Java Abstraction

Abstraction in Java

- Abstraction is a process of hiding the implementation details and showing only functionality to the user.
- Another way, it shows only essential things to the user and hides the internal details,
- Example: sending SMS where you type the text and send the message.

You don't know the internal processing about the message delivery.

- Abstraction lets you focus on what the object does instead of how it does it.
- Ways to achieve Abstraction
 - Abstract class (0 to 100%)
 - Interface (100%)

Abstract Classes

Abstract methods

You can declare an object without defining it:
 Person p;

 Similarly, you can declare a method without defining it: public abstract void draw(int size);

- Notice that the body of the method is missing
- A method that has been declared but not defined is an abstract method

```
abstract class A {
                                           class AbstractDemo {
abstract void callme();
                                           public static void main(String args[])
// concrete methods are still allowed in
abstract classes
                                           Bb = new B();
void callmetoo() {
                                           b.callme();
System.out.println("This is a concrete
                                           b.callmetoo();
method.");
class B extends A {
void callme() {
System.out.println("B's implementation of
                                                  O/P:
callme.");
                                                  B's implementation of callme.
                                                  This is a concrete method.
```

Abstract classes

- Any class containing an abstract method is an abstract class
- You must declare the class with the keyword abstract:
 abstract class MyClass {...}
- You cannot instantiate (create a new instance of) an abstract class
- It can have abstract and non-abstract methods.
- It can have constructors and static methods also.

Abstract classes (contd..)

- You can extend (subclass) an abstract class
 - If the subclass defines all the inherited abstract methods, it is "complete" and can be instantiated
 - If the subclass does not define all the inherited abstract methods, it too must be abstract
- You can declare a class to be abstract even if it does not contain any abstract methods
 - This prevents the class from being instantiated

```
abstract class Bike{
 abstract void run();
class Honda4 extends Bike
void run()
System.out.println("running safely");}
public static void main(String args[]){
Bike obj = new Honda4();
obj.run();
                                         Output:
                                         Running safely
```

```
abstract class Shape{
abstract void draw();
//In real scenario, implementation is
provided by others i.e. unknown by user
class Rectangle extends Shape
void draw(){
System.out.println("drawing rectangle");
class Circle1 extends Shape
void draw(){
System.out.println("drawing circle");
```

```
//In real scenario, method is called by
programmer or user
class TestAbstraction1
{
  public static void main(String args[])
{
  Shape s=new Circle1();
  s.draw();
}
}
```

<u>Output:</u>

drawing circle

Example:3 abstract class with constructor

```
abstract class Base
Base()
System.out.println("Base Constructor
Called"); }
abstract void fun();
class Derived extends Base
 Derived()
System.out.println("Derived Constructor
Called"); }
```

```
void fun() { System.out.println("Derived
fun() called"); }
class Main
  public static void main(String args[])
    Derived d = new Derived();
```

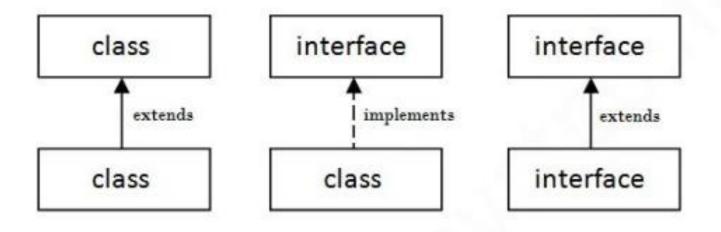
Output:

Base Constructor Called
Derived Constructor Called

Example: 4 An abstract class without any abstract method

```
abstract class Base
void fun()
{ System.out.println("Base fun() called"); }
class Derived extends Base { }
class Main
  public static void main(String args[]) {
  Derived d = new Derived();
  d.fun();
                                                   Output:
                                                   Base fun() called
```

Example 5: An abstract class with a final method


```
abstract class Base
final void fun()
{ System.out.println("Derived fun() called"); }
class Derived extends Base {}
class Main
public static void main(String args[])
 Base b = new Derived();
  b.fun();
                                             Output:
                                             Derived fun() called
```

Interfaces

What is an Interface?

- > An interface is similar to an abstract class with the following exceptions:
 - All methods defined in an interface are abstract. Interfaces contain no implementation
 - Interfaces cannot contain instance variables.
 - However, they can contain public, static or final variables (ie. constant class variables)
- > Interfaces are declared using the "interface" keyword
- Interfaces are more abstract than abstract classes
- Interfaces are implemented by classes using the "implements" keyword.

Relationship between classes and interfaces

Declaring an Interface

In Steerable.java:

```
public interface Steerable
{
   public void turnLeft(int degrees);
   public void turnRight(int degrees);
}
```

In Car.java:

```
public class Car extends Vehicle implements Steerable
{
    public int turnLeft(int degrees)
    {
        [...]
    }

    public int turnRight(int degrees)
    {
        [...]
    }
```

When a class "implements" an interface, the compiler ensures that it provides an implementation for all methods defined within the interface.

Why do we use interface?

It is used to achieve total abstraction.

static.

- Since java does not support multiple inheritance in case of class, but by using interface it can achieve multiple inheritance
- So the question arises why use interfaces when we have abstract classes?
 abstract classes may contain non-final variables, whereas variables in interface are final, public and

Implementing Interfaces

- > A Class can only inherit from one superclass. However, a class may implement several Interfaces
 - The interfaces that a class implements are separated by commas
- > Any class which implements an interface must provide an implementation for all methods defined within the interface.

NOTE: if an **abstract class** implements an interface, it NEED NOT implement all methods defined in the interface. HOWEVER, each concrete subclass MUST implement the methods defined in the interface.

```
import java.io.*;
interface in 1
  // public, static and final
  final int a = 10;
 // public and abstract
  void display();
class testClass implements in1
  // Implementing the capabilities of
  // interface.
```

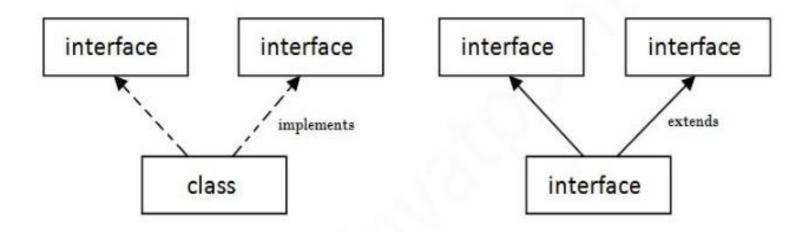
```
public void display()
    System.out.println("abc");
// Driver Code
  public static void main (String[] args)
    testClass t = new testClass();
    t.display();
    System.out.println(a);
```

Output:

abc 10

interface MyInterface

```
{ /* compiler will treat them as: public abstract
methods */
public void method1();
public void method2();
}
```


class Demo implements MyInterface

{/* This class must have to implement both the abstract methods else you will get compilation error*/

O/P: implementation of method1

```
public void method1()
System.out.println("implementation of
method1");
public void method2()
System.out.println("implementation of
method2");
public static void main(String arg[])
         MyInterface obj = new Demo();
        obj.method1();
```

Multiple inheritance in Java by interface

Multiple Inheritance in Java

```
interface Printable
void print();
interface Showable
void show();
class A7 implements Printable, Showable
public void print()
System.out.println("Hello");
```

```
public void show()
System.out.println("Welcome");
public static void main(String args[])
A7 obj = new A7();
obj.print();
obj.show();
```

Output:

Hello

Welcome

Extending an Interface: Interface Inheritance

- One interface can inherit another by use of the keyword extends.
- The syntax is the same as for inheriting classes. When a class implements an interface that inherits another interface, it must provide implementations for all methods defined within the interface inheritance chain.

Example: Interface Inheritance

```
interface Printable
                                           public static void main(String args[])
void print();
                                           TestInterface4 obj = new TestInterface4();
                                           obj.print();
interface Showable extends Printable
                                           obj.show();
void show();
class TestInterface4 implements Showable
public void print()
System.out.println("Hello");
public void show()
System.out.println("Welcome");
                                                        Output:
                                                        Hello
```

Welcome

Difference between

	Abstract Class	Interface
1	Abstract class can have abstract and non-abstract methods.	Interface can have only abstract methods. Since Java 8, it can have default and static methods also.
2	Abstract class doesn't support multiple inheritance.	Interface supports multiple inheritance.
3	Abstract class can have final, non-final, static and non-static variables.	Interface has only static and final variables.
4	Abstract class can provide the implementation of interface.	Interface can't provide the implementation of abstract class.
5	The abstract keyword is used to declare abstract class.	The interface keyword is used to declare interface.
6	Example: public abstract class Shape{ public abstract void draw(); }	Example: public interface Drawable{ void draw(); }

Assignment: Abstract Class

- We have to calculate the percentage of marks obtained in three subjects (each out of 100) by student A and in four subjects (each out of 100) by student B.
- Create an abstract class 'Marks' with an abstract method 'getPercentage'.
- It is inherited by two other classes 'A' and 'B' each having a method with the same name which returns the percentage of the students.
- The constructor of student A takes the marks in three subjects as its parameters and the marks in four subjects as its parameters for student B.
- Create an object for eac of the two classes and print the percentage of marks for both the students.

Assignment: Interface

- You are given an interface Arithmetic which contains a method signature int sum(int n), int minus(int n), int multiply(int x,int y),int division(int x, int y.
- You need to write a class called MyCalculator which implements the interface.