
9/23/2022 1

Tutorial 2

SMITA SANKHE
Assistant Professor

Department of Computer Engineering

9/23/2022 2

Outline

• Read input from user:

o Command line interpreter

o Buffered reader Class

o Scanner Class

• Static variable, method, class

• Operators in Java

• Control Statements

9/23/2022 3

To read input Data :
1. command line interpreter

Class Sample

{

public static void main(String args[])
{

For(int i=0;i<args.length();i++)

System.out.println(args[i]);

}

}

9/23/2022 4 4

To read input Data :
2. Using BufferedReader and InputStreamReader

import java.io.*;

class Sample{

public static void main(String args[])throws Exception

{

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter your name");

String name=br.readLine();

System.out.println("Welcome "+name);

System.out.println("Enter your number");

int n=Integer.parseInt(br.readLine());

System.out.println(“Number is "+n);

 }

}

9/23/2022 5 5

Using BufferedReader and InputStreamReader
(Contd)…

InputStreamReader class

InputStreamReader class can be used to read data from
keyboard. It performs two tasks:

• connects to input stream of keyboard

• converts the byte-oriented stream into character-oriented
stream

BufferedReader class

BufferedReader class can be used to read data line by line by
readLine() method.

System.in

When you type a value in a program, to retrieve it, you can
store in the in object of the System class .

9/23/2022 6 6

To read input Data
3. Using Scanner class

import java.util.Scanner;

class Sample{

 public static void main(String args[]){

 Scanner sc=new Scanner(System.in);

 System.out.println("Enter your id");

 int id=sc.nextInt();

 System.out.println("Enter your name");

 String name=sc.nextLine();

 System.out.println("Enter your salary");

 double salary=sc.nextDouble();

 System.out.println(“Id:"+id+" name:"+name+" Salary:"+salary);

 sc.close();

 }

9/23/2022 7 7

Using Scanner class(contd..)

• The Java Scanner class breaks the input into tokens using a delimiter that
is whitespace by default. It provides many methods to read and parse

various primitive values.

 Method Description

public String next() it returns the next token from the scanner.

public String nextLine() it moves the scanner position to the next line and
returns the value as a string.

public byte nextByte() it scans the next token as a byte.

public short nextShort() it scans the next token as a short value.

public int nextInt() it scans the next token as an int value.

public long nextLong() it scans the next token as a long value.

public float nextFloat() it scans the next token as a float value.

public double nextDouble() it scans the next token as a double value.

9/23/2022 8 8

Static variable

• When a variable is declared with the keyword “static”, its called a
“class variable”.

• All instances share the same copy of the variable. A class variable
can be accessed directly with the class, without the need to create a
instance. It makes your program memory efficient.

9/23/2022 9

Example
class Counter{

int count=0;//will get memory when instance is

created

Counter(){

count++;

System.out.println(count);

}

public static void main(String args[]){

Counter c1=new Counter();

Counter c2=new Counter();

Counter c3=new Counter();

 }

} Output:1 1 1

Since instance variable gets the memory at the time
of object creation, each object will have the copy of
the instance variable, if it is incremented, it won't
reflect to other objects. So each objects will have
the value 1 in the count variable.

class Counter2{

static int count=0;//will get memory only once and
retain its value

Counter2(){

count++;

System.out.println(count);

}

public static void main(String args[]){

Counter2 c1=new Counter2();

Counter2 c2=new Counter2();

Counter2 c3=new Counter2();

 }

} Output:1 2 3

static variable will get the memory only once, if any
object changes the value of the static variable, it
will retain its value. So its value is incremented

9

9/23/2022 10 10

Static method

• A static method belongs to the class rather
than object of a class.

• A static method can be invoked without the
need for creating an instance of a class.

• static method can access static data member
and can change the value of it.

• There are two main restrictions for the static
method. They are:

• The static method can not use non static data member or
call non-static method directly.

• this and super cannot be used in static context

9/23/2022 11 11

Example

class Difference {

 public static void main(String[] args)

 {

display(); //calling without object

 Difference t = new Difference();

t.show(); //calling using object

}

 static void display() { System.out.println("Programming is amazing."); }

void show(){

System.out.println("Java is awesome.");

}

 }

If you wish to call static method of another class then you have to write class
name while calling static method

9/23/2022 12 12

Static block

• Is used to initialize the static data member.

• It is executed before main method at the time of
classloading.

• So this is one of the way to execute a program
without main() method

class A2{

 static{System.out.println("static block is invoked");}

 public static void main(String args[]){

 System.out.println("Hello main");

 }

} OUTPUT: static block is invoked

 Hello main

9/23/2022 13

Operators in Java

• Operator in java is a symbol that is used to perform
operations.

• For example: +, -, *, / etc.

• There are many types of operators in java which are given
below:
o Unary Operator
o Arithmetic Operator
o Shift Operator
o Relational Operator
o Bitwise Operator
o Logical Operator
o Ternary Operator
o Assignment Operator

9/23/2022 14

9/23/2022 15

9/23/2022 16

Control STATEMENTS

Selection Statements
–Using if and if...else

–Nested if Statements

–Using switch Statements

–Conditional Operator

Repetition Statements
–Looping: while, do-while, and for

–Nested loops

–Using break and continue

9/23/2022 17

Selection Statements

 if Statements

 switch Statements

9/23/2022 18

if Statements

if (booleanExpression)

{
 statement(s);
}

Example:

if ((i > 0) && (i < 10))

 {
 System.out.println("i is an " +
 "integer between 0 and 10");
 }

9/23/2022 19

Note:

Adding a semicolon at the end of an if clause is a common
mistake.

if (radius >= 0);

{

 area = radius*radius*PI;

 System.out.println(

 "The area for the circle of radius " +

 radius + " is " + area);

}

This mistake is hard to find, because it is not a compilation
error or a runtime error, it is a logic error.

Wrong

9/23/2022 20

The if...else Statement

if (booleanExpression)

{

 statement(s)-for-the-true-case;

}

else

{

 statement(s)-for-the-false-case;

}

9/23/2022 21

if...else Example

if (radius >= 0)

{

 area = radius*radius*PI;

 System.out.println("The area for the “

 + “circle of radius " + radius +

 " is " + area);

}

else

{

 System.out.println("Negative input");

}

9/23/2022 22

Multiple Alternative if Statements

if (score >= 90)

 grade = ‘A’;

else

 if (score >= 80)

 grade = ‘B’;

 else

 if (score >= 70)

 grade = ‘C’;

 else

 if (score >=
60)

 grade = ‘D’;

 else

 grade = ‘F’;

if (score >= 90)

 grade = ‘A’;

else if (score >= 80)

 grade = ‘B’;

else if (score >= 70)

 grade = ‘C’;

else if (score >= 60)

 grade = ‘D’;

else

 grade = ‘F’;

9/23/2022 24

Note: (cont.)

Nothing is printed from the preceding statement. To
force the else clause to match the first if clause, you
must add a pair of braces:
int i = 1;

int j = 2;

int k = 3;

 if (i > j)

 {

 if (i > k)

 System.out.println("A");

 }

 else

 System.out.println("B");

Output: B.

9/23/2022 25

Switch Statement

• The Java switch statement executes one statement
from multiple conditions. It is like if-else-if ladder
statement.

• The switch statement works with byte, short, int, long,
enum types, String

 Example:

This program reads in number of years and loan amount
and computes the monthly payment and total payment.
The interest rate is determined by number of years.

9/23/2022 26

switch Statements

switch (year) {

 case 7: annualInterestRate = 7.25;

 break;

 case 15: annualInterestRate = 8.50;

 break;

 case 30: annualInterestRate = 9.0;

 break;

 default: System.out.println(

 "Wrong number of years, enter 7, 15, or 30");

}

numOfYears

7

15 30

default

Next

Statement

annualInterestRate=9.0 annualInterestRate=8.50 annualInterestRate=7.25 System.out.println("Wrong number of " +

 "years, enter 7, 15, or 30");

System.exit(0);

9/23/2022 27

switch Statement Rules
• The switch-expression must yield a value of char, byte,

short, or int type and must always be enclosed in
parentheses.

• The value1, ..., and valueN must have the same data

type as the value of the switch-expression.

• The resulting statements in the case statement are
executed when the value in the case statement
matches the value of the switch-expression. (The case
statements are executed in sequential order.)

• The keyword break is optional, but it should be used at

the end of each case in order to terminate the
remainder of the switch statement.

 If the break statement is not present, the next case
statement will be executed.

9/23/2022 28

switch Statement Rules, cont.

• The default case, which is optional, can be used

to perform actions when none of the specified
cases is true.

• The order of the cases (including the default

case) does not matter. However, it is a good
programming style to follow the logical
sequence of the cases and place the default
case at the end.

9/23/2022 29

Note:

Do not forget to use a break statement when one is
needed. For example, the following code always
displays Wrong number of years regardless of what
numOfYears is.

switch (numOfYears) {

 case 7: annualInterestRate = 7.25;

 case 15: annualInterestRate = 8.50;

 case 30: annualInterestRate = 9.0;

 default: System.out.println("Wrong number of

years");

}

9/23/2022 30

Repetitions

 while Loops

 do-while Loops

 for Loops

 for each loops

 break and continue

9/23/2022 31

while Loop Flow Chart

false

true

Statement(s)

Next

Statement

 Continuation

 condition?

while (continuation-condition)

{

 // loop-body;

}

9/23/2022 32

Example:

int i = 0;

while (i < 100) {

 System.out.println(

 "Welcome to Java!");

 i++;

}

false

true

System.out.println("Welcoem to Java!");

 i++;

Next

Statement

(i < 100)

 i = 0;

9/23/2022 33

Note:
Don’t use floating-point values for equality checking
in a loop control.

Since floating-point values are approximations,
using them could result in imprecise counter values
and inaccurate results.

This example uses int value for data. If a floating-
point type value is used for data, (data != 0) may be
true even though data is 0.

// data should be zero
double data = Math.pow(Math.sqrt(2), 2) - 2;

if (data == 0)
 System.out.println("data is zero");
else
 System.out.println("data is not zero");

9/23/2022 34

do-while Loop

false

true

Statement(s)

Next

Statement

 Continue

 condition?

do {

 // Loop body;

} while (continue-condition);

9/23/2022 35

for Loops

for (initial-action; loop-continuation-

condition; action-after-each-iteration) {

 //loop body;

}

int i = 0;

while (i < 100)

{

 System.out.println("Welcome to Java! ” + i);

 i++;

}

Example:

int i;

for (i = 0; i < 100; i++)

 {

 System.out.println("Welcome to Java! ” + i);

}

9/23/2022 36

 for Loop Flow Chart

Initial-Action

false

true

Action-After-

Each-Iteration

Statement(s)

(loop-body)

Next

Statement

 Continuation

 condition?

for (initial-action;

 loop-continuation-condition;

 action-after-each-iteration)

{

 //loop body;

}

9/23/2022 37

Note

Adding a semicolon at the end of the for clause
before the loop body is a common mistake, as
shown below:

for (int i=0; i<10; i++);

{

 System.out.println("i is " + i);

}

Wrong

9/23/2022 38

Note: (cont…)

Similarly, the following loop is also wrong:
int i=0;
while (i<10);
{
 System.out.println("i is " + i);
 i++;
}

In the case of the do loop, the following semicolon
is needed to end the loop.
int i=0;
do {
 System.out.println("i is " + i);
 i++;
} while (i<10);

Wrong

Correct

9/23/2022 39

for each loop

• In Java, there is another form of for loop (in addition
to standard for loop) to work with arrays and
collection, the enhanced for loop.

• Syntax of for-each loop

for(data_type item : collection)

 { ... }

9/23/2022 40

Example:

class ForLoop

{

public static void main(String[] args)

 {

char[] vowels = {'a', 'e', 'i', 'o', 'u'};

for (int i = 0; i < vowels.length; ++ i)
{

System.out.println(vowels[i]);

}

}

}

class foreachLoop
 {
public static void main(String[] args) {
char[] vowels = {'a', 'e', 'i', 'o', 'u'};
// foreach loop
for (char item: vowels) {
System.out.println(item);
}
}
}

9/23/2022 41

The break Keyword

false

true

Statement(s)

Next

Statement

 Continuation

 condition?

Statement(s)

break

9/23/2022 42

Break with label

• In Labelled Break Statement, we give
a label/name to a loop.

• When this break statement is encountered with
the label/name of the loop, it skips the execution
any statement after it and takes the control right out
of this labelled loop.

• And, the control goes to the first statement right
after the loop.

9/23/2022 43

Example: 1

public class LabelledBreak

{

public static void main(String... ar)

{

int i=7;

loop1:

while(i<20)

{

 if(i==10)

 break loop1;

System.out.println("i ="+i);

 i++;

}System.out.println("Out of the loop");

} //main method ends

} //class ends

OUTPUT:
i =7
i =8
i =9
 Out of the loop

9/23/2022 44

Example: 2
public class LabelledBreak

{

public static void main(String... ar)

{

loop2:

for(int i=0;i<2;i++)

for(int j=0;j<5;j++)

{

 if(j==2)

 break loop2;

 System.out.println("i = "+i);

 System.out.println("j = "+j);

}System.out.println("Out of the loop");

} //main method ends

} //class ends

OUTPUT:
 i = 0
j = 0
i = 0
j = 1
Out of the loop

9/23/2022 45

The continue Keyword

false

true

Statement(s)

Next

Statement

 Continue

 condition?

Statement(s)

continue

