
Java Abstraction

Abstraction in Java

• Abstraction is a process of hiding the implementation details
and showing only functionality to the user.

• Another way, it shows only essential things to the user and
hides the internal details,

• Example: sending SMS where you type the text and send the
message.

 You don't know the internal processing about the
message delivery.

• Abstraction lets you focus on what the object does instead of
how it does it.

• Ways to achieve Abstraction
• Abstract class (0 to 100%)

• Interface (100%)

Abstract Classes

Abstract methods

• You can declare an object without defining it:

 Person p;

• Similarly, you can declare a method without defining it:

 public abstract void draw(int size);

oNotice that the body of the method is missing

• A method that has been declared but not defined is an
abstract method

Example:
abstract class A {

abstract void callme();

// concrete methods are still allowed in
abstract classes

void callmetoo() {

System.out.println("This is a concrete
method.");

}

}

class B extends A {

void callme() {

System.out.println("B's implementation of
callme.");

}

}

}

class AbstractDemo {

public static void main(String args[])

{

B b = new B();

b.callme();

b.callmetoo();

}

O/P:
B's implementation of callme.
This is a concrete method.

Abstract classes

• Any class containing an abstract method is an abstract
class

• You must declare the class with the keyword abstract:

 abstract class MyClass {...}

• You cannot instantiate (create a new instance of) an
abstract class

• It can have abstract and non-abstract methods.

• It can have constructors and static methods also.

Abstract classes (contd..)

• You can extend (subclass) an abstract class

• If the subclass defines all the inherited abstract
methods, it is “complete”and can be instantiated

• If the subclass does not define all the inherited
abstract methods, it too must be abstract

• You can declare a class to be abstract even if it does not
contain any abstract methods

• This prevents the class from being instantiated

Example: 1

abstract class Bike{

 abstract void run();

}

class Honda4 extends Bike

{

void run()

{

System.out.println("running safely");}

public static void main(String args[]){

 Bike obj = new Honda4();

 obj.run();

}

}

Output:
Running safely

Example:2

abstract class Shape{

abstract void draw();

}

//In real scenario, implementation is
provided by others i.e. unknown by user

class Rectangle extends Shape

{

void draw(){

System.out.println("drawing rectangle");

}

}

class Circle1 extends Shape

{

void draw(){

System.out.println("drawing circle");

}

}

//In real scenario, method is called by
programmer or user
class TestAbstraction1
{
public static void main(String args[])
{
Shape s=new Circle1();
s.draw();
}
}

Output:
drawing circle

Example:3 abstract class with constructor

abstract class Base

{

 Base()

 {

System.out.println("Base Constructor
Called"); }

 abstract void fun();

}

class Derived extends Base

 {

 Derived()

 {

 System.out.println("Derived Constructor
Called"); }

void fun() { System.out.println("Derived
fun() called"); }
}

class Main
 {
 public static void main(String args[])
 {
 Derived d = new Derived();
 }
}

Output:
Base Constructor Called
Derived Constructor Called

Example: 4 An abstract class without any abstract
method

abstract class Base
{
 void fun()
 { System.out.println("Base fun() called"); }
}

class Derived extends Base { }

class Main
 {
 public static void main(String args[]) {
 Derived d = new Derived();
 d.fun();
 }
}

Output:
Base fun() called

Example 5: An abstract class with a final method

abstract class Base
 {
final void fun()
 { System.out.println("Derived fun() called"); }
}

class Derived extends Base {}

class Main
 {
 public static void main(String args[])
 {
 Base b = new Derived();
 b.fun();
 }
}

Output:
Derived fun() called

Interfaces

What is an Interface?
 An interface is similar to an abstract class with the following

exceptions:

 All methods defined in an interface are abstract. Interfaces contain no
implementation

 Interfaces cannot contain instance variables.

 However, they can contain public, static or final variables (ie. constant
class variables)

 Interfaces are declared using the "interface" keyword

 Interfaces are more abstract than abstract classes

 Interfaces are implemented by classes using the "implements"
keyword.

Relationship between classes and
interfaces

Declaring an Interface

Why do we use interface ?

• It is used to achieve total abstraction.

• Since java does not support multiple inheritance in case

of class, but by using interface it can achieve multiple

inheritance

• So the question arises why use interfaces when we have

abstract classes?

abstract classes may contain non-final variables,
whereas variables in interface are final, public and
static.

Implementing Interfaces

 A Class can only inherit from one superclass. However, a class
may implement several Interfaces

The interfaces that a class implements are separated by
commas

 Any class which implements an interface must provide an
implementation for all methods defined within the interface.

NOTE: if an abstract class implements an interface, it NEED NOT
implement all methods defined in the interface. HOWEVER, each
concrete subclass MUST implement the methods defined in the
interface.

Example:1

import java.io.*;

interface in1

{

 // public, static and final

 final int a = 10;
 // public and abstract

 void display();

}

class testClass implements in1

{

 // Implementing the capabilities of

 // interface.

 public void display()
 {
 System.out.println(“abc");
 }

// Driver Code
 public static void main (String[] args)
 {
 testClass t = new testClass();
 t.display();
 System.out.println(a);
 }
}

Output:
abc
10

Example:2

interface MyInterface

{ /* compiler will treat them as: public abstract

methods */

 public void method1();

 public void method2();

}

class Demo implements
MyInterface

{/* This class must have to implement both

the abstract methods else you will get
compilation error*/

public void method1()

{

System.out.println("implementation of
method1");

}

public void method2()

{

System.out.println("implementation of
method2");

}

public static void main(String arg[])

 {

 MyInterface obj = new Demo();

 obj.method1();

 }

}

O/P: implementation of method1

Multiple inheritance in Java by interface

Example:

interface Printable

{

void print();

}

interface Showable

{

void show();

}

class A7 implements Printable,Showable

{

public void print()

{

System.out.println("Hello");

}

public void show()
{
System.out.println("Welcome");
}

public static void main(String args[])
{
A7 obj = new A7();
obj.print();
obj.show();
 }
}

Output:
Hello
Welcome

Extending an Interface: Interface
Inheritance

• One interface can inherit another by use of the keyword
extends.

• The syntax is the same as for inheriting classes. When a
class implements an interface that inherits another
interface, it must provide implementations for all methods
defined within the interface inheritance chain.

Example: Interface Inheritance
interface Printable
{
void print();
}
interface Showable extends Printable
{
void show();
}
class TestInterface4 implements Showable
{
public void print()
{
System.out.println("Hello");
}
public void show()
{
System.out.println("Welcome");
}

public static void main(String args[])
{
TestInterface4 obj = new TestInterface4();
obj.print();
obj.show();
 }
}

Output:
Hello
Welcome

Difference between
Abstract Class Interface

1 Abstract class can have abstract and
non-abstract methods.

Interface can have only
abstract methods. Since Java 8, it can
have default and static methods also.

2 Abstract class doesn't support
multiple inheritance.

Interface supports multiple inheritance.

3 Abstract class can have final, non-
final, static and non-static variables.

Interface has only static and final
variables.

4 Abstract class can provide the
implementation of interface.

Interface can't provide the
implementation of abstract class.

5 The abstract keyword is used to
declare abstract class.

The interface keyword is used to declare
interface.

6 Example:
public abstract class Shape{
public abstract void draw();
}

Example:
public interface Drawable{
void draw();
}

Assignment: Abstract Class

• We have to calculate the percentage of marks obtained in
three subjects (each out of 100) by student A and in four
subjects (each out of 100) by student B.

• Create an abstract class 'Marks' with an abstract method
'getPercentage'.

• It is inherited by two other classes 'A' and 'B' each having a
method with the same name which returns the percentage of
the students.

• The constructor of student A takes the marks in three subjects
as its parameters and the marks in four subjects as its
parameters for student B.

• Create an object for eac of the two classes and print the
percentage of marks for both the students.

Assignment: Interface

• You are given an interface Arithmetic which contains a
method signature int sum(int n), int minus(int n), int
multiply(int x,int y),int division(int x, int y.

• You need to write a class called MyCalculator which
implements the interface.

