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Introduction

« Dynamic Programming is an algorithm design
technigue for optimization problems: often
minimizing or maximizing.

 Solves problems by combining the solutions to
subproblems that contain common sub-problems.

#}% SOMAIYA

s VIDYAVIHAR UNIVERSITY

ﬂ

,5 *Q
V\l K J Somaiya College of Engineering



Dynamic Programming

* DP can be applied when the solution of a problem
Includes solutions to subproblems

 We need to find a recursive formula for the solution

* We can recursively solve subproblems, starting from
the trivial case, and save their solutions in memory

* In the end we’ll get the solution of the whole problem.
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Steps to Designing a Dynamic Programming
Algorithm

1. Characterize optimal sub-structure.

2. Recursively define the value of an optimal solution.
3. Compute the value bottom up.

4. (if needed) Construct an optimal solution.
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Divide-and-conquer
algorithms split a problem
into separate
subproblems, solve the
subproblems, and
combine the results for a
solution to the original
problem.

Example: Quicksort,
Mergesort, Binary search

Divide-and-conquer
algorithms can be thought
of as top-down algorithms
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DP Vs D&C

* Dynamic Programming
split a problem into
subproblems, some of
which are common, solve
the subproblems, and
combine the results for a
solution to the original
problem.

* Example: Matrix Chain
Multiplication, Longest
Common Subsequence

* Dynamic programming can
be thought of as bottom-

up

ﬂ




* In divide and conquer, * In Dynamic Programming

subproblems are , subproblems are not
independent. independent.

Divide & Conquer * Dynamic programming
solutions are simple as solutions can often be
compared to Dynamic quite complex and tricky.

programming .

Divide & Conquer can be
used for any kind of
problems.

Only one decision
seguence is ever
generated

* Dynamic programming is
generally used for
Optimization Problem:s.

* Many decision sequences
may be generated.
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I Greedy Vs Dynamic Programming

Greedy strategy:
o Make a choice at each step.
o Make the choice before solving the subproblems.
o Solve top-down.

Dynamic programming strategy:
o Make a choice at each step.

o Choice depends on knowing optimal solutions to
subproblems.

o Solve subproblems first.
o Solve bottom-up.

ﬂ
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Dynamic programming

=+ Analgorithm design method that can be used when the
solution can be viewed as the result of a sequence of decisions

Some solvable by Greedy method under the condition
Condition : an optimal sequence of decisions can be found by

making the decisions one at a time and never making an
erroneous decision

For many other problems
Not possible to make stepwise decisions (based only on local
information) in a manner like Greedy method

ﬂ
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II Outline — Dynamic Programming

General Method

* Multistage graphs

All pair shortest path

Single source shortest path
0/1 knapsack

Travelling salesman problem
« Matrix chain multiplication

ﬂ

v
@‘% SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY
§
)

% \/wé‘!@A K J Somaiya College of Engineering




0/1 Knapsack
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\
Definition

The (-1, or Binary, Knapsack Problem (KP) is: given a set of n items and a
napsack, with

pi = profir of item j,
w; = weight of item j,
¢ = capacity of the knapsack,

select a subset of the items so as to

maximize z = ij-xj- (2.1)
J=1

subject to z wix; < C, (2.2)
j=1
x; =0 or 1, jeN={1,...,n}, (2.3)

where

Faidl,
SN

g i
kY
“avief K J Somaiya College of Engineering

1 if item j is selected;
"':[j. =

0 otherwise.
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0-1 Knapsack problem

* Problem, in other words, iIs to find

max ) b, subjectto » w, <W
= =
= The problem is called a “0-/ " problem,

because each item must be entirely accepted
or rejected.

= Just another version of this problem is the
“Fractional Knapsack Problem”, where we
can take fractions of items.
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D & C Approach

1. Partition the problem into subproblems.
2. Solve the subproblems.
3. Combine the solutions to solve the original one.

« Remark: If the subproblems are not independent, I.e.
subproblems share sub-problems, then a divide and-
conquer algorithm repeatedly solves the common sub-

problems.
* Thus, it does more work than necessary!
* Question: Any better solution?
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D P approach

* Dynamic programming is a method for solving
optimization problems.

* The idea: Compute the solutions to the sub-problems
once and store the solutions in a table, so that they can

be reused (repeatedly) later.
* Remark: We trade space for time.
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DP solution

 Step 0 - Characterize the structure of an optimal
solution.

— Decompose the problem into smaller problems, and find a
relation between the structure of the optimal solution of the
original problem and the solutions of the smaller problems.
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II Step 1: Principle of Optimality

« EXxpress the solution of the original problem in terms of
optimal solutions for smaller problems

If items are labeled 1..n, then a subproblem would be to
find an optimal solution for S, = {items labeled 1, 2, ..

K}

 This iIs a valid sub-problem definition.

» The question Is: can we describe the final solution (S, )
In terms of subproblems (S,)?

 Unfortunately, we can’t do that. Explanation follows....
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Step 2- Define the recursive formula

= Recursive formula for subproblems:

B[k —1, w] If w, >w
B[k, w] =
max{B[k -1, w], B[k -1, w—w,]+Db, } else
* It means, that the best subset of S, that has total
weight w is one of the two:
1) the best subset of S, , that has total weight w, or

2) the best subset of S, , that has total weight w-w,
plus the item k

ﬂ
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Step 3- Compute the solution
0-1 Knapsack Algorithm

forw=0to W
B[O,w] =0
fori=0ton
B[1,0]=0
forw=0to W
If w, <=w //item I can be part of the solution
If b; + B[i-1,w-w;] > B[i-1,w]
B[i,w] = b; + B[i-1,w- w;]

else
Bli,w] = B[i-1,w]

else Bli,w] = B[i-1,w] // w; >w
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Step 4- Construct the solution

Algorithm KnapsackElements(A,n,W)
{
1I=n, k=W,
While (i>0 && k>0)
{
if B[i,k]<> BJi-1,k]
mark ith item in knapsack
k=k-wi; I=I1-1
else 1=iI-1

}
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Knapsack 0-1 problem *

« S0 now we must re-work the way we build upon previous
sub-problems...

o Let B[k, w] represent the maximum total value of a
subset S, with weight w.

o Our goal is to find B[n, W], where n Is the total number
of items and W is the maximal weight the knapsack can
carry.

 So our recursive formula for subproblems:
B[k, w] =B[k-1,w], ifw,>w
=max { B[k - 1,w], B[k - 1w - w,] + v, },

otherwise
1) The best subset of S, ,; that has total weight w, or

2) The best subset of S, ; that has total weight w-w, plus
the item k

ﬂ
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Knapsack 0-1 Problem —
Recursive Formula

~ Blk—1,w] it w, >w

]_{max{B[k—l wl, Blk—1,w—w,]+b,} else

 The best subset of S, that has the total weight w,
either contains item k or not.

Blk,w

 First case: w, >w

o Item k can’t be part of the solution! If it was the total
weight would be > w, which Is unacceptable.

» Second case: w, <w

o Then the item k can be In the solution, and we choose the
case with greater value.

ﬂ
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Knapsack 0-1 Algorithm

for w=0 to W { // Initialize 15t row to O’s

B[O,w] =0

}

for i =1 ton { // Initialize 15* column to 0’s
B[i,0] = 0

}

for i =1 to n {
for w =0 to W {
if w, <=w { //item i can be in the solution
if v, + B[i-1,w-w,] > B[i-1,w]
B[i,w] = v; + B[i-1,w- w;]
else

B[i,w] = B[i-1,w]

}
else B[i,w] = B[i-1,w] // w, > w
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Knapsack 0-1 Problem

* Let’s run our algorithm on the following data:
o n =4 (# of elements)
o W =5 (max weight)
o Elements (weight, value):
(2,3), (3,4), (4,5), (5,6)
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Knapsack 0-1 Example

AIWIN|FL|O
QI O|O0|O|O

/I Initialize the base cases
forw=0to W
B[O,w] =0

fori=1ton
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napsack 0-1 Example =~ e

2:(3,4)
3:(4,5)
4: (5,6)
i1/w|0 1 2 3 4 5

0 0 0 0 0 0 0 i=1

10| ¥ v, =3

2 0 w; = 2

310 w=1

4 0 w-w; = -1

If w; <=w //item i can be in the solution
If v; + B[i-1,w-w;] > B[i-1,w]
Bli,w] =v; + B[i-1,w- w;]
else
Bli,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // w; > w
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napsack 0-1 Example =~ e

2:(3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0 0 O 0 0 0 0 i=1

1] 0| o3 V. =3

2 0 w; =2

3 0 w=2

4 0 w-w; =0

If Wy <=Wy /fYiesi iceamnbisel intigessdiitisn
vy -+ B[P EEE ]
B[i,w] = v; + B[i-1,w- w]
edse
Bfi,w] = B[I-1,w]

etbeeeR [y l==eR (1 lwy /A
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napsack 0-1 Example =~ e

2:(3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0 0 0 0 0 0 0 i=1

1] 00| 33 v, =3

2 0 w; =2

3 0 w =3

4 0 w-w; =1

If w; <=w //item i can be in the solution
If v; + B[i-1,w-w;] > B[i-1,w]
B[i,w] = v, + B[i-1,w- w]
else
Bli,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // w; > w
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napsack 0-1 Example =~ e

2:(3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0 0 0 0O_| O 0 0 i=1

1] ol o] 3] 33 v, =3

2 0 w; =2

3 0 w=4

4 0 W-W; = 2

If w; <=w //item i can be in the solution
If v; + B[i-1,w-w;] > B[i-1,w]
B[i,w] = v, + B[i-1,w- w]
else
Bli,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // w; > w
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napsack 0-1 Example =~ e

2:(3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0 0 0 0 0_| O 0 i=1

1] ol o] 3|3 [3P»3 ]| v=3

2 0 w; =2

3 0 w=5

4 0 W-w; = 3

If w; <=w //item i can be in the solution
If v; + B[i-1,w-w;] > B[i-1,w]
B[i,w] = v, + B[i-1,w- w]
else
Bli,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // w; > w
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napsack 0-1 Example o=

2:(3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0 0 0 0 0 0 0 1=2

1 0 %O 3 3 3 3 vi=4

2 0 0 w; =3

3 0 w=1

4 0 W-w; = -2

If Wy <=Wy /fYiesi iceamnbisel intigessdiitisn
vy -+ B[P EEE ]
B[i,w] = v; + B[i-1,w- w]
edse
Bfi,w] = B[I-1,w]

etbeeet [y l=et [ lwi /AW
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napsack 0-1 Example o=

2:(3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0 0 0 0 0 0 0 1=2

1 0 0 % 3 3 3 3 v, =4

2 0 0 3 w; =3

3 0 w=2

4 0 w-w; = -1

If w; <=w //item i can be in the solution
If v; + B[i-1,w-w;] > B[i-1,w]
Bli,w] =v; + B[i-1,w- w;]
else
Bli,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // w; > w
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napsack 0-1 Example o=

2:(3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5
0 0 0 0 0 0 0 =2
1 010 3 3 3 3 Vi =4
21 0] 0 3P4 W, =3
3 0 w=3
4 0 w-w; =0
iff wy<e=wy /fiiesmi iosaniseimttisessdiition
vy -+ B[P EEE ]
B[i,w] = v, + B[i-1,w- wj]
eddze
Bfiw] = Bfi-1,w]

chteeri} [iwyl==eR 11wyl /AW W
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napsack 0-1 Example o=

2:(3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0 0 0 0 0 0 0 1=2

1 0 0_] 3 3 3 3 vi=4

2 0 0 3 2% 4 w; =3

3 0 w =4

4 0 w-w; =1

If w; <=w //item i can be in the solution
If v; + B[i-1,w-w;] > B[i-1,w]
B[i,w] = v, + B[i-1,w- w]
else
Bli,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // w; > w
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napsack 0-1 Example o=

2:(3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0 0 0 0 0 0 0 =2

1 0 0 3—_3 3 3 vi=4

2T 00 3] 4 757 w=3

3 0 w=5

4 0 W-W; = 2

If w; <=w //item i can be in the solution
If v; + B[i-1,w-w;] > B[i-1,w]
B[i,w] = v, + B[i-1,w- w]
else
Bli,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // w; > w
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napsack 0-1 Example o=

2:(3,4)
3:(4,5)
4: (5,6)
i/w|0 1 2 3 4 5

0 0 0 0 0 0 0 i=3

1 0 0 3 3 3 3 v;=5

2 0 |,0 [,3 |, 4 4 7 w; =4

3 0 |Yo [V3 [V4 w=1.3

4 0 w-w;=-3..-1

If Wy <=Wy /fYiesi iceamnbisel intigessdiitisn
vy -+ B[P EEE ]
B[i,w] = v; + B[i-1,w- w]
edse
Bfi,w] = B[I-1,w]

ebbeest =B [ lwy i AW
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napsack 0-1 Example o=

2:(3,4)
3:(4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0 0 0 0 0 0 0 =3

1 0 0 3 3 3 3 V=5

2 0 L0 3 4 4 7 w; =4

310 0 3 Z 5 w=4

4 0 w-w; =0

If Wy <=Wy /fYiesi iceamnbisel intigessdiitisn
vy -+ B[P EEE ]
B[i,w] = v; + B[i-1,w- w]
edse
Bfi,w] = B[I-1,w]

chbeeeR [y l=—aR [yl AW
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napsack 0-1 Example o=

2:(3,4)
3:(4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0 0 0 0 0 0 0 i=3

1 0 0 3 3 3 3 Vi=5

2 0 0 3 4 4 | 7 w; =4

31 01| 0] 3| 4|5 Y7 | wW=53

4 0 w-w; =1

If Wy <=Wy /fYiesi iceamnbisel intigessdiitisn
vy -+ B[ LB ]
B[i,w] = v; + B[i-1,w- w]
edse
Bll,w] = B[I-1,w]
cdbeeeR} [ 1==eR L1 1 1wy I/ A >
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napsack 0-1 Example o=

2:(3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0 0 0 0 0 0 0 i=4

1 0 0 3 3 3 3 Vi=6

2 0 0 3 4 4 7 wW; =5

3100 |,3]|,4],5]| 7 | w=L4

A o [Yo [Y3 [Y4 |[V¥5 w-w; = -4..-1

If Wy <=Wy /fYiesi iceamnbisel intigessdiitisn
vy -+ B[P EEE ]
B[i,w] = v; + B[i-1,w- w]
edse
Bfi,w] = B[I-1,w]

ebbeest =B [ lwy i AW
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napsack 0-1 Example o=

2:(3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5

0| 0 0 0 0 0 0 | iz4

1| 0 0 3 3 3 3 | v,=6

2 | 0 0 3 4 4 7 | w;=5

310 | 0| 3| 4|5 | 7 |W=>

4 lolo| 3|45 V7 | ww=0

If Wy <=Wy /fYiesi iceamnbisel intigessdiitisn
vy -+ B[P EEE ]
B[i,w] = v; + B[i-1,w- w]
edse
Bll,w] = B[I-1,w]

chbeeeR [y l=—aR [yl AW
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Knapsack 0-1 Example e

1: (2,3
2:(3,4)
3:(4,5)
4: (5,6)
1/w|0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 14
3 0 0 3 4 5 I
4 0 0 3 4 5 /
We’re DONE!!

The max possible value that can be carried in this knapsack is $7
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II Knapsack 0-1 Algorithm

* This algorithm only finds the max possible value that
can be carried in the knapsack
o The value in B[n,W]

* To know the items that make this maximum value, we
need to trace back through the table.
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Knapsack 0-1 Algorithm
Finding the ltems

e Leti=nandk =W
if B[i, k] # B[i-1, k] then
mark the it item as in the knapsack

1 =1-1, k = k-w;
else
i =i-1 // Assume the i" item is not in the knapsack
// Could it be in the optimally packed knapsack?




napsac gorithm 555 fnapsacs

Finding the Items 2: (3,4)
3: (4,5)
4: (5,6)
1/w |0 1 2 3 4 5 _
0 0 0 0 0 0 0 1=4
1 ol ol 3] 3] 3] 3 k=15
2 | 0ol o ]| 3| 4] a7 Vi =6
3] 0] 01 3| 4] 5 a7 ‘I’S"i[l‘k?_7
| K] =
41010 | 3] 4|5 [\7) BliLK] =7
i=n, k=W
while i k>0

If B/i, k] # B/i-1, k] then
mark the it" item as in the knapsack
i =i-1, k = k-w,

else
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napsac gorithm 555 fnapsacs

Finding the Items 2: (3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5 _
0 0 0 0 0 0 0 1=3
1ol o] 3] 3] 3] 3 k=5
2 | o o[ 3] 4| 4 7\| V%>
3] 0] 0] 3] 4] 5 |\7 VBVi:i_k;r:7
41 ol ol 3] 45| 7 B[i’-l,k]:7
i=n, k=W
while i, k>0

If B/i, k] # B/i-1, k] then
mark the it" item as in the knapsack
i =i-1, k = k-w,

else
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| ltems: ~Knapsack:
nap_sac_ gorlthm 1 (2.3) Item 2
Finding the Items 2: (3,4)
3: (4,5)
4: (5,6)
1/w|0 1 2 3 4 5
0 0 0 0 0 0 0 :<=25
1 | 0| 0 | 343 1] 3 |/3) =
2 [0 o | 3] a4 [a+7)]] V=4
31 0] 0] 3] 4|57 \I/BVi[I_k?:7
4 | 0 0 3 4 5 7 B[i’-l,k]:3
K—w; =2
i=n, k=W
while i, k>0

If B/i, k] # B/i-1, k] then
mark the it" item as in the knapsack
i =i-1, k = k-w,

else
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-1 ltems: ~Knapsack;
nap_sac_ gorlthm 1:(2,3) Item 2
Finding the Items 2:34) | Jtem 1
3:(4,5)
4: (5,6)
i/wlo |1 [2 [3 |4 |5 |
0 | 04« O [/O\] O | O | O =1
1| 0 | L3/ 3 | 3| 3 k=2
2 | 0] 0| 3| 4| 4| 7 Vi =3
3]0 03| 4]5]|7 \|/3Vi[|_k§:3
41 0ol o] 3] 4|57 Bli.1,K] = 0
K-w;=0
i=n, k=W
while i, k>0

If B/i, k] # B/i-1, k] then
mark the it" item as in the knapsack
i =i-1, k = k-w,

else
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-1 ltems: ~Knapsack;
nap_sac_ gorlthm 1:(2,3) Item 2
Finding the Items 2:34) | Jtem 1
3: (4,5)
4: (5,6)
i/wlo |1 [2 [3 |4 |5
0| 04 0 [/0N] 0| 0] 0 =1
1| 0 | L3/ 3 | 3| 3 k=2
2 | 0] 0| 3| 4| 4| 7 Vi =3
3]0 03| 4]5]|7 \|/3Vi[|_k§:3
41 oo 3] 4] 5|7 Bli-LK] = 0
K—w;=0

k=0, so we’re DONE!

The optimal knapsack should contain:
Item 1 and Item 2
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napsack 0-1 Problem — Run Time

forw=0to W

B[O,w] =0 O(W)
fori=1ton
B[i,0] =0 O(n)
fori=1ton Repeat n times
forw=0toW O(W)
< the rest of the code >
What is the running time of this algorithm?
O(n*W)
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Running time

forw=0to W O(W)
B[O,w] =0

fori=0ton _
B[i.0] = 0 Repeat n times
forw=0to W

O(W)

< the rest of the code >

What Is the running time of this algorithm?
O(n*W)

d
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Multistage Graphs

Multistage Graph G(V,E) A directed graph in which
the vertices are partitioned into k disjoint sets Vi1,
1<i<k

e [f<uv>€E,thenu € Viand v € Vi+1 for some I,
1<i<k

IV1|= |Vk|=1, and s(source) is V1 and t(sink) iIs VK
* c(I,]))=cost of edge <I,}>

« Multistage graph problem- Find a minimum-cost
path from s to t of the Multistage Graph.

ﬂ
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Shortest Path in Multistage Graph ‘

* To find a shortest path 1 a multi-stage graph

5 6

* Apply the greedy method :

the shortest path from Sto T :
] +2+5=8

o,
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II Shortest Path in Multistage Graph.. cntd

 The greedy method can not be applied to this case:
(S, A.D, T) 1+4+18=23.

* The real shortest path 1s:
(S,C.F. T) 5+2+2=0.

oo
ﬂ
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I ynamic Programming Approach

* Dynamic programming (Forward Approach):

@Hhhd(ﬁ? T)

S

+ d(S. T) = min{1+d(A, T), 2¢d(B, T), 5+d(C, T)}

d(A,T) = min{4+d(D,T), 11+d(E,T)} 2 >(D)-._ 40D
= min{4+18, 11+13} = 22. @ _ﬂ_)@

d(E. T)
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Steps to Designing a Dynamic Programming \
Algorithm

1. Characterize optimal sub-structure

2. Recursively define the value of an optimal solution
3. Compute the value bottom up

4. Construct an optimal solution
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Solution- Multi Stage Graphs

Step 1- Characterize optimal sub-structure

« Every s to t path Is the result of a sequence of k-2
decisions
* The principle of optimality holds (Why?)

* The principle of optimality states that whatever may
be Initial state and initial decision are , the remaining
decision must constitute an optimal policy with
regard to the state resulting from the first decision.

ﬂ
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Step 2 - Recursively define the value of an optimal
solution

p(i, J) = a minimum cost path from vertex j in Vi
to vertex t,

cost(l, J) = cost of path p(i, J)

cost(i, j) = mm fe(j.1) T cost(i T 1.1)}

czjj}rE

bcost(1,]) = minv {bcost(1—1,1) T c(L, )}
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Step 3- Compute the value bottom up
 Solve with forward approach or backward approach
Step 4 - Construct an optimal solution

* Remember the best values along the path and
construct the solution
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Algorithm FGraph(G, k,n, p)

// The input is a k-stage graph G = (V,E) with n vertices
// indexed in order of stages. E is a set of edges and cli, J]
// 1s the cost of (i, 7). p[1: k] is a minimum-cost path.

costin] :=0.0;
for j:=n—-14¢o01 step —1 do
{ // Compute cost|j].

- Let 7 be a vertex such that (j, ) is an edge
of G and c[j, ] + cost[r] is minimum;
cost[j] := c[j, 7] + cost[r];
djj] = r;

1

// Find a minimum-cost path.

pll] :=1; plk] := n; '

for j:=2to L ~1do ply] := dp[j - 1]]

)



Solve the following MSG problems

* The greedy method can not be applied to this case:
(S,A.D, T) 1+4+18=23.

* The real shortest path 1s:
(S,C,F.T) 5+2+2=0.

d
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All Pairs Shortest Path
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“Shortest Path”

* Given graph G=(V,E) with positive weights W(u,v) on
the edges (u, v), and given two vertices a and b.

* Find the “shortest path” from a to b (where the length
of the path is the sum of the edge weights on the

path). Perhaps we should call this the minimum
weight path!
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Dynamic Programming

* The problem can be recursively defined (by the
sub-problem of the same kind)

 Atable is used to store the solutions of the
subproblems (the meaning of “programming”
before the age of computers).
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Designing a DP solution

How are the subproblems defined?
Where are the solutions stored?
How are the base values computed?

How do we compute each entry from other entries In
the table?

 \What is the order in which we fill in the table?

e 4
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Dynamic Programming

let {1,2,...,n} denote the set of vertices.

Sub-problem formulation:

* M[1,J,k] = min length of any path from i to j that
uses at most k edges.

All paths have at most n-1 edges, so 1 <k <n-1.
Minimum paths from i to j are found in M[i,j,n-1]

ﬂ
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To simplify the notation, we assume thatV = {1,2,... ,n}.

Assume that the graph is represented by an n x n
matrix with the weights of the edges:

(0 ifi = 4,
wi; =4 w(t,j) ifezjand(z,5) € E,
| o© fi % jand (4,5) ¢ E.

Output Format: an n x n matrix D = [d;;] where d;;
Is the length of the shortest path from vertex : to j.

ﬂ
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Recursive formula
* Ali,j]= min{ min,_, ._.{ A<Yi K]+ ARYK,j1}, costli,j]}

+ AH[i j]= ming AR KA T3, AT

A4, j) = min {lI}}ﬂiE:l {AF Y, k) + AP Yk, )}, cost(i, §)}

ﬂ

A5G, g) = min {A*(0,5), AN R) + AT (R 9)), k> 1
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II Algorithms- All Pairs Shortest Path

0 Algorithm AllPaths(cost, A,n)

1 /] cost[l:n,1:n]is the cost adjacency matrix of a graph with
2 /] nvertices; A[i,] is the cost of a shortest path from vertex
3 /] itovertex j. costli,i] = 0.0, for 1 <i<n.

4

0 for ::=1to n do

6 for j:=1tondo

7 Ali,j| := costli, j]; /] Copy cost into A.

8 for £ :=1to ndo

9 for 1:=1to ndo

10 for 7:=1to n do

11 Ali,g] = min(A, 7], Ali, k] + Alk, 7]);
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Example
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Al 1 2 3 A1 2 3
1l 0 4 11
1 10 4 11
21 6 0O 2
3173 7 0
A2 | 1 2 3
A3 1 2 3
1 0O 4 6
1 0O 4 6
>l 6 0 2
2 5 o 2
3| 3 7 O
3 7 0

S — .
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Running time analysis

Fork=1ton-1
forj=1ton
fori=1ton

MIi,j,k] = min{min{M[i,x,k-1] + w(x,j): X in V/},
MI[i,j,k-1]}

« How many entries do we need to compute? O(n3)
1<i<n;1<j <n;1<k<n-1

ﬂ
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Applications

 Shortest paths in directed graphs
* Optimal routing.

 Fast computation of Pathfinder networks. Widest
paths/Maximum bandwidth paths
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Single Source Shortest Path

* When there are no cycles of negative length, there is
shortest path between any two vertices of n-vertex
graph that has most n-1 edges on it

* |f there are cyles, elimination of cycles from path
results in another path with same source & same
destination
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Step 1-Optimal Substructure

-tet dist'lu| be the length of a shortest path from the source verte:
to vertex u under the constraint that the shortest path contains at mos
edges. Then, dist'[u] = costv,u], 1 <u <n. As noted earlier, when th
are 110 cycles of negative length, we can limit our search for shortest pa
to paths with at most n — 1 edges. Hence, dist"[u] s the length of
unrestricted shortest path from v to v.
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1. If the shortest path from v to u with at most £, £ > 1, edges has
more than k — 1 edges, then dist*[u] = dist"~"[u].

2. 1f the shortest path from v to u with at most k, £ > 1, edges

exactly k edges, then it 15 made up of a shortest path from v to so
vertex 7 followed by the edge (,u). The path from v to j has k

edges, and its leng

(1, u) 13 in the erap.
shortest path, the ¢
value for 4.

) are candic

that minm

zes dist* i

his dist®"[j]. ALl vertices 1 such that the e
ates for 7. S

nee we are mterested 1

+ cost[1, u] is the corr

1 n v v !



IISfep 2- Define Recursive formula

distk[u] = min {dz'stkﬁl[u], min {dzstk 1[] + costli, ul}}

!

This recurrence can be used to compute dist* from dist*~! fork =2,3,. .,
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=)

(a) A directed graph

ﬂ
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Step 4 is optional
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Algorithm

1 Algorithm BellmanFord(v, cost, dist, n)

2 // Single-source/all-destinations shortest

3 // paths with negative edge costs

4

5 { for ::=1to n do / / Initialize dist.

6 dist]i] := cost|v, 1];

7 for k:=2ton—1do

8 for each u such that u # v and u has

9 at least one incoming edge do
10 for each (¢, u) in the graph do

11 if dist[u] > dist[i] + cost[i,u] then
12 dist|u] 1= dist]i] + cost|i, u];
13 }
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