
9/23/2022 1 

Vectors  

SMITA SANKHE 

Assistant Professor  

Department of Computer Engineering  

 



9/23/2022 2 2 

Arrays  

•Array is a collection of similar type of elements that 
have contiguous memory location. Java array is an 
object the contains elements of similar data type. We 
can store only fixed set of elements in a java array. 

• In java, array is an object. 

•There are two types of array. 
• Single Dimensional Array 

• Multidimensional Array 

 
 



9/23/2022 3 3 

Single dimensional Array 

class Testarray 

{   

public static void main(String args[]){   

  

int a[]=new int[4];//declaration and instantiation   

a[0]=10;//initialization   

a[1]=20;   

a[2]=70;   

a[3]=40;   

  

//printing array   

for(int i=0;i<a.length;i++)//length is the property of array   

System.out.println(a[i]);    

}}   

int a[]={33,3,4,5};//declaration, instantiation and initialization done together 



9/23/2022 4 4 

Multidimensional Array 

• In Java, multidimensional arrays are actually arrays of 
arrays.  

• int[][] arr=new int[3][3];//3 row and 3 columns 
class Testarray3{   

public static void main(String args[]){   

 int arr[][]={{1,2,3},{2,4,5},{4,4,5}};   //declaring and initializing 2D array     

for(int i=0;i<3;i++){  //printing 2D array   

 for(int j=0;j<3;j++){   

   System.out.print(arr[i][j]+" ");   

 }   

 System.out.println();   

}   

   

}}   

 



9/23/2022 5 5 

Jagged Array 

• It is a new feature supported by Java, where column 
size varies, ie each row may have varying length. 

10 20 30 

 11 22 22 33 44 

 77 88 

int twoD[][] = new int[3][];  

twoD[0] = new int[3];  

twoD[1] = new int[5];  

twoD[2] = new int[2];  

 

 

 



9/23/2022 6 6 

Array of Objects 

class Student { 
   int marks; 
} 
Student studentArray[] = new Student[7]; 

• The above statement creates the array which can hold references to seven 
Student objects. It doesn't create the Student objects themselves. They 
have to be created separately using the constructor of the Student class. 
The studentArray contains seven memory spaces in which the address of 
seven Student objects may be stored. If we try to access the Student 
objects even before creating them, run time errors would occur. 
for ( int i=0; i<studentArray.length; i++) { 
studentArray[i]=new Student(); 
} 

• The above for loop creates seven Student objects and assigns their 
reference to the array elements. Now, a statement like the following 
would be valid.  

• studentArray[0].marks=100; 

 



9/23/2022 7 7 

Foreach loop 
• JDK 1.5 introduced a new for loop known as foreach loop or enhanced for 

loop, which enables you to traverse the complete array sequentially without 
using an index variable. 

Example: 

public class TestArray  

{  

public static void main(String[] args)  

{ 

 double[] myList = {1.9, 2.9, 3.4, 3.5};  

// Print all the array elements  

for (double element: myList)  

{ System.out.println(element); 

 } 

 } 

 } 



9/23/2022 8 8 

Wrapper Classes 

• Java is an object-oriented language and can view everything as an object. 
Wrapper class in java provides the mechanism to convert primitive data 
types into objects and objects into primitive data types. The automatic 
conversion of primitive into object is known and autoboxing and vice-versa 
unboxing. The object of the wrapper class contains or wraps its respective 

primitive data type.  

int k = 100; //The int data type k is converted into an object, it1 using Integer   class. 
Autoboxing /wrapping 
Integer it1 = new Integer(k); 

int m = it1.intValue(); Unboxing/Unwrapping 

System.out.println(m*m); // prints 10000 

 



9/23/2022 9 9 

Wrapper Classes 

• As pointed out 
earlier, collections 
cannot handle basic 
data types such as int, 
float. They can 
converted into object 
types by using the 
wrapper classes 
supported by 
java.lang package. 

 

Basic Type Wrapper 
Class 

boolean Boolean 

char Character 

int Integer 

long Long 

float Float 

double Double 



9/23/2022 10 10 

Vectors 
• Vector implements a dynamic array of objects. 

• Vector proves to be very useful if you don't know the size of the array in 
advance or you just need one that can change sizes over the lifetime of a 
program. 

•  Vector can contain heterogeneous objects 

• We cannot store elements of primitive data type; first it need to be converted 
to objects. A vector can store any objects. 

• Its defined in java.util package. 

• A vector has an initial capacity, if this capacity is reached then size of vector 
automatically increases. 

• To traverse elements of a vector class we use Enumeration interface. 

• Each vector tries to optimize storage management by maintaining a capacity and 
a capacityIncrement arguments. 

• This class is a member of the Java Collections Framework. 

• default initial capacity of vectors are 10. 

 



9/23/2022 11 11 

Constructor and Description 
 

1. Vector( ) This constructor creates a default vector, which has an initial 

size of 10 

2. Vector(int size)This constructor accepts an argument that equals to the 
required size, and creates a vector whose initial capacity is specified by 
size: 

3.Vector(int size, int incr)This constructor creates a vector whose initial 
capacity is specified by size and whose increment is specified by incr. The 
increment specifies the number of elements to allocate each time that a 
vector is resized upward 

 



9/23/2022 12 12 

Sample Program 
/*This Java Example shows how to create an object of Java Vector. It also shows how to add elements to Vector 

and how get the same from Vector.*/  

import java.util.Iterator; 

import java.util.Vector; 

 public class SimpleVectorExample  

{ 

  public static void main(String[] args) { 

     //create a Vector object 

    Vector v = new Vector(); 

      v.add("1"); 

    v.add("2"); 

    v.add("3");   /*  Add elements to Vector using  boolean add(Object o) method    */ 

    System.out.println("Getting elements of Vector"); 

      System.out.println(v.get(0)); 

    System.out.println(v.get(1)); 

    System.out.println(v.get(2));    /*Use get method of Java Vector class to display elements of  
  Vector.  */ 

  } 

} 

 

 



9/23/2022 13 13 

import java.util.*;  

public class VectorDemo  

{ 

 public static void main(String args[])  

{  

 Vector v = new Vector(3, 2); 

 System.out.println("Initial size: " + v.size());  

System.out.println("Initial capacity: " + v.capacity()); 

 v.addElement(new Integer(1));  

v.addElement(new Integer(2));  

v.addElement(new Integer(3)); 

 v.addElement(new Integer(4)); 

System.out.println("Capacity after four additions: " + v.capacity()); 

  



9/23/2022 14 14 

v.addElement(new Double(5.45));  

System.out.println("Current capacity: " + v.capacity()); 

 v.addElement(new Double(6.08));  

System.out.println("Current capacity: " + v.capacity());  

v.addElement(new Float(7.4));  

System.out.println("Current capacity: " + v.capacity()); 

if(v.contains(new Integer(3))) 

 System.out.println("Vector contains 3."); // enumerate the 
elements in the vector.  

Enumeration vEnum = v.elements();  

System.out.println("\nElements in vector:");  

while(vEnum.hasMoreElements())  

System.out.print(vEnum.nextElement() + " ");} } 

 



9/23/2022 15 15 

Methods of Vector Class 
1. boolean add(E e) This method appends the specified element to the end of this Vector. 

2.void add(int index, E element) This method inserts the specified element at the specified position in this Vector. 

3.boolean addAll(Collection<? extends E> c) This method appends all of the elements in the specified Collection 
to the end of this Vector. 

4.boolean addAll(int index, Collection<? extends E> c) This method inserts all of the elements in the specified 
Collection into this Vector at the specified position. 

5.void addElement(E obj) This method adds the specified component to the end of this vector, increasing its size by 
one. 

6.int capacity() This method returns the current capacity of this vector. 

7.void clear() This method removes all of the elements from this vector. 

8.clone clone() This method returns a clone of this vector. 

9.boolean contains(Object o) This method returns true if this vector contains the specified element. 

10.boolean containsAll(Collection<?> c) This method returns true if this Vector contains all of the elements in the 
specified Collection. 

11.void copyInto(Object[ ] anArray) This method copies the components of this vector into the specified array. 

12. E elementAt(int index) This method returns the component at the specified index. 

13.Enumeration<E> elements() This method returns an enumeration of the components of this vector. 

14.void ensureCapacity(int minCapacity) This method increases the capacity of this vector, if necessary, to ensure 
that it can hold at least the number of components specified by the minimum capacity argument. 

 

 

http://www.tutorialspoint.com/java/util/vector_add.htm
http://www.tutorialspoint.com/java/util/vector_add.htm
http://www.tutorialspoint.com/java/util/vector_add.htm
http://www.tutorialspoint.com/java/util/vector_add.htm
http://www.tutorialspoint.com/java/util/vector_add_index.htm
http://www.tutorialspoint.com/java/util/vector_add_index.htm
http://www.tutorialspoint.com/java/util/vector_add_index.htm
http://www.tutorialspoint.com/java/util/vector_add_index.htm
http://www.tutorialspoint.com/java/util/vector_addall.htm
http://www.tutorialspoint.com/java/util/vector_addall.htm
http://www.tutorialspoint.com/java/util/vector_addall.htm
http://www.tutorialspoint.com/java/util/vector_addall_index.htm
http://www.tutorialspoint.com/java/util/vector_addall_index.htm
http://www.tutorialspoint.com/java/util/vector_addall_index.htm
http://www.tutorialspoint.com/java/util/vector_addall_index.htm
http://www.tutorialspoint.com/java/util/vector_addall_index.htm
http://www.tutorialspoint.com/java/util/vector_addall_index.htm
http://www.tutorialspoint.com/java/util/vector_addelement.htm
http://www.tutorialspoint.com/java/util/vector_addelement.htm
http://www.tutorialspoint.com/java/util/vector_addelement.htm
http://www.tutorialspoint.com/java/util/vector_addelement.htm
http://www.tutorialspoint.com/java/util/vector_addelement.htm
http://www.tutorialspoint.com/java/util/vector_capacity.htm
http://www.tutorialspoint.com/java/util/vector_clear.htm
http://www.tutorialspoint.com/java/util/vector_clone.htm
http://www.tutorialspoint.com/java/util/vector_contains.htm
http://www.tutorialspoint.com/java/util/vector_containsall.htm
http://www.tutorialspoint.com/java/util/vector_containsall.htm
http://www.tutorialspoint.com/java/util/vector_containsall.htm
http://www.tutorialspoint.com/java/util/vector_copyinto.htm
http://www.tutorialspoint.com/java/util/vector_copyinto.htm
http://www.tutorialspoint.com/java/util/vector_copyinto.htm
http://www.tutorialspoint.com/java/util/vector_copyinto.htm
http://www.tutorialspoint.com/java/util/vector_copyinto.htm
http://www.tutorialspoint.com/java/util/vector_elementat.htm
http://www.tutorialspoint.com/java/util/vector_elementat.htm
http://www.tutorialspoint.com/java/util/vector_elementat.htm
http://www.tutorialspoint.com/java/util/vector_elementat.htm
http://www.tutorialspoint.com/java/util/vector_elementat.htm
http://www.tutorialspoint.com/java/util/vector_elementat.htm
http://www.tutorialspoint.com/java/util/vector_elements.htm
http://www.tutorialspoint.com/java/util/vector_ensurecapacity.htm
http://www.tutorialspoint.com/java/util/vector_ensurecapacity.htm
http://www.tutorialspoint.com/java/util/vector_ensurecapacity.htm
http://www.tutorialspoint.com/java/util/vector_ensurecapacity.htm
http://www.tutorialspoint.com/java/util/vector_ensurecapacity.htm
http://www.tutorialspoint.com/java/util/vector_ensurecapacity.htm
http://www.tutorialspoint.com/java/util/vector_ensurecapacity.htm


9/23/2022 16 16 

Ctd.. 
15.boolean equals(Object o) This method compares the specified Object with this Vector for equality. 

16.E firstElement() This method returns the first component (the item at index 0) of this vector. 

17.E get(int index) This method returns the element at the specified position in this Vector. 

18int hashCode()This method returns the hash code value for this Vector. 

19int indexOf(Object o)This method returns the index of the first occurrence of the specified element in this vector, or -1 
if this vector does not contain the element. 

20int indexOf(Object o, int index)This method returns the index of the first occurrence of the specified element in this 
vector, searching forwards from index, or returns -1 if the element is not found. 

21void insertElementAt(E obj, int index)This method inserts the specified object as a component in this vector at the 
specified index. 

22boolean isEmpty()This method tests if this vector has no components. 

23E lastElement()This method returns the last component of the vector. 

24int lastIndexOf(Object o)This method returns the index of the last occurrence of the specified element in this vector, 
or -1 if this vector does not contain the element. 

25int lastIndexOf(Object o, int index) This method returns the index of the last occurrence of the specified element in 
this vector, searching backwards from index, or returns -1 if the element is not found. 

26E remove(int index) This method removes the element at the specified position in this Vector. 

27boolean remove(Object o) This method removes the first occurrence of the specified element in this Vector If the 
Vector does not contain the element, it is unchanged. 

28boolean removeAll(Collection<?> c) This method removes from this Vector all of its elements that are contained in the 
specified Collection. 

29void removeAllElements() This method removes all components from this vector and sets its size to zero. 

30boolean removeElement(Object obj) This method removes the first occurrence of the argument from this vector. 

http://www.tutorialspoint.com/java/util/vector_equals.htm
http://www.tutorialspoint.com/java/util/vector_firstelement.htm
http://www.tutorialspoint.com/java/util/vector_firstelement.htm
http://www.tutorialspoint.com/java/util/vector_firstelement.htm
http://www.tutorialspoint.com/java/util/vector_get.htm
http://www.tutorialspoint.com/java/util/vector_get.htm
http://www.tutorialspoint.com/java/util/vector_get.htm
http://www.tutorialspoint.com/java/util/vector_get.htm
http://www.tutorialspoint.com/java/util/vector_hashcode.htm
http://www.tutorialspoint.com/java/util/vector_hashcode.htm
http://www.tutorialspoint.com/java/util/vector_hashcode.htm
http://www.tutorialspoint.com/java/util/vector_indexof.htm
http://www.tutorialspoint.com/java/util/vector_indexof.htm
http://www.tutorialspoint.com/java/util/vector_indexof.htm
http://www.tutorialspoint.com/java/util/vector_indexof.htm
http://www.tutorialspoint.com/java/util/vector_indexof_index.htm
http://www.tutorialspoint.com/java/util/vector_indexof_index.htm
http://www.tutorialspoint.com/java/util/vector_indexof_index.htm
http://www.tutorialspoint.com/java/util/vector_indexof_index.htm
http://www.tutorialspoint.com/java/util/vector_indexof_index.htm
http://www.tutorialspoint.com/java/util/vector_indexof_index.htm
http://www.tutorialspoint.com/java/util/vector_insertelementat.htm
http://www.tutorialspoint.com/java/util/vector_insertelementat.htm
http://www.tutorialspoint.com/java/util/vector_insertelementat.htm
http://www.tutorialspoint.com/java/util/vector_insertelementat.htm
http://www.tutorialspoint.com/java/util/vector_insertelementat.htm
http://www.tutorialspoint.com/java/util/vector_insertelementat.htm
http://www.tutorialspoint.com/java/util/vector_insertelementat.htm
http://www.tutorialspoint.com/java/util/vector_insertelementat.htm
http://www.tutorialspoint.com/java/util/vector_isempty.htm
http://www.tutorialspoint.com/java/util/vector_isempty.htm
http://www.tutorialspoint.com/java/util/vector_isempty.htm
http://www.tutorialspoint.com/java/util/vector_lastelement.htm
http://www.tutorialspoint.com/java/util/vector_lastelement.htm
http://www.tutorialspoint.com/java/util/vector_lastelement.htm
http://www.tutorialspoint.com/java/util/vector_lastindexof.htm
http://www.tutorialspoint.com/java/util/vector_lastindexof.htm
http://www.tutorialspoint.com/java/util/vector_lastindexof.htm
http://www.tutorialspoint.com/java/util/vector_lastindexof_index.htm
http://www.tutorialspoint.com/java/util/vector_lastindexof_index.htm
http://www.tutorialspoint.com/java/util/vector_lastindexof_index.htm
http://www.tutorialspoint.com/java/util/vector_lastindexof_index.htm
http://www.tutorialspoint.com/java/util/vector_lastindexof_index.htm
http://www.tutorialspoint.com/java/util/vector_lastindexof_index.htm
http://www.tutorialspoint.com/java/util/vector_remove.htm
http://www.tutorialspoint.com/java/util/vector_remove.htm
http://www.tutorialspoint.com/java/util/vector_remove.htm
http://www.tutorialspoint.com/java/util/vector_remove.htm
http://www.tutorialspoint.com/java/util/vector_remove_object.htm
http://www.tutorialspoint.com/java/util/vector_removeall.htm
http://www.tutorialspoint.com/java/util/vector_removeall.htm
http://www.tutorialspoint.com/java/util/vector_removeall.htm
http://www.tutorialspoint.com/java/util/vector_removeallelements.htm
http://www.tutorialspoint.com/java/util/vector_removeallelements.htm
http://www.tutorialspoint.com/java/util/vector_removeallelements.htm
http://www.tutorialspoint.com/java/util/vector_removeelement.htm
http://www.tutorialspoint.com/java/util/vector_removeelement.htm
http://www.tutorialspoint.com/java/util/vector_removeelement.htm
http://www.tutorialspoint.com/java/util/vector_removeelement.htm
http://www.tutorialspoint.com/java/util/vector_removeelement.htm


9/23/2022 17 17 

Ctd.. 

31void removeElementAt(int index)This method deletes the component at the specified index. 

32protected void removeRange(int fromIndex, int toIndex)This method removes from this List 
all of the elements whose index is between fromIndex, inclusive and toIndex, exclusive. 

33boolean retainAll(Collection<?> c)This method retains only the elements in this Vector that are 
contained in the specified Collection. 

34E set(int index, E element)This method replaces the element at the specified position in this 
Vector with the specified element. 

35void setElementAt(E obj, int index)This method sets the component at the specified index of 
this vector to be the specified object. 

36void setSize(int newSize)This method sets the size of this vector. 

37int size()This method returns the number of components in this vector. 

38List <E> subList(int fromIndex, int toIndex)This method returns a view of the portion of this 
List between fromIndex, inclusive, and toIndex, exclusive. 

39object[ ] toArray() 

This method returns an array containing all of the elements in this Vector in the correct order. 

40<T> T[ ] toArray(T[ ] a)This method returns an array containing all of the elements in this 
Vector in the correct order; the runtime type of the returned array is that of the specified array. 

41String toString()This method returns a string representation of this Vector, containing the String 
representation of each element. 

42void trimToSize()This method trims the capacity of this vector to be the vector's current size. 

 

http://www.tutorialspoint.com/java/util/vector_removeelementat.htm
http://www.tutorialspoint.com/java/util/vector_removerange.htm
http://www.tutorialspoint.com/java/util/vector_retainall.htm
http://www.tutorialspoint.com/java/util/vector_set.htm
http://www.tutorialspoint.com/java/util/vector_setelementat.htm
http://www.tutorialspoint.com/java/util/vector_setsize.htm
http://www.tutorialspoint.com/java/util/vector_size.htm
http://www.tutorialspoint.com/java/util/vector_sublist.htm
http://www.tutorialspoint.com/java/util/vector_toarray.htm
http://www.tutorialspoint.com/java/util/vector_toarray_t.htm
http://www.tutorialspoint.com/java/util/vector_tostring.htm
http://www.tutorialspoint.com/java/util/vector_trimtosize.htm


9/23/2022 18 18 

Differences between a Vector and an Array 

• Differences between a Vector and an Array 
- A vector is a dynamic array, whose size can be increased, where as an array size 
can not be changed. 
- Reserve space can be given for vector, where as for arrays can not. 
- A vector is a class where as an array is not. 
- Vectors can store any type of objects, where as an array can store only 
homogeneous values. 
Advantages of Arrays: 
- Arrays supports efficient random access to the members. 
- It is easy to sort an array. 
- They are more appropriate for storing fixed number of elements 
 
Disadvantages of Arrays: 
- Elements can not be deleted 
- Dynamic creation of arrays is not possible 
- Multiple data types can not be stored 
 
Advantages of Vector: 
- Size of the vector can be changed 
- Multiple objects can be stored 
- Elements can be deleted from a vector 
 
Disadvantages of Vector: 
- A vector is an object, memory consumption is more. 



9/23/2022 19 19 

•  It is easy to sort an array. 

• They are more appropriate for storing fixed number of 
elements 

• Disadvantages of Arrays: 
- Elements can not be deleted 
- Dynamic creation of arrays is not possible 
- Multiple data types can not be stored 
 
Advantages of Vector: 
- Size of the vector can be changed 
- Multiple objects can be stored 
- Elements can be deleted from a vector 
 
 



9/23/2022 20 20 

ArrayList 

• ArrayList is a part of collection framework and is 
present in java.util package.  

• It provides us with dynamic arrays in Java. Though, it 
may be slower than standard arrays but can be helpful 
in programs where lots of manipulation in the array is 
needed.  

• This class is found in java.util package. 

 
 



9/23/2022 21 21 

[1, 2, 3, 4, 5] 

[1, 2, 3, 5] 

1 2 3 5 



9/23/2022 22 22 

Object oriented concepts 

•Class - A class can be defined as a 
template/blue print that describes the 
behaviors/states that object of its type 
support. A class is a group of objects that has 
common properties. class is the logical 
entity only. A class in java can contain: 

1.  data member 

2.  method 

3.  constructor 

4.  block 

5.  class and interface 

 



9/23/2022 23 23 

Objects 
• Object - Objects have states and behaviors. Object is the physical 

as well as logical entity. Objects are created using following 
keywords. 

By new keyword- New keyword is used to allocate memory at runtime. 

By newInstance() method 

By clone() method 

By factory method etc. 

• An object that have no reference is known as annonymous object 
and it can be used when object is used only once. 

Eg:- new Classname(). 

•Object is an instance of a class.An object has three characteristics: 

• state: represents data (value) of an object. 

• behavior: represents the behavior (functionality) of an object such 
as deposit, withdraw etc. 

• identity: Object identity is typically implemented via a unique ID. 
The value of the ID is not visible to the external user. But,it is used 
internally by the JVM to identify each object uniquely. 

 

 



9/23/2022 24 24 

Example 
class Student1{   

 int id;//data member (also instance variable)   

 String name;//data member(also instance variable)    

 public static void main(String args[]){   

Student1 s1=new Student1();//creating an object of Stu
dent   

  System.out.println(s1.id);   

  System.out.println(s1.name);   

 }   

}   

 



9/23/2022 25 25 

Ctd.. 

class Rectangle{   

 int length;   

 int width;   

   

 void insert(int l,int w){   

  length=l;   

  width=w;   

 }   

   

 void calculateArea(){System.out.println(length*width);}   

   

 public static void main(String args[]){   

  Rectangle r1=new Rectangle(),r2=new Rectangle();//creating two objects   

     

  r1.insert(11,5);   

  r2.insert(3,15);   

   

  r1.calculateArea();   

  r2.calculateArea();   

}   

}   

 



9/23/2022 26 26 

Constructors 

• A constructor initializes an object when it is 
created. It has the same name as its class and is 
syntactically similar to a method. However, 
constructors have no explicit return type. 

• We use a constructor to give initial values to the 
instance variables defined by the class, or to 
perform any other startup procedures required to 
create a fully formed object. 

• All classes have constructors, whether you define 
one or not, because Java automatically provides a 
default constructor that initializes all member 
variables to zero. However, once you define your 
own constructor, the default constructor is no 
longer used. 

 

 

 



9/23/2022 27 27 

Types of Constructors 

• There are two types of constructors: 

o Default constructor (no-arg constructor): Default constructor provides the 
default values to the object like 0, null etc.  It will be invoked at the time of 
object creation.depending on the type. <class_name>(){}  

o Parameterized constructor: A constructor that have parameters. 
Parameterized constructor is used to provide different values to the distinct 
objects. 

• There is no copy constructor in java. But, we can copy the values of one 
object to another like copy constructor in C++. 

• By constructor 

• By assigning the values of one object into another 

• By clone() method of Object class 

 

 

 



9/23/2022 28 28 

Method 

• A Java method is a collection of statements 
that are grouped together to perform an 
operation. Syntax is 

modifier returnType nameOfMethod 
(Parameter List) { // method body } 

• Modifier is optional. There are two ways in 
which a method is called i.e. method returns 
a value or returning nothing 



9/23/2022 29 29 

Si 
no 

Constructor Method 

1 Constructor is used to 
initialize the state of an 
object. 

Method is used to expose 
behaviour of an object. 

2 Constructor must not have 
return type 

Method must have return type. 

3 Constructor is invoked 
implicitly. 

Method is invoked explicitly. 

4 The java compiler provides a 
default constructor if you 
don't have any constructor. 

Method is not provided by 
compiler in any case. 

5 Constructor name must be 
same as the class name 

Method name may or may not be 
same as class name. 



9/23/2022 30 30 

parametarized constructor 
 

•A default constructor does not have any parameter, but if you need, a 
constructor can have parameters. This helps you to assign initial value 
to an object at the time of its creation  

class MyClass { 

 int x; // Following is the constructor MyClass(int i ) { 

 x = i; 

 } 

 } 

public class ConsDemo { 

 public static void main(String args[]) { MyClass t1 = new MyClass( 10 
); 

 MyClass t2 = new MyClass( 20 ); System.out.println(t1.x + " " + t2.x); 
} } 



9/23/2022 31 31 

 This keyword 
• this is a keyword in Java which is used as a reference to the object of the current 

class, with in an instance method or a constructor. Using this you can refer the 
members of a class such as constructors, variables and methods. 

•  usage of java this keyword. 
1. this keyword can be used to refer current class instance variable. 

2. this() can be used to invoke current class constructor. 

3. this keyword can be used to invoke current class method 
(implicitly) 

4. this can be passed as an argument in the method call. 

5. this can be passed as argument in the constructor call. 

6. this keyword can also be used to return the current class instance. 

 



9/23/2022 32 32 

Destructor 

• A destructor is a special member function of a class that 
is executed whenever an object of it's class goes out of 
scope or whenever the delete expression is applied to a 
pointer to the object of that class. 

• A destructor will have exact same name as the class 
prefixed with a tilde (~) and it can neither return a value 
nor can it take any parameters. Destructor can be very 
useful for releasing resources before coming out of the 
program like closing files, releasing memories etc. 

 



9/23/2022 33 33 

Finalize() 

• The finalize() method is equivalent to 
a destructor of C++. When the job of an object 
is over, or to say, the object is no more used in 
the program, the object is known as garbage. 
The process of removing the object from a 
running program is known as garbage 
collection. finalize() method can be best utilized 
by the programmer to close the I/O streams, 
JDBC connections or socket handles etc. 



9/23/2022 34 34 

Access Specifiers in Java 

• Public: A class, method, constructor, interface etc declared public can be accessed from any other class. 
Therefore fields, methods, blocks declared inside a public class can be accessed from any class belonging to 
the Java Universe. However if the public class we are trying to access is in a different package, then the 
public class still need to be imported. Because of class inheritance, all public methods and variables of a 
class are inherited by its subclasses. 

• Protected:  Variables, methods and constructors which are declared protected in a superclass can be 
accessed only by the subclasses in other package or any class within the package of the protected members' 
class. The protected access modifier cannot be applied to class and interfaces. Methods, fields can be 
declared protected, however methods and fields in a interface cannot be declared protected. Protected access 
gives the subclass a chance to use the helper method or variable, while preventing a nonrelated class from 
trying to use it. 

• Private:  Methods, Variables and Constructors that are declared private can only be accessed within the 
declared class itself. Private access modifier is the most restrictive access level. Class and interfaces 
cannot be private. Variables that are declared private can be accessed outside the class if public getter 
methods are present in the class. Using the private modifier is the main way that an object encapsulates itself 
and hide data from the outside world. 

• Default:  Default access modifier means we do not explicitly declare an access modifier for a class, field, 
method, etc. A variable or method declared without any access control modifier is available to any other 
class in the same package. The fields in an interface are implicitly public static final and the methods in an 
interface are by default public. 

 

 



9/23/2022 35 35 

Scope of access specifiers 



9/23/2022 36 36 

Final,finally and finalize 

No final finally finalize 

1) Final is used to apply 
restrictions on class, 
method and variable. 
Final class can't be 
inherited, final method 
can't be overridden 
and final variable value 
can't be changed. 

Finally is used to 
place important 
code, it will be 
executed whether 
exception is handled 
or not. 

Finalize is used to 
perform clean up 
processing just before 
object is garbage 
collected. 

2) Final is a keyword. Finally is a block. Finalize is a method. 


