
5/2/2022

String Matching Algorithms

5/2/2022

String Matching Algorithms

• Naïve or Brute Force Search

• Finite Automata Search

• Knuth-Morris-Pratt Algorithm

• Longest Common subsequence

5/2/2022

Introduction

o String matching or searching algorithms try to find places where
one or several strings (also called patterns) are found within a
larger string (searched text):

o Text:

... try to find places where one or several strings (also...

Pattern: ace

... try to find places where one or several strings (also...

5/2/2022

APPLICATION

• Finding all occurrences of a pattern in a text is a

problem that arises frequently in text-editing
programs.

• To search for particular patterns in DNA

sequences.

5/2/2022

Naïve string matching Algorithm

5/2/2022

Naïve string matching Algorithm

• String matching problem: Given a text string t and a
pattern string p, find all occurrences of p in t

• A naive algorithm for this problem simply

considers all possible starting positions i of a matching
string within t, and compares p to the substring of t
beginning at each such position I

5/2/2022

Naive algorithm for Pattern Searching

(Brute-Force Algorithm)

• The brute force algorithm consists in checking, at all
positions in the text between 0 and n-m, whether an
occurrence of the pattern starts there or not. Then, after
each attempt, it shifts the pattern by exactly one position
to the right.

• Example (1)

Input: txt[] = "AABAACAADAABAABA"

pat[] = "AABA"

Output: Pattern found at index 0

Pattern found at index 9

Pattern found at index 12

5/2/2022

Example (2)

5/2/2022

Example (2)

5/2/2022

Example (2)

5/2/2022

Example (2)

5/2/2022

Example (2)

5/2/2022

Example (2)

5/2/2022

Example (2)

5/2/2022

Example (2)

5/2/2022

Main Features

• no preprocessing phase;

• always shifts the window by exactly 1 position to the right;

• comparisons can be done in any order;

• searching phase in O(mn) time complexity;

5/2/2022

Algorithm

NAIVE-STRING-MATCHER (T, P)

1. n ← length [T]

2. m ← length [P]

3. for s ← 0 to n -m

4. do if P [1.....m] = T [s + 1....s + m]

5. then print "Pattern occurs with shift" s

The naive algorithm finds all valid shifts using a loop that
checks the condition P[1….m]=T[s+1…. s+m] for each of the
n- m+1 possible values of s.

(P=pattern , T=text/string , s=shift)

5/2/2022

• What is the best case?

• The best case occurs when the first character of the pattern
is not present in text at all.

txt[] = "AABCCAADDEE";

pat[] = "FAA";

• The number of comparisons in best case is O(n).

5/2/2022

• What is the worst case ?
The worst case of Naive Pattern Searching occurs in following
scenarios.

1) When all characters of the text and pattern are same.

txt[] = "AAAAAAAAAAAAAAAAAA";

pat[] = "AAAAA";

2) Worst case also occurs when only the last character is different.

txt[] = "AAAAAAAAAAAAAAAAAB";

pat[] = "AAAAB";

5/2/2022

String Matching with Finite Automata

5/2/2022

• Finite automata:

•A finite state machine (FSM, also known as a deterministic

finite automaton or DFA) is a way of representing a language
(meaning a set of strings; we're interested in representing the
set strings matching some pattern).

• A finite automaton is a quintuple (Q, Σ, δ, q0 , F):

• Q: the finite set of states

• Σ: the finite input alphabet

• δ: the “transition function” from QxΣ to Q

• q0 ∈ Q: the start state

• F ⊂ Q: the set of final (accepting) states

5/2/2022

• The finite automaton begins in state q0 and read the characters
of its input string one at a time. If the automaton is in state q
and reads input character a, it moves from state q to state
d(q,a).

• • As long as M is in a state belonging to A, M is said to have
accepted the string read so far, an input that is not accepted is
said to be rejected.

5/2/2022

• FINITE AUTOMATA

•Finite Automata(FA) is the simplest machine to recognize patterns.

FA is characterized into two types:

1) Deterministic Finite Automata (DFA)

2) Nondeterministic Finite Automata(NFA)

• A finite automaton accepts strings in a specific language. It begins in state q0

and reads characters one at a time from the input string. It makes transitions
(φ) based on these characters, and if when it reaches the end of the tape it is
in one of the accept states, that string is accepted by the

• language.

• It has finite number of states

• Digraphs used to represent DFA is known as state diagram.

• It is useful for doing lexical analysis and pattern matching.

•There can be many possible DFAs for a pattern. A DFA with minimum
number of states is generally preferred.

5/2/2022

EXAMPLE

• Let a deterministic finite automaton be

• Q = {a, b, c}, Σ = {0, 1}, q0 = {a}, F = {c}, and

Transition function δ

State Diagram

5/2/2022

Example (2)
• The string-matching automaton is very efficient: it examines each

character in the text exactly once and reports all the valid shifts in
O(n) time.

5/2/2022

Example (3)

5/2/2022

• A state-transition diagram (previous slide) for the string-
matching automaton that accepts all strings ending in the
string ababaca.

• State 0 is the start state, and state 7 (shown blackened) is the
only accepting state. A directed edge from state i to state j
labeled a represents (i,a) = j.

• The right-going edges forming the "spine" of the automaton,
shown heavy in the figure, correspond to successful matches
between pattern and input characters.

• The left-going edges correspond to failing matches. Some
edges corresponding to failing matches are not shown; by
convention, if a state i has no outgoing edge labeled a for
some a , then (i,a) = 0. (b) The corresponding transition
function , and the pattern string P = ababaca.

• The entries corresponding to successful matches between
pattern and input characters are shown shaded. (c) The
operation of the automaton on the text T = abababacaba.
Under each text character T[i] is given the state ø(Ti) the
automaton is in after processing the prefix Ti. One
occurrence of the pattern is found, ending in position 9.

5/2/2022

The basic idea is to build a automaton in which

• Each character in the pattern has a state.

• Each match sends the automaton into a new state.

• If all the characters in the pattern has been

matched, the automaton enters the accepting state.

•Otherwise, the automaton will return to a suitable

state according to the current state and the input

character such that this returned state reflects the maximum
advantage we can take from the previous matching.

•The matching takes O(n) time since each character

is examined once.

BASIC IDEA

5/2/2022

BASIC IDEA:

• To search a pattern P = p1p2...pm in a text T =t1t2...tn. Number

of states in FA will be M+1where M is length of the pattern.

• State 0 will be the starting state, and state m will be the only
accepting state.

• Get the next state from the current state for every possible
character.

• We can get the next state by getting the length of the longest
prefix of the given pattern such that the prefix is also suffix . The
transition function chooses the next state to maintain the
invariant: φ(Ti) = σ(Ti) After scanning in i characters, the state
number is the longest prefix of P that is also a suffix of Ti.

5/2/2022

The Suffix Function

• In order to properly search for the string, the program must
define a suffix function (σ) which checks to see how much
of what it is reading matches the search string at any given
moment.

• A suffix function w.r.t. pattern P[1..m], s , is a mapping
from S * to {0,1,...,m} such that s(x) is the length of the

longest prefix of P that is a suffix of x:

• Let x = abcab.

• The prefixes of x are a, ab, abc, abca.

• The suffixes of x are b, ab, cab, bcab.

• The σ of x is ab ie 2

5/2/2022

The construction of the stringmatching automaton is based on

the given pattern. The time of this construction may be

O(m3 |S|)

5/2/2022

FINITE-AUTOMATON-MATCHER(T,d,m)

length[T] 1. n

2. q 0

3. for i

4. do q

1 to n

d(q, T[i])

5. if q=m then

6. print `Pattern occurs with shift' i-m

5/2/2022

Computing the transition function.

COMPUTE-TRANSITION-FUNCTION (P, ∑)

m ← length [P]

2. for q ← 0 to m // cycles through all the states ie pattern

3. do for each character a ∈ ∑* // cycles through the input alphabets

4.do k ← min (m+1, q+2) //set δ(q,a) to be the largest k

Pqa.

5. repeat k←k-1

6. Until

7. Pk ⊃ Pqa

8. δ(q,a)←k

9. Return δ

5/2/2022

Running Time Complexity

• The time complexity of the computing Transition

• Function is O(m^3*NO_OF_CHARS) where m is length of the
pattern and NO_OF_CHARS is size of alphabet (total number
of possible characters in pattern and text). The implementation
tries all possible prefixes starting from the longest possible that
can be a suffix of “pat[0..k-1]x”. O(m3 |Σ|)

• Outer loop: m |Σ|

• Inner loop: runs at most m+1

• Pk ⊃ Pqa: requires up to m comparisons

5/2/2022

Example: Suppose a finite automaton which accepts
even number of a's where ∑ = {a, b, c}

Solution:

q0 is the initial state.

5/2/2022

5/2/2022

The Knuth-Morris-Pratt
(KMP)Algorithm

5/2/2022

The Knuth-Morris-Pratt (KMP)Algorithm

• Knuth-Morris and Pratt introduce a linear time algorithm for
the string matching problem.

• A matching time of O (n) is achieved by avoiding comparison
with an element of 'S' that have previously been involved in
comparison with some element of the pattern 'p' to be matched.
i.e., backtracking on the string 'S' never occurs

5/2/2022

Components of KMP Algorithm:

1.The Prefix Function (Π): The Prefix Function, Π for a
pattern encapsulates knowledge about how the pattern matches
against the shift of itself. This information can be used to avoid a
useless shift of the pattern 'p.' In other words, this enables
avoiding backtracking of the string 'S.„

2.The KMP Matcher: With string 'S,' pattern 'p' and prefix
function 'Π' as inputs, find the occurrence of 'p' in 'S' and returns
the number of shifts of 'p' after which occurrences are found.

5/2/2022

•Following pseudo code compute the prefix function, Π:

COMPUTE- PREFIX- FUNCTION (P)

//'p' pattern to be matched 1. m ←length [P]

2. Π [1] ← 0

3. k ← 0

4. for q ← 2 to m

5. do while k > 0 and P [k + 1] ≠ P [q]

6. do k ← Π [k]

7. If P [k + 1] = P [q]

8. then k← k + 1

9. Π [q] ← k

10. Return Π

PREFIX- FUNCTION (P)

5/2/2022

• Running Time Analysis:

• In the above pseudo code for calculating the prefix function,

the for loop from step 4 to step 10 runs 'm' times.

• Step1 to Step3 take constant time. Hence the running time of
computing prefix function is O (m).

5/2/2022

• Example: Compute Π for the pattern 'p' below:

• Solution

• Initially: m = length [p] = 7

•

•

Π [1] = 0

k = 0

5/2/2022

5/2/2022

5/2/2022

• After iteration 6 times, the prefix function
computation is complete:

5/2/2022

The KMP Matcher:
• The KMP Matcher with the pattern 'p,' the string 'S' and prefix function 'Π'

as input, finds a match of p in S. Following pseudo code compute the
matching component of KMP algorithm:

KMP-MATCHER (T, P)

1. n ← length [T]

2. m ← length [P]

3. Π← COMPUTE-PREFIX-FUNCTION (P)

4. q ← 0

5. for i ← 1 to n

// numbers of characters matched

// scan S from left to right

6. do while q > 0 and P [q + 1] ≠ T [i]

// next character does not match 7. do q ← Π [q]

8. If P [q + 1] = T [i]

9. then q ← q + 1

10. If q = m

// next character matches

// is all of p matched?

11. then print "Pattern occurs with shift" i - m

12. q ← Π [q] // look for the next match

5/2/2022

Running Time Analysis:

• The for loop beginning in step 5 runs 'n' times, i.e., as long
as the length of the string 'S.' Since step 1 to step 4 take
constant times, the running time is dominated by this for the
loop. Thus running time of the matching function is O (n).

• Example: Given a string 'T' and pattern 'P' as follows:

5/2/2022

• Example (2)

• Let us execute the KMP Algorithm to find whether
'P' occurs in 'T.'

• For 'p' the prefix function, ? was computed
previously and is as follows:

Solution:

Initially: n = size of T = 15

m = size of P = 7

5/2/2022

5/2/2022

5/2/2022

5/2/2022

5/2/2022

5/2/2022

Pattern 'P' has been found to complexity occur in a

string 'T.' The total number of shifts that took place

for the match to be found is i-m = 13 - 7 = 6 shifts.

5/2/2022

Longest Common Subsequence
Algorithm

5/2/2022

Longest Common Subsequence
Algorithm

• PROBLEM DEFINITION:A subsequence of a string S, is a
set of characters that appear in left –to right order, but not
necessarily consecutively.

• Example

• ACTTGCG

• • ACT , ATTC , T , ACTTGC are all subsequences.

• • TTA is not a subequence

• • There are 2n subsequences of string S of length n.

5/2/2022

What is LCS?

• A common subsequence of two strings is a subsequence
that appears in both strings. A longest common
subsequence is a common subsequence of maximal length.

Example

S1 = AAACCGTGAGTTATTCGTTCTAGAA

S2 = CACCCCTAAGGTACCTTTGGTTC

• LCS is ACCTAGTACTTTG

• • Enumerate all sub-sequences of S1, and check if they are

sub-sequences of S2. So the complexity will be O(2nm)

5/2/2022

LCS Recursive equation

Theorem:

Let X =< x1, x2, . . . , xm > and Y =< y1, y2, . . . , yn > be
sequences,and let Z =< z1, z2, . . . , zk > be any LCS of X and Y .

1.If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and

Yn−1.

2. If xm ≠ yn, then zk ≠ xm implies that Z is an LCS of Xm−1 and Yn .

3. If xm ≠ yn, then zk ≠ yn implies that Z is an LCS of X and Yn−1.

•So recursive solution for LCS IS

0 if i = 0 or j = 0

c[i, j] = c[i − 1, j − 1] + 1 if i, j > 0 and xi = yj ,

max(c[i, j − 1], c[i − 1, j]) if i, j > 0 and xi ≠yj

5/2/2022

Algorithm
LCS − Length(X, Y)

m= length[X]

n= length[Y]

for i =1 to m

c[i, 0] = 0

for j =0 to n

c[0, j] = 0

for i = 1 to m

for j = 1 to n

if xi = yj

c[i, j] = c[i − 1, j − 1] + 1

B[i, j] := „D‟ or ↖

else if c[i − 1, j] c[i, j − 1]

c[i, j] =c[i − 1, j]

B[i, j] := „U‟ or ↑

else

c[i, j] =c[i, j − 1]

B[i, j] := „L‟ or ←

return c and B

5/2/2022

Example:

• We have two strings X = ABCBDAB and Y =
BDCABA to find the longest common
subsequence. Following the algorithm LCS Length-

• Table-Formulation

5/2/2022

Time complexity analysis

•Each call to subproblem takes constant time. We call
it once from the main routine, and at most twice every
time we fill in an entry of array L. There are (m)(n)
entries, so the total number of calls is at most 2(m)(n)
and the time is O (mn).

•As usual, this is a worst case analysis. The time
might sometimes better, if not all array entries get
filled out. For instance if the two strings match
exactly, we'll only fill in diagonal entries and the
algorithm will be fast.

