jpg, OR their file-

header

File System Category

 All file systems have a general structure

 Informs of where to find data structures
 Think of this as a map

 File system data resides on the first few sectors of the

disk

 If corrupted, rebuilding by hand may need to occur

 Small amounts of data hiding can occur due to the sparse

usage of the pre-allocated data structures

Disk and File System Layout

Content Category

 Actual content of the file

 Contains the majority of the actual data

 Usually organised into standard-sized containers
 Clusters

 Data Unit

 Allocation Strategy
 First Available

 Next Available

 Best Fit

Analysis Techniques

• Data unit viewing

• viewing content of the logical file system address using

hex editor
• dcat

• Logical file system-level searching

• searches each data unit for know value

• Data unit Allocation Status

• bitmap – data structure of allocated data units (marked

as “1”) and unallocated data units (marked as “0”)

Metadata Category

 Where the descriptive data resides
 Last access time

 Data units allocated to the file

 Provides pointers to the address of the Logical

File Address

 MAC times
 Modification, Access, Change

1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3

0

Logical
Volume
Address

Logical File System Address

13 14

4

0 1

15 16

5

0 1 2

File1.jpg Index.html

Logical File Address

Allocated

Unallocated

File Addressing

Analysis Techniques

• Metadata Lookup
• istat – shows values from the metadata data

structure

• Logical file viewing
• icat - shows the content data for a given

metadata structure

-s option gives slack space

-r attempts to recover deleted files

Linking Data Units to Files

 ifind allows you to discover the rest of the data units

allocated to a file

 E.g. if we find something interesting in data unit 3, and want

to look at the rest of the file

File Searching

 Logical File Search
 Looks at the file-address level, takes into account fragmentation

 Logical File Address allocated units only

1 2 3 4 5 6 7 8 9 10 110

Where is the term
‘forensics’?

File System
Address

Metadata Entry 1 Metadata Entry 2

2 3 4 6

foren sics

Slack Space

 Disks are block-based

 Example – File1.txt
 700 byte file

 Needs to allocate full data unit (2,048 bytes)

 The remaining 1,348 would be slack

 Two interesting areas:
 Between end of file and end of sector

 Allocated Data Unit Sectors that contain no file content

Data Unit 4910

Sector 1 Sector 2 Sector 3 Sector 4

File1.txt

End of File
End of Data Unit

Slack Space
End of Sector
Slack Space

Unallocated Metadata

 File names may be deleted, but metadata may still exist

 Examine the metadata as this may contain evidence

 The tool ils will list unallocated structures

Metadata Searching

 Allows time-based evaluation of activities

 Timelining events

 MAC
 Modified

 Access

 Change

 Also owner ID and file permissions

 mactime tool in CAINE

File Name Category

 Includes names of files

 Allows a user to find a file by name, instead of its

metadata entry

 When recovering files based on file names
 We are still reliant on the metadata information

 File names and metadata can get out of sync

File Name Analysis Techniques

 File Listings – locate root directory and obtain list of

files and corresponding metadata addresses

 File Name Searching - file extension filtering and

searching

 ffind - resolve metadata to file names

 When evidence in a data unit is found, search for the metadata unit

allocated, search for file name

Application Category

 Non-Essential Data – file system jurnals

 Can be application specific data

 Search

 grep

 Data carving

 File type sorting

 Use file command to determine file types based on file signatures

File Systems

File Systems

 An operating system requires long term storage and

retrieval

 A mechanism for storing files in hierarchy of files and

directories
 For example, a patient record filing system

File Systems
 Data

 Files
 Directories

 Metadata
 Time stamps (modify, access, create/change, delete)
 Owner
 Security properties

 Structures
 Superblock/Master File Table/File Access Table
 inodes/clusters
 data

File Systems

 More sophisticated data recovery requires deep knowledge
of file system internals

 Structures that manage file system metadata

 Disk layout

 File deletion issues

 Many important file systems
 DOS / Windows: FAT, FAT16, FAT32, NTFS
 Unix: ext2, ext3, Reiser, JFS
 Mac: MFS, HFS, HFS+

File Systems: FAT
 FAT12, FAT16, FAT32

 different size of addressable cluseter

 Common format for floppy disks (remember those?)

 Limited time/date information for FAT files
 Last write date/time is always available

 Creation date/time is optional and may not be available

 Last access DATE ONLY is optional and may not be available

 Short file names (8.3) on FAT12 and FAT16

 No security features

 Long names for FAT32

FAT: Short Filename Storage

“foo.bar” -> “FOO BAR”

“FOO.BAR” -> “FOO BAR”

“Foo.Bar” -> “FOO BAR”

“foo” -> “FOO ”

“foo.” -> “FOO ”

“PICKLE.A” -> “PICKLE A ”

“prettybg.big” -> “PRETTYBGBIG”

 Note case is not significant

 “.” between primary filename and extension is implied (not
actually stored)

 Further, everything is space-padded

FAT: More Dir Entry Details
 Date format:

 Bits 0–4: Day of month, valid value range 1-31 inclusive.

 Bits 5–8: Month of year, 1 = January, valid value range 1–12 inclusive.

 Bits 9–15: Count of years from 1980, valid value range 0–127 inclusive
(1980–2107).

 Time Format:
 A FAT directory entry time stamp is a 16-bit field that has a granularity of 2

seconds

 Bits 0–4: 2-second count, valid value range 0–29 inclusive (0 – 58 seconds).

 Bits 5–10: Minutes, valid value range 0–59 inclusive

 Bits 11–15: Hours, valid value range 0–23 inclusive

FAT: Long Filenames
 Summary: a kludge to add support without changing short-name

handling

 Up to 255 characters in pathname component

 Total pathname no longer than 260

 More supported characters

 Leading/trailing spaces ignored

 Internal spaces allowed

 Leading/embedded “.” allowed

 Trailing “.” are ignored

 Stored case-sensitive

 Processed case-insensitive (for compatibility)

 File created with short name (uses “~1”, “~2”, etc. suffix)

FAT Layout

FAT File System Categories

File System Content Metadata File Name Application

FAT Boot Sector,

FSINFO

Clusters, FAT Directory

Entries, FAT

Directory

Entries

N/A

FAT32 Directory Structure

• An ordinary cluster chain

• Directory entry

• 32 bytes for both files and

directories

• For deleted entries, first byte is

set to 0xE5

• First two entries in

subdirectories are . and ..

• Uses more than one entry to

implement long filenames

file1.dat 4,000 bytes Cluster34

Cluster 34

35

35

EOF

Directory Entry Structures Clusters
FAT

Structure

Boot Sector

201

EOF

dir1 90

File1.txt 200

Cluster with the
new content
that was just

created in the
directory

This is more
data that

couldn’t fit into
the first cluster

Data Area

Root Directory Cluster 90 Cluster 200

FAT

Creating a File

Boot Sector

0

0

dir1 90

_ile1.txt 200

Cluster with the
new content
that was just

created in the
directory

This is more
data that

couldn’t fit into
the first cluster

Data Area

Root Directory Cluster 90 Cluster 200

FAT

File Deletion

FAT File Deletion

 First letter of the file is overwritten with 0xE5

 FAT pointers to allocation areas set to zero

 Indicated that they are ready for re-use

Forensic Analysis - Examples

fsstat - display general details of a file system

FILE SYSTEM INFORMATION

--

File System Type: FAT16

OEM Name: MSDOS5.0

Volume ID: 0x3abd23ec

Volume Label (Boot Sector): NO NAME

Volume Label (Root Directory):

File System Type Label: FAT16

Sectors before file system: 32

File System Layout (in sectors)

Total Range: 0 - 2003935

* Reserved: 0 - 5

** Boot Sector: 0

* FAT 0: 6 - 250

* FAT 1: 251 - 495

* Data Area: 496 - 2003935

** Root Directory: 496 - 527

** Cluster Area: 528 - 2003919

** Non-clustered: 2003920 - 2003935

fsstat (continue)

METADATA INFORMATION

--

Range: 2 - 32055046

Root Directory: 2

CONTENT INFORMATION

--

Sector Size: 512

Cluster Size: 16384

Total Cluster Range: 2 - 62607

FAT CONTENTS (in sectors)

--

528-559 (32) -> EOF

560-591 (32) -> EOF

592-623 (32) -> EOF

624-687 (64) -> EOF

688-719 (32) -> EOF

720-751 (32) -> EOF

fls - list file and directory names in a disk image

d/d 4: Project_2010

d/d 6: Report2010

d/d 8: Other

v/v 32055043: $MBR

v/v 32055044: $FAT1

v/v 32055045: $FAT2

d/d 32055046: $OrphanFiles

istat - Display details of a meta-data structure (i.e. inode)

Directory Entry: 6

Allocated

File Attributes: Directory

Size: 16384

Name: REPORT~1

Directory Entry Times:

Written: Thu Oct 20 06:36:44 2011

Accessed: Thu Oct 20 00:00:00 2011

Created: Thu Oct 20 06:36:42 2011

Sectors:

1488 1489 1490 1491 1492 1493 1494 1495

1496 1497 1498 1499 1500 1501 1502 1503

1504 1505 1506 1507 1508 1509 1510 1511

1512 1513 1514 1515 1516 1517 1518 1519

icat - Output the contents of a file based on its inode number

0000000: 2e20 2020 2020 2020 2020 2010 0025 9534 . ..%.4

0000010: 543f 543f 0000 9634 543f 2000 0000 0000 T?T?...4T?

0000020: 2e2e 2020 2020 2020 2020 2010 0025 9534 %.4

0000030: 543f 543f 0000 9634 543f 0000 0000 0000 T?T?...4T?......

0000040: 422e 0064 006f 0063 0078 000f 0014 0000 B..d.o.c.x......

0000050: ffff ffff ffff ffff ffff 0000 ffff ffff

0000060: 0143 0075 0073 0074 006f 000f 0014 6d00 .C.u.s.t.o....m.

0000070: 6500 7200 4400 6f00 6300 0000 5f00 3100 e.r.D.o.c..._.1.

0000080: 4355 5354 4f4d 7e31 444f 4320 0033 9534 CUSTOM~1DOC .3.4

0000090: 543f 543f 0000 2231 543f 2100 5731 0000 T?T?.."1T?!.W1..

00000a0: 4230 002e 0064 006f 0063 000f 00f4 7800 B0...d.o.c....x.

00000b0: 0000 ffff ffff ffff ffff 0000 ffff ffff

00000c0: 0143 0075 0073 0074 006f 000f 00f4 6d00 .C.u.s.t.o....m.

00000d0: 6500 7200 4400 6f00 6300 0000 5f00 3100 e.r.D.o.c..._.1.

00000e0: 4355 5354 4f4d 7e32 444f 4320 0038 9534 CUSTOM~2DOC .8.4

00000f0: 543f 543f 0000 8533 543f 2200 2433 0000 T?T?...3T?".$3..

0000100: 4231 002e 0064 006f 0063 000f 00d4 7800 B1...d.o.c....x.

0000110: 0000 ffff ffff ffff ffff 0000 ffff ffff

0000120: 0143 0075 0073 0074 006f 000f 00d4 6d00 .C.u.s.t.o....m.

0000130: 6500 7200 4400 6f00 6300 0000 5f00 3100 e.r.D.o.c..._.1.

0000140: 4355 5354 4f4d 7e33 444f 4320 0047 9534 CUSTOM~3DOC .G.4

0000150: 543f 543f 0000 8133 543f 2300 4346 0000 T?T?...3T?#.CF..

FAT Allocation Table

0000000: f8ff ffff ffff ffff ffff 0600 ffff ffff

0000010: ffff ffff ffff ffff ffff ffff ffff ffff

0000020: ffff ffff ffff ffff ffff ffff ffff ffff

0000030: 1900 ffff ffff ffff ffff ffff ffff ffff

0000040: ffff ffff ffff 2400 ffff ffff ffff ffff $.........

0000050: ffff ffff ffff ffff ffff ffff ffff ffff

0000060: ffff ffff ffff ffff ffff ffff 3700 ffff 7...

0000070: ffff ffff ffff ffff ffff ffff ffff 4000 @.

0000080: 4100 ffff 4300 4400 4500 4600 4700 4800 A...C.D.E.F.G.H.

0000090: 4900 ffff 4b00 4c00 4d00 ffff 4f00 ffff I...K.L.M...O...

00000a0: 5100 5200 5300 ffff 0000 0000 0000 0000 Q.R.S...........

00000b0: 0000 0000 0000 0000 0000 0000 0000 0000

00000c0: 0000 0000 0000 0000 0000 0000 0000 0000

00000d0: 0000 0000 0000 0000 0000 0000 0000 0000

00000e0: 0000 0000 0000 0000 0000 0000 0000 0000

00000f0: 0000 0000 0000 0000 0000 0000 0000 0000

0000100: 0000 0000 0000 0000 0000 0000 0000 0000

Media type
Partition

state
Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

