Greedy Algorithms

SMITA SANKHE
Assistant Professor
Department of Computer Engineering

@‘% SOMAIYA
% § VIDYAVIHAR UNIVERSITY TRUST
% \io K J Somaiya College of Engineering

Problem Characteristics

Decomposable?

Solution steps be undone?

Unigue solution or set of solutions?
* Any solution or best solution?
Solution —a path or a state

#}% SOMAIYA

s VIDYAVIHAR UNIVERSITY

ﬂ

2 *Q
yavﬂ K J Somaiya College of Engineering

Greedy Algorithms

typically apply to optimization problems in which we
make a set of choices In order to arrive at an optimal
solution.

* make each choice in a locally optimal manner.

 Does not give optimal solutions always; but do most
of the times

* Quite powerful and works well for a wide range of
problems.

7 SOMAIYA
¢

s VIDYAVIHAR UNIVERSITY

ﬂ

§
“avief K J Somaiya College of Engineering

The greedy method

e Suppose that a problem can be solved by a
sequence of decisions. The greedy method has
that each decision is locally optimal. These
locally optimal solutions will finally add up to a
globally optimal solution.

* Only a few optimization problems can be solved
by the greedy method.

)
@r& SOMAIYA
@ s VIDYAVIHAR UNIVERSITY
N
Va >

i®® K J Somaiya College of Engineering

ﬂ

The general method

Algorithm Greedy(a,n)
// a[l: n] contains the n inputs.

solution := {3 // Initialize the solution.
for ::=1to n do

z = Select(a);
if Feasible(solution, x) then
solution := Union(solution, z);

Nelie o B0 Nariie) BECHRULE LS

[T—
=

}

return solution;

[S—p—
bD =

}

d

#y% SOMAIYA
(0]

s VIDYAVIHAR UNIVERSITY

&
% \io K J Somaiya College of Engineering

Greedy algorithms: The working

« Make a choice at each step.
» Make the choice before solving the subproblems.
 Solve top-down.

o
@‘% SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY
§
)

% \/wé‘!@4 K J Somaiya College of Engineering

ﬂ

Problems typically solved with Greedy
Strategy

Knapsack problem

* Minimum cost spanning trees-Kruskal and prim’s
algorithm

* Single source shortest path
Job sequencing with deadlines

e 4
@““i% SOMAIYA
(0] ~ VIDYAVIHAR UNIVERSITY
0 A3
2% k3

Va

J Somaiya College of Engineering

ﬂ

Knapsack problem

* Given positive integers P, P,, ..., P
W, W,, .., W and M.

* Find X,, X,, ... ,X,,, 0=X.=1 such that

n’

Zn: p }S Maximized.

e Subject to ZWiXi <M

4-8

ﬂ

#}% SOMAIYA

s VIDYAVIHAR UNIVERSITY

2 *Q
Y \i o K J Somaiya College of Engineering

Knapsack Problem Example

* M =20, (P,, P,, P,)=(25,24,15)
(W,, W,, W,) = (18, 15, 10)

* Three feasible solutions, 1 is optimal

(X, X5, Xa) SW:X SPX
1. |(1,2/15,0) 20 28.2
2. (0, 2/3, 1) 20 31
3. (0,1, 1/2) 20 31.5

4-9

@‘% SOMAIYA
(% §5 VIDYAVIHAR UNIVERSITY TRUST
“avief K J Somaiya College of Engineering

Applications of - Knapsack Problem

* finding the least wasteful way to cut raw materials,
* seating contest of investments and portfolios,

* seating contest of assets for asset-backed
securitization,

* generating keys for the Merkle—Hellman and other
knapsack cryptosystems

* construction and scoring of tests in which the test-
takers have a choice as to which questions they
answer

* Resource optimization

ﬂ

e 4
@‘% SOMAIYA
@ s VIDYAVIHAR UNIVERSITY
N
Va >

i®® K J Somaiya College of Engineering

http://en.wikipedia.org/wiki/Investment
http://en.wikipedia.org/wiki/Portfolio_(finance)
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
http://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
http://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
http://en.wikipedia.org/wiki/Knapsack_cryptosystems

Minimum spanning trees (MST)

* G =(V, E): weighted connected undirected graph
« Spanning tree : S=(V, T), T < E, undirected tree

* Minimum spanning tree(MST) : a spanning tree with
the smallest total weight.

@‘% SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY
z% &

® K J Somaiya College of Engineering

ﬂ

An example of MST

* Agraph and one of its minimum costs spanning tree

75 SOMAIYA
Ny

s VIDYAVIHAR UNIVERSITY
<

k3
“avief K J Somaiya College of Engineering

Kruskal’s algorithm for finding MST

Step 1: Sort all edges into nondecreasing order.

Step 2: Add the next smallest weight edge to the forest
If it will not cause a cycle.

Step 3: Stop If n-1 edges. Otherwise, go to Step2.

v
@‘% SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY
§
)

)
“avief K J Somaiya College of Engineering

ﬂ

n example of Kruskal’s algorithm

v
@‘% SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY
§
)

)
“avief K J Somaiya College of Engineering

The detalls for constructing MST

* How do we check if a cycle is formed when a new
edge 1s added?
o By the SET and UNION method.

« Atree in the forest Is used to represent a SET.

* If (u, v) € E and u, v are In the same set, then the
addition of (u, v) will form a cycle.

* If (u,v) e EandueS, , veS, , then perform UNION
of S, and S, .

ﬂ

#% SOMAIYA
o\ ‘ /« VIDYAVIHAR UNIVERSITY
9 &

’f)e 4\

Ya

J Somaiya College of Engineering

Prim’s algorithm for finding MST

Stepl:x eV, LetA={x}, B=V-{x}.

Step 2: Select (u, v) € E, u € A, v € B such

that (u, v) has the smallest weight between A
and B.

Step 3: Put (u, v) inthetree. A= Au {v},B=
B -{v}
Step 4: If B = &, stop; otherwise, go to Step 2.

* Time complexity : O(n?), n = |V].

(see the example on the next page)

ﬂ

e 4
@““i% SOMAIYA
(0] ~ VIDYAVIHAR UNIVERSITY
0 A3
2% k3

Va

J Somaiya College of Engineering

An example for Prim’s algorithm

S
TRUST

Applications of - MST

Network desiPn. _ _
— telephone, electrical, hydraulic, TV cable, computer, road

Approximation algorithms for NP-hard problems.
— traveling salesperson problem, Steiner tree

Indirect applications.

— max bottleneck paths

— codes for error correction _ o

— learning salient features for real-time face verification _

— reducing data storage in sequencing amino acids in a protein
— model locality of particle interactions in turbulent fluid flows
— e%utoci?nflg protocol for Ethernet bridging to avoid cycles in a
networ

Circuit design: implementing efficient multiple constant
multiplications, as used In finite impulse response filters.

Regionalisation of socio-geographic areas, the grouping of areas into
homogeneous, contiguous regions.

ﬂ

#}% SOMAIYA
(0]

s VIDYAVIHAR UNIVERSITY

&
“avief K J Somaiya College of Engineering

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Steiner_tree_problem
http://en.wikipedia.org/wiki/Circuit_design
http://en.wikipedia.org/wiki/Finite_impulse_response
http://en.wikipedia.org/wiki/Regionalisation
http://en.wikipedia.org/wiki/Regionalisation

Single Source Shortest Path

* Problem Definition

Given a directed graph G=<V,E>, a weighting function
cost for edges of G and a source vertex v,, the problem
IS to compute the shortest paths from v, to all the
remaining vertices of G.

Assumption:- all weights are positive.

Shortest path between v,to some other node v is an
ordering among a subset of edges.

ﬂ

)
@E@ SOMAIYA
@ s VIDYAVIHAR UNIVERSITY
N
Va >

i®® K J Somaiya College of Engineering

Algorithm

1 Algorithm ShortestPaths(v, cost, dist, n)
2 // dist[j], 1 < j < mn, is set to the length of the shortest
3 // path from vertex v to vertex j in a digraph G with n
4 // vertices. dist[v] is set to zero. G is represented by its
5 // cost adjacency matrix cost[l : n,1 : n].
6
7 for : :=1 to n do
8 / Initialize S.
9 Sz] := false; dist[t] := cost|v, 1];
10 }
11 Slv] := true; dist[v] := 0.0; // Put v in S.
12 for num :=2ton—1do
13 {
14 // Determine n — 1 paths from v.
15 Choose u from among those vertices not
16 in S such that dest[u] is minimumn;
17 Slu] := true; // Put u in S.
18 for (each w adjacent to v with S|w] = false) do
19 // Update distances.
20 if (dist[w] > dist[u] + cost[u,w])) then
21 dist|w] := dist[u] + cost|u, w];
i)

[0}
0,

<
% O : P
%a\ie¥® K J Somaiya College of Engineering

_I)

Single Source Shortest Path Conditions

* Feasibility condition:- All possible paths with source
vertex I.e a. n-1 possible paths and

b. possible iterations n-2 excluding source and
destination vertex

« Optimal condition :- path that includes all vertices
with minimum cost

e 4
@‘% SOMAIYA
@ s VIDYAVIHAR UNIVERSITY
N
Va >

i®® K J Somaiya College of Engineering

ﬂ

Complexity

 QOverall operations-

= N vertices * (n-2) Iterations
=n(n-2)

=n?-2n

= 0(n?)

#y% SOMAIYA

s VIDYAVIHAR UNIVERSITY

d

’5 £
G’ya\/»d‘!é K J Somaiya College of Engineering

Applications of - SSSP

 automatically find directions between physical locations,
such as driving directions on web mapping websites

* \When the problem is represented as a FSA, can be used to
find an optimal sequence of choices to reach a certain goal
state, or to establish lower bounds on the time needed to
reach a given state.

* In a networking or telecommunications mindset, this
shortest path problem is sometimes called the min-delay
path problem and usually tied with a widest path problem

« plant and facility layout, robotics, transportation, and
VLSI design

ﬂ

735 SOMATYA
[0 s VIDYAVIHAR UNIVERSITY

%)9/ A : - aard
i®¥” K J Somaiya College of Engineering

http://en.wikipedia.org/wiki/Web_mapping
http://en.wikipedia.org/wiki/Widest_path_problem
http://en.wikipedia.org/wiki/Widest_path_problem
http://en.wikipedia.org/wiki/Robotics
http://en.wikipedia.org/wiki/Transportation
http://en.wikipedia.org/wiki/Very-large-scale_integration

Applications of - SSSP

Maps

Robot navigation.

Texture mapping.

Urban traffic planning.

Optimal pipelining of VVLSI chip.

Subroutine in advanced algorithms.

Telemarketer operator scheduling.

Routing of telecommunications messages.
Approximating piecewise linear functions.

Network routing protocols (OSPF, BGP, RIP).
Exploiting arbitrage opportunities in currency exchange.
« Optimal truck routing through given traffic congestion pattern

ﬂ

7 SOMAIYA
[0}

s VIDYAVIHAR UNIVERSITY

&
“avief K J Somaiya College of Engineering

Dijkstra’s algorithm

, Boston
Chicago 1500

San 250

FranciscoS09 New

- - 9/ cver York
adjacency matrix. % 1090

O

ntries not shown | Angeles

New Orleans

Miami
0
000 800 0
1200 O
1500 O 250
1000 0 900 1400
o 0 1000
1 SRMAIYA

s VIDYAVIHAR UNIVERSITY
L

0]
[) £
) o ” o
%avie” K J Somaiya College of Engineering

. Boston
Chicago 1500

San

Franciscogoo o
9 Denver
300 1000

Los Angeles

New Orleans

Vertex Miami
Iteration S Selected QD 2 @ @ B ® 7 (@
Initial
1 5 6 to +oo +oo 1500 0 250 +oo 400
2 5,6 7 +o0 +o0o +oo 1250 O 250 1150 1650
3 5,6,7 4 +o0 +o0o +oo 1250 O 250 1150 1650
4 5,6,7,4 8 +oo +oo 2450 1250 0 250 1150 1650
5 5,6,7,4,8 3 3350 +oo 2450 1250 0O 250 1150 1650
6 5,6,7,4,8,3 2 3350 3250 2450 1250 0 250 1150 1650
5,6,7,4,8,3,2 3350 3250 2450 1250 0 250 1150 165
#5 SOMA

/ sE VIDYAVIH@R UNIV] S'm e

9/ ,54 - L] L] I. 2
%avie” K J Somaiya College of Engineering

The single-source shortest path problem

* shortest paths from v, to all destinations

Path Length
1) vy, 10
2) Vv,V 25
3) v, v,V,V 45

0'2V3V1
4) VoV, 45

(b)

ﬂ

7 SOMAIYA

s VIDYAVIHAR UNIVERSITY

B A - ar
%avie” K J Somaiya College of Engineering

SSSP Solution

Problem definition

Feasibility & Optimality Condition

* OR

» Explain how the answer will be optimal
Compute

Final answer
o Cost of every destination
o Path to every destinatioin

« complexity

ﬂ

#}% SOMAIYA

s VIDYAVIHAR UNIVERSITY

2 *Q
V‘! K J Somaiya College of Engineering

