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Problem Characteristics  

• Decomposable? 

• Solution steps be undone? 

• Unique solution or set of solutions? 

• Any solution or best solution? 

• Solution –a path or a state 
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Greedy Algorithms 

• typically apply to optimization problems in which we 
make a set of choices in order to arrive at an optimal 
solution. 

• make each choice in a locally optimal manner. 

• Does not give optimal solutions always; but do most 
of the times 

• Quite powerful and works well for a wide range of 
problems. 
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The greedy method  

• Suppose that a problem can be solved by a 
sequence of decisions.  The greedy method has 
that each decision is locally optimal.  These 
locally optimal solutions will finally add up to a 
globally optimal solution. 

• Only a few optimization problems can be solved 
by the greedy method.  
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The general method 
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Greedy algorithms: The working 

• Make a choice at each step. 

• Make the choice before solving the subproblems. 

• Solve top-down. 
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Problems typically solved with Greedy 
Strategy 

• Knapsack problem 

• Minimum cost spanning trees-Kruskal and prim’s 
algorithm 

• Single source shortest path 

• Job sequencing with deadlines 
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Knapsack problem 

• Given positive integers P1, P2, …, Pn, 
W1, W2, …, Wn and M. 

• Find X1, X2, … ,Xn, 0≦Xi≦1 such that 
   
             is maximized. 
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Knapsack Problem Example 

• M = 20, (P1, P2, P3)=(25,24,15) 
            (W1, W2, W3) = (18, 15, 10) 

•  Three feasible solutions, 1 is optimal 

(X1, X2, X3) ΣWiXi ΣPiX 

1. (1,2/15,0) 20 28.2 

2. (0, 2/3, 1) 20 31 

3. (0, 1, 1/2) 20 31.5 

4 -9 
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Applications of  - Knapsack Problem 

• finding the least wasteful way to cut raw materials, 

• seating contest of investments and portfolios, 

• seating contest of assets for asset-backed 
securitization, 

• generating keys for the Merkle–Hellman and other 
knapsack cryptosystems 

• construction and scoring of tests in which the test-
takers have a choice as to which questions they 
answer 

• Resource optimization 

 

http://en.wikipedia.org/wiki/Investment
http://en.wikipedia.org/wiki/Portfolio_(finance)
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
http://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
http://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
http://en.wikipedia.org/wiki/Knapsack_cryptosystems
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Minimum spanning trees (MST)  

• G = (V, E): weighted connected undirected graph  

• Spanning tree : S = (V, T), T  E, undirected tree 

• Minimum spanning tree(MST) : a spanning tree with 
the smallest total weight.  
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An example of MST 

• A graph and one of its minimum costs spanning tree 
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Kruskal’s algorithm for finding MST 

Step 1: Sort all edges into nondecreasing order.  

Step 2: Add the next smallest weight edge to the forest 
if it will not cause a cycle. 

Step 3: Stop if n-1 edges. Otherwise, go to Step2. 
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An example of Kruskal’s algorithm 
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The details for constructing MST 

• How do we check if a cycle is formed when a new 
edge is added? 

o By the SET and UNION method. 

• A tree in the forest is used to represent a SET. 

• If (u, v)  E and u, v are in the same set, then the 
addition of (u, v) will form a cycle. 

• If (u, v)  E and uS1 , vS2 , then perform UNION 
of S1  and S2 . 
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Prim’s algorithm for finding MST 

Step 1: x  V, Let A = {x},   B = V - {x}. 

Step 2: Select (u, v)  E, u  A, v  B such 
that (u, v) has the smallest weight between A 
and B. 

Step 3: Put (u, v) in the tree. A = A  {v}, B = 
B - {v} 

Step 4: If B = , stop; otherwise, go to Step 2.  

 

• Time complexity : O(n2), n = |V|. 

              (see the example on the next page) 



3/10/2023 17 4 -17 

An example for Prim’s algorithm 
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Applications of  - MST 

• Network design. 
– telephone, electrical, hydraulic, TV cable, computer, road 

• Approximation algorithms for NP-hard problems. 
– traveling salesperson problem, Steiner tree 

• Indirect applications. 
– max bottleneck paths 
– codes for error correction 
– learning salient features for real-time face verification 
– reducing data storage in sequencing amino acids in a protein 
– model locality of particle interactions in turbulent fluid flows 
– autoconfig protocol for Ethernet bridging to avoid cycles in a 
network 

• Circuit design: implementing efficient multiple constant 
multiplications, as used in finite impulse response filters. 

• Regionalisation of socio-geographic areas, the grouping of areas into 
homogeneous, contiguous regions. 

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Steiner_tree_problem
http://en.wikipedia.org/wiki/Circuit_design
http://en.wikipedia.org/wiki/Finite_impulse_response
http://en.wikipedia.org/wiki/Regionalisation
http://en.wikipedia.org/wiki/Regionalisation
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Single Source Shortest Path 

• Problem Definition 

Given a directed graph G=<V,E>, a weighting function 
cost for edges of G and a source vertex v0 , the problem 
is to compute the shortest paths from v0 to all the 
remaining vertices of G. 

Assumption:- all weights are positive. 

Shortest path between v0 to some other node v is an 
ordering among a subset of edges.  
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Algorithm 
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Single Source Shortest Path Conditions 

• Feasibility condition:- All possible paths with source 
vertex i.e a. n-1 possible paths and  

   b. possible iterations n-2 excluding source and 
destination vertex 

 

• Optimal condition :- path that includes all vertices 
with minimum cost 
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Complexity  

• Overall operations- 

= N vertices * (n-2) iterations 

= n(n-2) 

= n2 – 2n 

= O(n2) 
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Applications of  - SSSP 

• automatically find directions between physical locations, 
such as driving directions on web mapping websites 

• When the problem is represented as a FSA, can be used to 
find an optimal sequence of choices to reach a certain goal 
state, or to establish lower bounds on the time needed to 
reach a given state. 

• In a networking or telecommunications mindset, this 
shortest path problem is sometimes called the min-delay 
path problem and usually tied with a widest path problem 

• plant and facility layout, robotics, transportation, and 
VLSI design 

 

http://en.wikipedia.org/wiki/Web_mapping
http://en.wikipedia.org/wiki/Widest_path_problem
http://en.wikipedia.org/wiki/Widest_path_problem
http://en.wikipedia.org/wiki/Robotics
http://en.wikipedia.org/wiki/Transportation
http://en.wikipedia.org/wiki/Very-large-scale_integration
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Applications of  - SSSP 

• Maps 

• Robot navigation.  

• Texture mapping. 

• Urban traffic planning. 

• Optimal pipelining of VLSI chip. 

• Subroutine in advanced algorithms. 

• Telemarketer operator scheduling. 

• Routing of telecommunications messages. 

• Approximating piecewise linear functions. 

• Network routing protocols (OSPF, BGP, RIP). 

• Exploiting arbitrage opportunities in currency exchange. 

• Optimal truck routing through given traffic congestion pattern 
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Dijkstra’s algorithm 

  1 2 3 4 5 6 7 8  

1  0         

2  300 0        

           

3  1000 800 0       

4    1200 0      

5     1500 0 250    

6     1000  0 900 1400  

7        0 1000  

8  1700       0  

 

Cost adjacency matrix. 

All entries not shown 

are +.  
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• Time complexity : O(n2) 

  Vertex          

Iteration S Selected  (1) (2) (3) (4) (5) (6) (7) (8) 

Initial  ----          

1 5 6  + + + 1500 0 250 + + 

2 5,6 7  + + + 1250 0 250 1150 1650 

3 5,6,7 4  + + + 1250 0 250 1150 1650 

4 5,6,7,4 8  + + 2450 1250 0 250 1150 1650 

5 5,6,7,4,8 3  3350 + 2450 1250 0 250 1150 1650 

6 5,6,7,4,8,3 2  3350 3250 2450 1250 0 250 1150 1650 

 5,6,7,4,8,3,2   3350 3250 2450 1250 0 250 1150 1650 
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The single-source shortest path problem  

• shortest paths from v0 to all destinations 
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SSSP Solution 

• Problem definition 

• Feasibility & Optimality Condition  

• OR 

• Explain how the answer will be optimal 

• Compute 

• Final answer 

o Cost of every destination 

o Path to every destinatioin 

• complexity 


