
3/10/2023 1

Greedy Algorithms
SMITA SANKHE

Assistant Professor
Department of Computer Engineering

3/10/2023 2 2

Problem Characteristics

• Decomposable?

• Solution steps be undone?

• Unique solution or set of solutions?

• Any solution or best solution?

• Solution –a path or a state

3/10/2023 3 3

Greedy Algorithms

• typically apply to optimization problems in which we
make a set of choices in order to arrive at an optimal
solution.

• make each choice in a locally optimal manner.

• Does not give optimal solutions always; but do most
of the times

• Quite powerful and works well for a wide range of
problems.

3/10/2023 4 4 -4

The greedy method

• Suppose that a problem can be solved by a
sequence of decisions. The greedy method has
that each decision is locally optimal. These
locally optimal solutions will finally add up to a
globally optimal solution.

• Only a few optimization problems can be solved
by the greedy method.

3/10/2023 5 5

The general method

3/10/2023 6 6

Greedy algorithms: The working

• Make a choice at each step.

• Make the choice before solving the subproblems.

• Solve top-down.

3/10/2023 7 7

Problems typically solved with Greedy
Strategy

• Knapsack problem

• Minimum cost spanning trees-Kruskal and prim’s
algorithm

• Single source shortest path

• Job sequencing with deadlines

3/10/2023 8

Knapsack problem

• Given positive integers P1, P2, …, Pn,
W1, W2, …, Wn and M.

• Find X1, X2, … ,Xn, 0≦Xi≦1 such that

 is maximized.

• Subject to




n

1i

iiXP





n

1 i

ii MXW

4 -8

3/10/2023 9

Knapsack Problem Example

• M = 20, (P1, P2, P3)=(25,24,15)
 (W1, W2, W3) = (18, 15, 10)

• Three feasible solutions, 1 is optimal

(X1, X2, X3) ΣWiXi ΣPiX

1. (1,2/15,0) 20 28.2

2. (0, 2/3, 1) 20 31

3. (0, 1, 1/2) 20 31.5

4 -9

3/10/2023 10 10

Applications of - Knapsack Problem

• finding the least wasteful way to cut raw materials,

• seating contest of investments and portfolios,

• seating contest of assets for asset-backed
securitization,

• generating keys for the Merkle–Hellman and other
knapsack cryptosystems

• construction and scoring of tests in which the test-
takers have a choice as to which questions they
answer

• Resource optimization

http://en.wikipedia.org/wiki/Investment
http://en.wikipedia.org/wiki/Portfolio_(finance)
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
http://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
http://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
http://en.wikipedia.org/wiki/Knapsack_cryptosystems

3/10/2023 11 4 -11

Minimum spanning trees (MST)

• G = (V, E): weighted connected undirected graph

• Spanning tree : S = (V, T), T  E, undirected tree

• Minimum spanning tree(MST) : a spanning tree with
the smallest total weight.

3/10/2023 12 4 -12

An example of MST

• A graph and one of its minimum costs spanning tree

3/10/2023 13 4 -13

Kruskal’s algorithm for finding MST

Step 1: Sort all edges into nondecreasing order.

Step 2: Add the next smallest weight edge to the forest
if it will not cause a cycle.

Step 3: Stop if n-1 edges. Otherwise, go to Step2.

3/10/2023 14

An example of Kruskal’s algorithm

3/10/2023 15 4 -15

The details for constructing MST

• How do we check if a cycle is formed when a new
edge is added?

o By the SET and UNION method.

• A tree in the forest is used to represent a SET.

• If (u, v)  E and u, v are in the same set, then the
addition of (u, v) will form a cycle.

• If (u, v)  E and uS1 , vS2 , then perform UNION
of S1 and S2 .

3/10/2023 16 4 -16

Prim’s algorithm for finding MST

Step 1: x  V, Let A = {x}, B = V - {x}.

Step 2: Select (u, v)  E, u  A, v  B such
that (u, v) has the smallest weight between A
and B.

Step 3: Put (u, v) in the tree. A = A  {v}, B =
B - {v}

Step 4: If B = , stop; otherwise, go to Step 2.

• Time complexity : O(n2), n = |V|.

 (see the example on the next page)

3/10/2023 17 4 -17

An example for Prim’s algorithm

3/10/2023 18 18

Applications of - MST

• Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

• Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

• Indirect applications.
– max bottleneck paths
– codes for error correction
– learning salient features for real-time face verification
– reducing data storage in sequencing amino acids in a protein
– model locality of particle interactions in turbulent fluid flows
– autoconfig protocol for Ethernet bridging to avoid cycles in a
network

• Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.

• Regionalisation of socio-geographic areas, the grouping of areas into
homogeneous, contiguous regions.

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Steiner_tree_problem
http://en.wikipedia.org/wiki/Circuit_design
http://en.wikipedia.org/wiki/Finite_impulse_response
http://en.wikipedia.org/wiki/Regionalisation
http://en.wikipedia.org/wiki/Regionalisation

3/10/2023 19

Single Source Shortest Path

• Problem Definition

Given a directed graph G=<V,E>, a weighting function
cost for edges of G and a source vertex v0 , the problem
is to compute the shortest paths from v0 to all the
remaining vertices of G.

Assumption:- all weights are positive.

Shortest path between v0 to some other node v is an
ordering among a subset of edges.

3/10/2023 20

Algorithm

3/10/2023 21 21

Single Source Shortest Path Conditions

• Feasibility condition:- All possible paths with source
vertex i.e a. n-1 possible paths and

 b. possible iterations n-2 excluding source and
destination vertex

• Optimal condition :- path that includes all vertices
with minimum cost

3/10/2023 22

Complexity

• Overall operations-

= N vertices * (n-2) iterations

= n(n-2)

= n2 – 2n

= O(n2)

3/10/2023 23 23

Applications of - SSSP

• automatically find directions between physical locations,
such as driving directions on web mapping websites

• When the problem is represented as a FSA, can be used to
find an optimal sequence of choices to reach a certain goal
state, or to establish lower bounds on the time needed to
reach a given state.

• In a networking or telecommunications mindset, this
shortest path problem is sometimes called the min-delay
path problem and usually tied with a widest path problem

• plant and facility layout, robotics, transportation, and
VLSI design

http://en.wikipedia.org/wiki/Web_mapping
http://en.wikipedia.org/wiki/Widest_path_problem
http://en.wikipedia.org/wiki/Widest_path_problem
http://en.wikipedia.org/wiki/Robotics
http://en.wikipedia.org/wiki/Transportation
http://en.wikipedia.org/wiki/Very-large-scale_integration

3/10/2023 24 24

Applications of - SSSP

• Maps

• Robot navigation.

• Texture mapping.

• Urban traffic planning.

• Optimal pipelining of VLSI chip.

• Subroutine in advanced algorithms.

• Telemarketer operator scheduling.

• Routing of telecommunications messages.

• Approximating piecewise linear functions.

• Network routing protocols (OSPF, BGP, RIP).

• Exploiting arbitrage opportunities in currency exchange.

• Optimal truck routing through given traffic congestion pattern

3/10/2023 25 4 -25

Dijkstra’s algorithm

 1 2 3 4 5 6 7 8

1 0

2 300 0

3 1000 800 0

4 1200 0

5 1500 0 250

6 1000 0 900 1400

7 0 1000

8 1700 0

Cost adjacency matrix.

All entries not shown

are +.

3/10/2023 26 4 -26

• Time complexity : O(n2)

 Vertex

Iteration S Selected (1) (2) (3) (4) (5) (6) (7) (8)

Initial ----

1 5 6 + + + 1500 0 250 + +

2 5,6 7 + + + 1250 0 250 1150 1650

3 5,6,7 4 + + + 1250 0 250 1150 1650

4 5,6,7,4 8 + + 2450 1250 0 250 1150 1650

5 5,6,7,4,8 3 3350 + 2450 1250 0 250 1150 1650

6 5,6,7,4,8,3 2 3350 3250 2450 1250 0 250 1150 1650

 5,6,7,4,8,3,2 3350 3250 2450 1250 0 250 1150 1650

3/10/2023 27 4 -27

The single-source shortest path problem

• shortest paths from v0 to all destinations

3/10/2023 28 28

SSSP Solution

• Problem definition

• Feasibility & Optimality Condition

• OR

• Explain how the answer will be optimal

• Compute

• Final answer

o Cost of every destination

o Path to every destinatioin

• complexity

