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String Matching Algorithms 

• Naïve or Brute Force Search 

• Finite Automata Search 

• Knuth-Morris-Pratt Algorithm 

• Longest Common subsequence 
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Introduction 

o String matching or searching algorithms try to find places where  
one or several strings (also called patterns) are found within a  
larger string (searched text): 

o Text: 

... try to find places where one or several strings (also...  

Pattern: ace 

... try to find places where one or several strings (also... 
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APPLICATION 

 
• Finding all occurrences of a pattern in a text is a  

problem that arises frequently in text-editing  
programs. 

• To search for particular patterns in DNA  

sequences. 
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Naïve string matching Algorithm 
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Naïve string matching Algorithm 

• String matching problem: Given a text string t and a  
pattern string p, find all occurrences of p in t 

 
•  A naive algorithm for this problem simply 

considers all possible starting positions i of a matching  
string within t, and compares p to the substring of t  
beginning at each such position I 
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Naive algorithm for Pattern Searching  

(Brute-Force Algorithm) 

• The brute force algorithm consists in checking, at all  
positions in the text between 0 and n-m, whether an  
occurrence of the pattern starts there or not. Then, after  
each attempt, it shifts the pattern by exactly one position  
to the right. 

 
• Example (1) 

Input: txt[] = "AABAACAADAABAABA"  

pat[] =  "AABA" 

Output: Pattern found at index 0  

Pattern found at index 9 

Pattern found at index 12 
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Example (2) 



5/2/2022 

Main Features 

• no preprocessing phase; 

• always shifts the window by exactly 1 position to the right; 

• comparisons can be done in any order; 

• searching phase in O(mn) time complexity; 
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Algorithm 

NAIVE-STRING-MATCHER (T, P) 

1. n ← length [T] 

2. m ← length [P] 

3. for s ← 0 to n -m 

4. do if P [1.....m] = T [s + 1....s + m] 

5. then print "Pattern occurs with shift" s 

 
The naive algorithm finds all valid shifts using a loop that  
checks the condition P[1….m]=T[s+1…. s+m] for each of the  
n- m+1 possible values of s. 

(P=pattern , T=text/string , s=shift) 
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• What is the best case? 

• The best case occurs when the first character of the pattern  
is not present in text at all. 

txt[] = "AABCCAADDEE";  

pat[] = "FAA"; 

 
• The number of comparisons in best case is O(n). 
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• What is the worst case ? 
The worst case of Naive Pattern Searching occurs in following  
scenarios. 

 
1) When all characters of the text and pattern are same. 

txt[] = "AAAAAAAAAAAAAAAAAA"; 

pat[] = "AAAAA"; 

 
2) Worst case also occurs when only the last character is different. 

txt[] = "AAAAAAAAAAAAAAAAAB";  

pat[] = "AAAAB"; 
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String Matching with Finite Automata 
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• Finite automata: 

 
•A finite state machine (FSM, also known as a deterministic  

finite automaton or DFA) is a way of representing a language 
(meaning a set of strings; we're interested in representing the 
set strings matching some pattern). 

 
• A finite automaton is a quintuple (Q, Σ, δ, q0 , F): 

• Q: the finite set of states 

• Σ: the finite input alphabet 

• δ: the “transition function” from QxΣ to Q 

• q0 ∈ Q: the start state 

• F ⊂  Q: the set of final (accepting) states 
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• The finite automaton begins in state q0 and read the characters  
of its input string one at a time. If the automaton is in state q  
and reads input character a, it moves from state q to state  
d(q,a). 

 

•  • As long as M is in a state belonging to A, M is said to have  
accepted the string read so far, an input that is not accepted is  
said to be rejected. 
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• FINITE AUTOMATA 

 
•Finite Automata(FA) is the simplest machine to recognize patterns.  

FA is characterized into two types: 

1) Deterministic Finite Automata (DFA) 

2) Nondeterministic Finite Automata(NFA) 

 
• A finite automaton accepts strings in a specific language. It begins in state q0 

and reads characters one at a time from the input string. It makes transitions 
(φ) based on these characters, and if when it reaches the end of the tape it is 
in one of the accept states, that string is accepted by the 

• language. 

 
• It has finite number of states 

• Digraphs used to represent DFA is known as state diagram. 

• It is useful for doing lexical analysis and pattern matching. 

•There can be many possible DFAs for a pattern. A DFA with minimum   
number of states is generally preferred. 
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EXAMPLE 

• Let a deterministic finite automaton be 

• Q = {a, b, c}, Σ = {0, 1}, q0 = {a}, F = {c}, and 

Transition function δ 

State Diagram 
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Example (2) 
•  The string-matching automaton is very efficient: it examines each  

character in the text exactly once and reports all the valid shifts in  
O(n) time. 
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Example (3) 
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• A state-transition diagram (previous slide) for the string- 
matching automaton that accepts all strings ending in the  
string ababaca. 

• State 0 is the start state, and state 7 (shown blackened) is the 
only accepting state. A directed edge from state i to state j  
labeled a represents (i,a) = j. 

• The right-going edges forming the "spine" of the automaton, 
shown heavy in the figure, correspond to successful matches  
between pattern and input characters. 

• The left-going edges correspond to failing matches. Some 
edges corresponding to failing matches are not shown; by 
convention, if a state i has no outgoing edge labeled a for 
some a , then (i,a) = 0. (b) The corresponding transition  
function , and the pattern string P = ababaca. 

• The entries corresponding to successful matches between 
pattern and input characters are shown shaded. (c) The 
operation of the automaton on the text T = abababacaba. 
Under each text character T[i] is given the state ø(Ti) the 
automaton is in after processing the prefix Ti. One  
occurrence of the pattern is found, ending in position 9. 
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The basic idea is to build a automaton in which 

• Each character in the pattern has a state. 

• Each match sends the automaton into a new state. 

• If all the characters in the pattern has been 

matched, the automaton enters the accepting state. 

•Otherwise, the automaton will return to a suitable  

state according to the current state and the input 

character such that this returned state reflects the maximum 
advantage we can take from the previous matching. 

•The matching takes O(n) time since each character  

is examined once. 

BASIC IDEA 
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BASIC IDEA: 

• To search a pattern P = p1p2...pm in a text T =t1t2...tn. Number 

of states in FA will be M+1where M is length of the pattern. 

• State 0 will be the starting state, and state m will be the only  
accepting state. 

• Get the next state from the current state for every possible 
character. 

• We can get the next state by getting the length of the longest  
prefix of the given pattern such that the prefix is also suffix . The  
transition function chooses the next state to maintain the  
invariant: φ(Ti) = σ(Ti) After scanning in i characters, the state  
number is the longest prefix of P that is also a suffix of Ti. 



5/2/2022 

The Suffix Function 

• In order to properly search for the string, the program must  
define a suffix function (σ) which checks to see how much  
of what it is reading matches the search string at any given  
moment. 

• A suffix function w.r.t. pattern P[1..m], s , is a mapping  
from S * to {0,1,...,m} such that s(x) is the length of the 

longest prefix of P that is a suffix of x: 

• Let x = abcab. 

• The prefixes of x are a, ab, abc, abca. 

• The suffixes of x are b, ab, cab, bcab. 

• The σ of x is ab ie 2 
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The construction of the stringmatching automaton is based on 

the given pattern. The time of this construction may be 

O(m3 |S|) 
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FINITE-AUTOMATON-MATCHER(T,d,m) 

length[T] 1. n 

2. q 0 

3. for i 

4. do q 

1 to n  

d(q, T[i]) 

5. if q=m then 

6. print `Pattern occurs with shift' i-m 
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Computing the transition function. 

COMPUTE-TRANSITION-FUNCTION (P, ∑) 

m ← length [P] 

2. for q ← 0 to m // cycles through all the states ie pattern 

3. do for each character a ∈ ∑* // cycles through the input alphabets 

4.do k ← min (m+1, q+2) //set δ(q,a) to be the largest k  

Pqa. 

5. repeat k←k-1 

6. Until 

7. Pk ⊃  Pqa 

8. δ(q,a)←k 

9. Return δ 



5/2/2022 

Running Time Complexity 

• The time complexity of the computing Transition 

• Function is O(m^3*NO_OF_CHARS) where m is length of the  
pattern and NO_OF_CHARS is size of alphabet (total number  
of possible characters in pattern and text). The implementation  
tries all possible prefixes starting from the longest possible that  
can be a suffix of “pat[0..k-1]x”. O(m3 |Σ|) 

• Outer loop: m |Σ| 

• Inner loop: runs at most m+1 

• Pk ⊃  Pqa: requires up to m comparisons 
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Example: Suppose a finite automaton which accepts  
even number of a's where ∑ = {a, b, c} 

Solution: 

 

q0 is the initial state. 
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The Knuth-Morris-Pratt  
(KMP)Algorithm 
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The Knuth-Morris-Pratt (KMP)Algorithm 

• Knuth-Morris and Pratt introduce a linear time algorithm for  
the string matching problem. 

• A matching time of O (n) is achieved by avoiding comparison  
with an element of 'S' that have previously been involved in  
comparison with some element of the pattern 'p' to be matched.  
i.e., backtracking on the string 'S' never occurs 
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Components of KMP Algorithm: 

1.The Prefix Function (Π): The Prefix Function, Π for a  
pattern encapsulates knowledge about how the pattern matches  
against the shift of itself. This information can be used to avoid a  
useless shift of the pattern 'p.' In other words, this enables  
avoiding backtracking of the string 'S.„ 

 

2.The KMP Matcher: With string 'S,' pattern 'p' and prefix  
function 'Π' as inputs, find the occurrence of 'p' in 'S' and returns  
the number of shifts of 'p' after which occurrences are found. 
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•Following pseudo code compute the prefix function, Π:  

COMPUTE- PREFIX- FUNCTION (P) 

//'p' pattern to be matched 1. m ←length [P] 

2. Π [1] ← 0 

3. k ← 0 

4. for q ← 2 to m 

5. do while k > 0 and P [k + 1] ≠ P [q] 

6. do k ← Π [k] 

7. If P [k + 1] = P [q] 

8. then k← k + 1 

9. Π [q] ← k 

10. Return Π 

PREFIX- FUNCTION (P) 
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• Running Time Analysis: 

 
• In the above pseudo code for calculating the prefix function, 

the for loop from step 4 to step 10 runs 'm' times. 

• Step1 to Step3 take constant time. Hence the running time of  
computing prefix function is O (m). 
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• Example: Compute Π for the pattern 'p' below: 

• Solution 

• Initially: m = length [p] = 7 

• 

• 

Π [1] = 0 

k = 0 
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• After iteration 6 times, the prefix function  
computation is complete: 
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The KMP Matcher: 
• The KMP Matcher with the pattern 'p,' the string 'S' and prefix function 'Π' 

as input, finds a match of p in S. Following pseudo code compute the  
matching component of KMP algorithm: 

 
KMP-MATCHER (T, P) 

1. n ← length [T] 

2. m ← length [P] 

3. Π← COMPUTE-PREFIX-FUNCTION (P) 

4. q ← 0 

5. for i ← 1 to n 

// numbers of characters matched 

// scan S from left to right 

6. do while q > 0 and P [q + 1] ≠ T [i] 

// next character does not match 7. do q ← Π [q] 

8. If P [q + 1] = T [i] 

9. then q ← q + 1 

10. If q = m 

// next character matches 

// is all of p matched? 

11. then print "Pattern occurs with shift" i - m 

12. q ← Π [q] // look for the next match 



5/2/2022 

Running Time Analysis: 

• The for loop beginning in step 5 runs 'n' times, i.e., as long  
as the length of the string 'S.' Since step 1 to step 4 take  
constant times, the running time is dominated by this for the  
loop. Thus running time of the matching function is O (n). 

 
• Example: Given a string 'T' and pattern 'P' as follows: 
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• Example (2) 

• Let us execute the KMP Algorithm to find whether  
'P' occurs in 'T.' 

• For 'p' the prefix function, ? was computed  
previously and is as follows: 

Solution: 

 

Initially: n = size of T = 15  

m = size of P = 7 
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Pattern 'P' has been found to complexity occur in a  

string 'T.' The total number of shifts that took place  

for the match to be found is i-m = 13 - 7 = 6 shifts. 
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Longest Common Subsequence  
Algorithm 
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Longest Common Subsequence  
Algorithm 

• PROBLEM DEFINITION:A subsequence of a string S, is a  
set of characters that appear in left –to right order, but not  
necessarily consecutively. 

• Example 

• ACTTGCG 

• • ACT , ATTC , T , ACTTGC are all subsequences. 

• • TTA is not a subequence 

• • There are 2n subsequences of string S of length n. 
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What is LCS? 

• A common subsequence of two strings is a subsequence  
that appears in both strings. A longest common  
subsequence is a common subsequence of maximal length. 

Example 

S1 = AAACCGTGAGTTATTCGTTCTAGAA  

S2 = CACCCCTAAGGTACCTTTGGTTC 

• LCS is ACCTAGTACTTTG 

• • Enumerate all sub-sequences of S1, and check if they are  

sub-sequences of S2. So the complexity will be O(2nm) 
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LCS Recursive equation 

Theorem: 

Let X =< x1, x2, . . . , xm > and Y =< y1, y2, . . . , yn > be 
sequences,and let Z =< z1, z2, . . . , zk > be any LCS of X and Y . 

1.If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and  

Yn−1. 

2. If xm ≠ yn, then zk ≠ xm implies that Z is an LCS of Xm−1 and Yn . 

3. If xm ≠ yn, then zk ≠ yn implies that Z is an LCS of X and Yn−1. 

 

•So recursive solution for LCS IS  

0 if i = 0 or j = 0 

c[i, j] = c[i − 1, j − 1] + 1 if i, j > 0 and xi = yj ,  

max(c[i, j − 1], c[i − 1, j]) if i, j > 0 and xi ≠yj 
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Algorithm 
LCS − Length(X, Y ) 

m= length[X] 

n= length[Y ]  

for i =1 to m 

c[i, 0] = 0 

for j =0 to n 

c[0, j] = 0 

for i = 1 to m 

for j = 1 to n  

if xi = yj 

c[i, j] = c[i − 1, j − 1] + 1 

B[i, j] := „D‟ or ↖ 

else if c[i − 1, j] c[i, j − 1] 

c[i, j] =c[i − 1, j] 

B[i, j] := „U‟ or ↑ 

else 

c[i, j] =c[i, j − 1] 

B[i, j] := „L‟ or ←  

return c and B 
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Example: 

• We have two strings X = ABCBDAB and Y =  
BDCABA to find the longest common  
subsequence. Following the algorithm LCS Length- 

• Table-Formulation 
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Time complexity analysis 

•Each call to subproblem takes constant time. We call  
it once from the main routine, and at most twice every  
time we fill in an entry of array L. There are (m)(n)  
entries, so the total number of calls is at most 2(m)(n)  
and the time is O (mn). 

 
•As usual, this is a worst case analysis. The time  
might sometimes better, if not all array entries get  
filled out. For instance if the two strings match  
exactly, we'll only fill in diagonal entries and the  
algorithm will be fast. 


