
5/10/2023 1

Dynamic Programming

SMITA SANKHE

smitasankhe@somaiya.edu

5/10/2023 2 2

Introduction

• Dynamic Programming is an algorithm design
technique for optimization problems: often
minimizing or maximizing.

• Solves problems by combining the solutions to
subproblems that contain common sub-problems.

5/10/2023 3 3

Dynamic Programming

• DP can be applied when the solution of a problem
includes solutions to subproblems

• We need to find a recursive formula for the solution

• We can recursively solve subproblems, starting from
the trivial case, and save their solutions in memory

• In the end we’ll get the solution of the whole problem.

5/10/2023 4 4

Steps to Designing a Dynamic Programming
Algorithm

1. Characterize optimal sub-structure.

2. Recursively define the value of an optimal solution.

3. Compute the value bottom up.

4. (if needed) Construct an optimal solution.

5/10/2023 5

• Divide-and-conquer
algorithms split a problem
into separate
subproblems, solve the
subproblems, and
combine the results for a
solution to the original
problem.

• Example: Quicksort,
Mergesort, Binary search

• Divide-and-conquer
algorithms can be thought
of as top-down algorithms

• Dynamic Programming
split a problem into
subproblems, some of
which are common, solve
the subproblems, and
combine the results for a
solution to the original
problem.

• Example: Matrix Chain
Multiplication, Longest
Common Subsequence

• Dynamic programming can
be thought of as bottom-
up

DP Vs D&C

5/10/2023 6

• In divide and conquer,
subproblems are
independent.

• Divide & Conquer
solutions are simple as
compared to Dynamic
programming .

• Divide & Conquer can be
used for any kind of
problems.

• Only one decision
sequence is ever
generated

• In Dynamic Programming
, subproblems are not
independent.

• Dynamic programming
solutions can often be
quite complex and tricky.

• Dynamic programming is
generally used for
Optimization Problems.

• Many decision sequences
may be generated.

5/10/2023 7 7

 Greedy Vs Dynamic Programming

• Greedy strategy:

o Make a choice at each step.

o Make the choice before solving the subproblems.

o Solve top-down.

• Dynamic programming strategy:

o Make a choice at each step.

o Choice depends on knowing optimal solutions to
subproblems.

o Solve subproblems first.

o Solve bottom-up.

5/10/2023 8 8

Dynamic programming

• An algorithm design method that can be used when the
solution can be viewed as the result of a sequence of decisions

Some solvable by Greedy method under the condition

• Condition : an optimal sequence of decisions can be found by

making the decisions one at a time and never making an
erroneous decision

For many other problems

• Not possible to make stepwise decisions (based only on local

information) in a manner like Greedy method

5/10/2023 9 9

Outline – Dynamic Programming

• General Method

• Multistage graphs

• All pair shortest path

• Single source shortest path

• 0/1 knapsack

• Travelling salesman problem

• Matrix chain multiplication

5/10/2023 10

0/1 Knapsack

Ms Swati nMali Knapsack DP 10

5/10/2023 11 Ms Swati nMali Knapsack DP 11

\
Definition

5/10/2023 12 12

0-1 Knapsack problem

• Problem, in other words, is to find

Ti

i

Ti

i Wwb subject to max

 The problem is called a “0-1” problem,

because each item must be entirely accepted

or rejected.

 Just another version of this problem is the

“Fractional Knapsack Problem”, where we

can take fractions of items.

5/10/2023 13 Ms Swati nMali Knapsack DP 13

D & C Approach

1. Partition the problem into subproblems.

2. Solve the subproblems.

3. Combine the solutions to solve the original one.

• Remark: If the subproblems are not independent, i.e.
subproblems share sub-problems, then a divide and-
conquer algorithm repeatedly solves the common sub-
problems.

• Thus, it does more work than necessary!

• Question: Any better solution?

5/10/2023 14 14

D P approach

• Dynamic programming is a method for solving
optimization problems.

• The idea: Compute the solutions to the sub-problems
once and store the solutions in a table, so that they can
be reused (repeatedly) later.

• Remark: We trade space for time.

5/10/2023 15 15

DP solution

• Step 0 - Characterize the structure of an optimal
solution.

– Decompose the problem into smaller problems, and find a
relation between the structure of the optimal solution of the
original problem and the solutions of the smaller problems.

5/10/2023 16 16

Step 1: Principle of Optimality

• Express the solution of the original problem in terms of
optimal solutions for smaller problems

If items are labeled 1..n, then a subproblem would be to
find an optimal solution for Sk = {items labeled 1, 2, ..

k}

• This is a valid sub-problem definition.

• The question is: can we describe the final solution (Sn)

in terms of subproblems (Sk)?

• Unfortunately, we can’t do that. Explanation follows….

5/10/2023 17 17

Step 2- Define the recursive formula

• It means, that the best subset of Sk that has total
weight w is one of the two:

1) the best subset of Sk-1 that has total weight w, or

2) the best subset of Sk-1 that has total weight w-wk
plus the item k

else }],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB

wwwkB
wkB

 Recursive formula for subproblems:

5/10/2023 18 18

Step 3- Compute the solution
0-1 Knapsack Algorithm

for w = 0 to W

 B[0,w] = 0

for i = 0 to n

 B[i,0] = 0

 for w = 0 to W

 if wi <= w // item i can be part of the solution

 if bi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = bi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

 else B[i,w] = B[i-1,w] // wi > w

5/10/2023 19 19

Step 4- Construct the solution

Algorithm KnapsackElements(A,n,W)

{

i=n, k=W;

While (i>0 && k>0)

 {

 if B[i,k]<> B[i-1,k]

 mark ith item in knapsack

 k=k-wi; i=i-1

 else i=i-1

 }

}

5/10/2023 20

Knapsack 0-1 problem

• So now we must re-work the way we build upon previous
sub-problems…

o Let B[k, w] represent the maximum total value of a
subset Sk with weight w.

o Our goal is to find B[n, W], where n is the total number
of items and W is the maximal weight the knapsack can
carry.

• So our recursive formula for subproblems:

 B[k, w] = B[k - 1,w], if wk > w

 = max { B[k - 1,w], B[k - 1,w - wk] + vk},
otherwise

1) The best subset of Sk-1 that has total weight w, or

2) The best subset of Sk-1 that has total weight w-wk plus
the item k

5/10/2023 21

Knapsack 0-1 Problem –
Recursive Formula

• The best subset of Sk that has the total weight w,
either contains item k or not.

• First case: wk > w
o Item k can’t be part of the solution! If it was the total

weight would be > w, which is unacceptable.

• Second case: wk ≤ w
o Then the item k can be in the solution, and we choose the

case with greater value.

5/10/2023 22

Knapsack 0-1 Algorithm

for w = 0 to W { // Initialize 1st row to 0’s

 B[0,w] = 0

}

for i = 1 to n { // Initialize 1st column to 0’s

 B[i,0] = 0

}

for i = 1 to n {

 for w = 0 to W {

 if wi <= w { //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

 }

 else B[i,w] = B[i-1,w] // wi > w

 }

}

5/10/2023 23

Knapsack 0-1 Problem

• Let’s run our algorithm on the following data:

o n = 4 (# of elements)

o W = 5 (max weight)

o Elements (weight, value):

 (2,3), (3,4), (4,5), (5,6)

5/10/2023 24

Knapsack 0-1 Example

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

// Initialize the base cases

for w = 0 to W

 B[0,w] = 0

for i = 1 to n

 B[i,0] = 0

5/10/2023 25

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 1

vi = 3

wi = 2

w = 1

w-wi = -1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

5/10/2023 26

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 1

vi = 3

wi = 2

w = 2

w-wi = 0

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3

2 0

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

5/10/2023 27

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3

2 0

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 1

vi = 3

wi = 2

w = 3

w-wi = 1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3

2 0

3 0

4 0

5/10/2023 28

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3

2 0

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 1

vi = 3

wi = 2

w = 4

w-wi = 2

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3

2 0

3 0

4 0

5/10/2023 29

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3

2 0

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 1

vi = 3

wi = 2

w = 5

w-wi = 3

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0

3 0

4 0

5/10/2023 30

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 2

vi = 4

wi = 3

w = 1

w-wi = -2

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

5/10/2023 31

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 2

vi = 4

wi = 3

w = 2

w-wi = -1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3

3 0

4 0

5/10/2023 32

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 2

vi = 4

wi = 3

w = 3

w-wi = 0

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

5/10/2023 33

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 2

vi = 4

wi = 3

w = 4

w-wi = 1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4

3 0

4 0

5/10/2023 34

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 2

vi = 4

wi = 3

w = 5

w-wi = 2

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0

4 0

5/10/2023 35

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 3

vi = 5

wi = 4

w = 1..3

w-wi = -3..-1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

5/10/2023 36

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 3

vi = 5

wi = 4

w = 4

w-wi = 0

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

5/10/2023 37

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 3

vi = 5

wi = 4

w = 5

w-wi = 1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

5/10/2023 38

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 4

vi = 6

wi = 5

w = 1..4

w-wi = -4..-1

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

5/10/2023 39

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 4

vi = 6

wi = 5

w = 5

w-wi = 0

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5 7

if wi <= w //item i can be in the solution

 if vi + B[i-1,w-wi] > B[i-1,w]

 B[i,w] = vi + B[i-1,w- wi]

 else

 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

5/10/2023 40

Knapsack 0-1 Example Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5 7

We’re DONE!!

The max possible value that can be carried in this knapsack is $7

5/10/2023 41

Knapsack 0-1 Algorithm

• This algorithm only finds the max possible value that
can be carried in the knapsack

o The value in B[n,W]

• To know the items that make this maximum value, we
need to trace back through the table.

5/10/2023 42

Knapsack 0-1 Algorithm
Finding the Items

• Let i = n and k = W

 if B[i, k] ≠ B[i-1, k] then

 mark the ith item as in the knapsack

 i = i-1, k = k-wi

 else

 i = i-1 // Assume the ith item is not in the knapsack

 // Could it be in the optimally packed knapsack?

5/10/2023 43

Knapsack 0-1 Algorithm
Finding the Items

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i = 4

k = 5

vi = 6

wi = 5

B[i,k] = 7

B[i-1,k] = 7

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5 7

i = n , k = W

while i, k > 0

 if B[i, k] ≠ B[i-1, k] then

 mark the ith item as in the knapsack

 i = i-1, k = k-wi

 else

 i = i-1

Knapsack:

5/10/2023 44

Knapsack 0-1 Algorithm
Finding the Items

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i = 3

k = 5

vi = 5

wi = 4

B[i,k] = 7

B[i-1,k] = 7

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5 7

i = n , k = W

while i, k > 0

 if B[i, k] ≠ B[i-1, k] then

 mark the ith item as in the knapsack

 i = i-1, k = k-wi

 else

 i = i-1

Knapsack:

5/10/2023 45

Knapsack 0-1 Algorithm
Finding the Items

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i = 2

k = 5

vi = 4

wi = 3

B[i,k] = 7

B[i-1,k] = 3

k – wi = 2

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5 7

i = n , k = W

while i, k > 0

 if B[i, k] ≠ B[i-1, k] then

 mark the ith item as in the knapsack

 i = i-1, k = k-wi

 else

 i = i-1

Knapsack:

Item 2

5/10/2023 46

Knapsack 0-1 Algorithm
Finding the Items

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i = 1

k = 2

vi = 3

wi = 2

B[i,k] = 3

B[i-1,k] = 0

k – wi = 0

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5 7

i = n , k = W

while i, k > 0

 if B[i, k] ≠ B[i-1, k] then

 mark the ith item as in the knapsack

 i = i-1, k = k-wi

 else

 i = i-1

Knapsack:

Item 1
Item 2

5/10/2023 47

Knapsack 0-1 Algorithm
Finding the Items

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i = 1

k = 2

vi = 3

wi = 2

B[i,k] = 3

B[i-1,k] = 0

k – wi = 0

i / w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5 7

k = 0, so we’re DONE!

The optimal knapsack should contain:

 Item 1 and Item 2

Knapsack:

Item 1
Item 2

5/10/2023 48

Knapsack 0-1 Problem – Run Time

for w = 0 to W

 B[0,w] = 0

for i = 1 to n

 B[i,0] = 0

for i = 1 to n

 for w = 0 to W

 < the rest of the code >

What is the running time of this algorithm?

 O(n*W)

Remember that the brute-force algorithm takes: O(2n)

O(W)

O(W)

Repeat n times

O(n)

5/10/2023 49 49

Running time

for w = 0 to W

 B[0,w] = 0

for i = 0 to n

 B[i,0] = 0

 for w = 0 to W

 < the rest of the code >

 What is the running time of this algorithm?

O(W)

O(W)

Repeat n times

O(n*W)

5/10/2023 50 50

Multistage Graphs

• Multistage Graph G(V,E) A directed graph in which
the vertices are partitioned into k disjoint sets Vi ,
1<i<k

• If <u,v> ∈ E, then u ∈ Vi and v ∈ Vi+1 for some i,
1<i<k

• |V1|= |Vk|=1, and s(source) is V1 and t(sink) is Vk

• c(i,j)=cost of edge <i,j>

• Multistage graph problem- Find a minimum-cost
path from s to t of the Multistage Graph.

5/10/2023 51 51

Shortest Path in Multistage Graph

5/10/2023 52 52

Shortest Path in Multistage Graph.. cntd

5/10/2023 53 53

Dynamic Programming Approach

5/10/2023 54 54

Example

5/10/2023 55 55

Steps to Designing a Dynamic Programming
Algorithm

1. Characterize optimal sub-structure

2. Recursively define the value of an optimal solution

3. Compute the value bottom up

4. Construct an optimal solution

5/10/2023 56 56

Solution- Multi Stage Graphs

Step 1- Characterize optimal sub-structure

• Every s to t path is the result of a sequence of k-2
decisions

• The principle of optimality holds (Why?)

• The principle of optimality states that whatever may
be initial state and initial decision are , the remaining
decision must constitute an optimal policy with
regard to the state resulting from the first decision.

5/10/2023 57 57

Step 2 - Recursively define the value of an optimal
solution

• p(i, j) = a minimum cost path from vertex j in Vi
to vertex t,

• cost(i, j) = cost of path p(i , j)

5/10/2023 58 58

Step 3- Compute the value bottom up

• Solve with forward approach or backward approach

Step 4 - Construct an optimal solution

• Remember the best values along the path and
construct the solution

5/10/2023 59 Dynamic Programming
Swati Mali

59

5/10/2023 60 60

Solve the following MSG problems

5/10/2023 61

All Pairs Shortest Path

61

5/10/2023 62

“Shortest Path”

• Given graph G=(V,E) with positive weights W(u,v) on
the edges (u, v), and given two vertices a and b.

• Find the “shortest path” from a to b (where the length
of the path is the sum of the edge weights on the
path). Perhaps we should call this the minimum
weight path!

5/10/2023 63

Dynamic Programming

• The problem can be recursively defined (by the
sub-problem of the same kind)

• A table is used to store the solutions of the
subproblems (the meaning of “programming”
before the age of computers).

5/10/2023 64

Designing a DP solution

• How are the subproblems defined?

• Where are the solutions stored?

• How are the base values computed?

• How do we compute each entry from other entries in
the table?

• What is the order in which we fill in the table?

5/10/2023 65

Dynamic Programming

let {1,2,…,n} denote the set of vertices.

Sub-problem formulation:

• M[i,j,k] = min length of any path from i to j that
uses at most k edges.

All paths have at most n-1 edges, so 1 ≤ k ≤ n-1.

Minimum paths from i to j are found in M[i,j,n-1]

5/10/2023 66 66

5/10/2023 67 67

Recursive formula
• A[i,j]= min{ min1<=k<=n{ Ak-1[i,k]+ Ak-1[k,j]}, cost[i,j]}

• Ak[i,j]= min{ Ak-1[i,k]+Ak-1[k,j]}, Ak-1[i,j]}

5/10/2023 68 Dynamic Programming
Swati Mali

68

Algorithms- All Pairs Shortest Path

5/10/2023 69 69

Example

5/10/2023 70 70

5/10/2023 71

Running time analysis

• How many entries do we need to compute? O(n3)

1 ≤ i ≤ n; 1 ≤ j ≤ n; 1 ≤ k ≤ n-1

For k = 1 to n-1

 for j = 1 to n

 for i = 1 to n

 M[i,j,k] = min{min{M[i,x,k-1] + w(x,j): x in V},

 M[i,j,k-1]}

5/10/2023 72 72

Applications

• Shortest paths in directed graphs

• Optimal routing.

• Fast computation of Pathfinder networks. Widest
paths/Maximum bandwidth paths

5/10/2023 73 73

Single Source Shortest Path

• When there are no cycles of negative length, there is
shortest path between any two vertices of n-vertex
graph that has most n-1 edges on it

• If there are cyles, elimination of cycles from path
results in another path with same source & same
destination

5/10/2023 74 74

Step 1-Optimal Substructure

5/10/2023 75 Dynamic Programming
Swati Mali

75

5/10/2023 76 76

Step 2- Define Recursive formula

5/10/2023 77 77

Example

5/10/2023 78 78

Step 3- Compute Solution

5/10/2023 79

Step 4 is optional

5/10/2023 80 80

Algorithm

