
Java Abstraction

Abstraction in Java

• Abstraction is a process of hiding the implementation details
and showing only functionality to the user.

• Another way, it shows only essential things to the user and
hides the internal details,

• Example: sending SMS where you type the text and send the
message.

 You don't know the internal processing about the
message delivery.

• Abstraction lets you focus on what the object does instead of
how it does it.

• Ways to achieve Abstraction
• Abstract class (0 to 100%)

• Interface (100%)

Abstract Classes

Abstract methods

• You can declare an object without defining it:

 Person p;

• Similarly, you can declare a method without defining it:

 public abstract void draw(int size);

oNotice that the body of the method is missing

• A method that has been declared but not defined is an
abstract method

Example:
abstract class A {

abstract void callme();

// concrete methods are still allowed in
abstract classes

void callmetoo() {

System.out.println("This is a concrete
method.");

}

}

class B extends A {

void callme() {

System.out.println("B's implementation of
callme.");

}

}

}

class AbstractDemo {

public static void main(String args[])

{

B b = new B();

b.callme();

b.callmetoo();

}

O/P:
B's implementation of callme.
This is a concrete method.

Abstract classes

• Any class containing an abstract method is an abstract
class

• You must declare the class with the keyword abstract:

 abstract class MyClass {...}

• You cannot instantiate (create a new instance of) an
abstract class

• It can have abstract and non-abstract methods.

• It can have constructors and static methods also.

Abstract classes (contd..)

• You can extend (subclass) an abstract class

• If the subclass defines all the inherited abstract
methods, it is “complete”and can be instantiated

• If the subclass does not define all the inherited
abstract methods, it too must be abstract

• You can declare a class to be abstract even if it does not
contain any abstract methods

• This prevents the class from being instantiated

Example: 1

abstract class Bike{

 abstract void run();

}

class Honda4 extends Bike

{

void run()

{

System.out.println("running safely");}

public static void main(String args[]){

 Bike obj = new Honda4();

 obj.run();

}

}

Output:
Running safely

Example:2

abstract class Shape{

abstract void draw();

}

//In real scenario, implementation is
provided by others i.e. unknown by user

class Rectangle extends Shape

{

void draw(){

System.out.println("drawing rectangle");

}

}

class Circle1 extends Shape

{

void draw(){

System.out.println("drawing circle");

}

}

//In real scenario, method is called by
programmer or user
class TestAbstraction1
{
public static void main(String args[])
{
Shape s=new Circle1();
s.draw();
}
}

Output:
drawing circle

Example:3 abstract class with constructor

abstract class Base

{

 Base()

 {

System.out.println("Base Constructor
Called"); }

 abstract void fun();

}

class Derived extends Base

 {

 Derived()

 {

 System.out.println("Derived Constructor
Called"); }

void fun() { System.out.println("Derived
fun() called"); }
}

class Main
 {
 public static void main(String args[])
 {
 Derived d = new Derived();
 }
}

Output:
Base Constructor Called
Derived Constructor Called

Example: 4 An abstract class without any abstract
method

abstract class Base
{
 void fun()
 { System.out.println("Base fun() called"); }
}

class Derived extends Base { }

class Main
 {
 public static void main(String args[]) {
 Derived d = new Derived();
 d.fun();
 }
}

Output:
Base fun() called

Example 5: An abstract class with a final method

abstract class Base
 {
final void fun()
 { System.out.println("Derived fun() called"); }
}

class Derived extends Base {}

class Main
 {
 public static void main(String args[])
 {
 Base b = new Derived();
 b.fun();
 }
}

Output:
Derived fun() called

Interfaces

What is an Interface?
 An interface is similar to an abstract class with the following

exceptions:

 All methods defined in an interface are abstract. Interfaces contain no
implementation

 Interfaces cannot contain instance variables.

 However, they can contain public, static or final variables (ie. constant
class variables)

 Interfaces are declared using the "interface" keyword

 Interfaces are more abstract than abstract classes

 Interfaces are implemented by classes using the "implements"
keyword.

Relationship between classes and
interfaces

Declaring an Interface

Why do we use interface ?

• It is used to achieve total abstraction.

• Since java does not support multiple inheritance in case

of class, but by using interface it can achieve multiple

inheritance

• So the question arises why use interfaces when we have

abstract classes?

abstract classes may contain non-final variables,
whereas variables in interface are final, public and
static.

Implementing Interfaces

 A Class can only inherit from one superclass. However, a class
may implement several Interfaces

The interfaces that a class implements are separated by
commas

 Any class which implements an interface must provide an
implementation for all methods defined within the interface.

NOTE: if an abstract class implements an interface, it NEED NOT
implement all methods defined in the interface. HOWEVER, each
concrete subclass MUST implement the methods defined in the
interface.

Example:1

import java.io.*;

interface in1

{

 // public, static and final

 final int a = 10;
 // public and abstract

 void display();

}

class testClass implements in1

{

 // Implementing the capabilities of

 // interface.

 public void display()
 {
 System.out.println(“abc");
 }

// Driver Code
 public static void main (String[] args)
 {
 testClass t = new testClass();
 t.display();
 System.out.println(a);
 }
}

Output:
abc
10

Example:2

interface MyInterface

{ /* compiler will treat them as: public abstract

methods */

 public void method1();

 public void method2();

}

class Demo implements
MyInterface

{/* This class must have to implement both

the abstract methods else you will get
compilation error*/

public void method1()

{

System.out.println("implementation of
method1");

}

public void method2()

{

System.out.println("implementation of
method2");

}

public static void main(String arg[])

 {

 MyInterface obj = new Demo();

 obj.method1();

 }

}

O/P: implementation of method1

Multiple inheritance in Java by interface

Example:

interface Printable

{

void print();

}

interface Showable

{

void show();

}

class A7 implements Printable,Showable

{

public void print()

{

System.out.println("Hello");

}

public void show()
{
System.out.println("Welcome");
}

public static void main(String args[])
{
A7 obj = new A7();
obj.print();
obj.show();
 }
}

Output:
Hello
Welcome

Extending an Interface: Interface
Inheritance

• One interface can inherit another by use of the keyword
extends.

• The syntax is the same as for inheriting classes. When a
class implements an interface that inherits another
interface, it must provide implementations for all methods
defined within the interface inheritance chain.

Example: Interface Inheritance
interface Printable
{
void print();
}
interface Showable extends Printable
{
void show();
}
class TestInterface4 implements Showable
{
public void print()
{
System.out.println("Hello");
}
public void show()
{
System.out.println("Welcome");
}

public static void main(String args[])
{
TestInterface4 obj = new TestInterface4();
obj.print();
obj.show();
 }
}

Output:
Hello
Welcome

Difference between
Abstract Class Interface

1 Abstract class can have abstract and
non-abstract methods.

Interface can have only
abstract methods. Since Java 8, it can
have default and static methods also.

2 Abstract class doesn't support
multiple inheritance.

Interface supports multiple inheritance.

3 Abstract class can have final, non-
final, static and non-static variables.

Interface has only static and final
variables.

4 Abstract class can provide the
implementation of interface.

Interface can't provide the
implementation of abstract class.

5 The abstract keyword is used to
declare abstract class.

The interface keyword is used to declare
interface.

6 Example:
public abstract class Shape{
public abstract void draw();
}

Example:
public interface Drawable{
void draw();
}

Assignment: Abstract Class

• We have to calculate the percentage of marks obtained in
three subjects (each out of 100) by student A and in four
subjects (each out of 100) by student B.

• Create an abstract class 'Marks' with an abstract method
'getPercentage'.

• It is inherited by two other classes 'A' and 'B' each having a
method with the same name which returns the percentage of
the students.

• The constructor of student A takes the marks in three subjects
as its parameters and the marks in four subjects as its
parameters for student B.

• Create an object for eac of the two classes and print the
percentage of marks for both the students.

Assignment: Interface

• You are given an interface Arithmetic which contains a
method signature int sum(int n), int minus(int n), int
multiply(int x,int y),int division(int x, int y.

• You need to write a class called MyCalculator which
implements the interface.

