
OBJECT ORIENTED CONCEPTS

SMITA SANKHE

Assistant Professor

Department of Computer Engineering

Object oriented concepts

• Class - A class can be defined as a

template/blue print that describes the

behaviors/states that object of its type support.

A class is a group of objects that has common

properties. class is the logical entity only. A

class in java can contain:
1. data member

2. method

3. constructor

4. block

5. class and interface

2

Objects
• Object - Objects have states and behaviors. Object is the

physical as well as logical entity. Objects are created using
following keywords.

By new keyword- New keyword is used to allocate memory at runtime.

By newInstance() method

By clone() method

By factory method etc.

• An object that have no reference is known as annonymous
object and it can be used when object is used only once.

Eg:- new Classname().

•Object is an instance of a class.An object has three
characteristics:

• state: represents data (value) of an object.

• behavior: represents the behavior (functionality) of an object such
as deposit, withdraw etc.

• identity: Object identity is typically implemented via a unique ID.
The value of the ID is not visible to the external user. But,it is used
internally by the JVM to identify each object uniquely.

3

Example
class Student1{

 int id;//data member (also instance variable)

 String name;//data member(also instance variable)

 public static void main(String args[]){

Student1 s1=new Student1();//creating an object of Student

 System.out.println(s1.id);

 System.out.println(s1.name);

 }

}

4

Ctd..

class Rectangle{

 int length;

 int width;

 void insert(int l,int w){

 length=l;

 width=w;

 }

 void calculateArea(){System.out.println(length*width);}

 public static void main(String args[]){

 Rectangle r1=new Rectangle(),r2=new Rectangle();//creating two objects

 r1.insert(11,5);

 r2.insert(3,15);

 r1.calculateArea();

 r2.calculateArea();

}

}

5

Constructors

• A constructor initializes an object when it is created. It
has the same name as its class and is syntactically
similar to a method. However, constructors have no
explicit return type.

• We use a constructor to give initial values to the
instance variables defined by the class, or to perform
any other startup procedures required to create a fully
formed object.

• All classes have constructors, whether you define one
or not, because Java automatically provides a default
constructor that initializes all member variables to zero.
However, once you define your own constructor, the
default constructor is no longer used.

6

Types of Constructors
• There are two types of constructors:

• Default constructor (no-arg constructor): Default constructor provides

the default values to the object like 0, null etc. It will be invoked at the

time of object creation.depending on the type. <class_name>(){}

• Parameterized constructor: A constructor that have parameters.

Parameterized constructor is used to provide different values to the

distinct objects.

• There is no copy constructor in java. But, we can copy the values of

one object to another like copy constructor in C++.

• By constructor

• By assigning the values of one object into another

• By clone() method of Object class

7

Constructor overloading

• Constructor overloading in Java is a technique of having

more than one constructor with different parameter lists.

• They are arranged in a way that each constructor

performs a different task.

• They are differentiated by the compiler by the number of

parameters in the list and their types.

8

Method

• A Java method is a collection of statements that

are grouped together to perform an operation.

Syntax is

modifier returnType nameOfMethod (Parameter

List) { // method body }

• Modifier is optional. There are two ways in which

a method is called i.e. method returns a value or

returning nothing

9

Si

no

Constructor Method

1 Constructor is used to

initialize the state of an

object.

Method is used to expose

behaviour of an object.

2 Constructor must not have

return type

Method must have return type.

3 Constructor is invoked

implicitly.

Method is invoked explicitly.

4 The java compiler

provides a default

constructor if you don't

have any constructor.

Method is not provided by

compiler in any case.

5 Constructor name must be

same as the class name

Method name may or may not

be same as class name.

10

parametarized constructor

•A default constructor does not have any parameter, but if you

need, a constructor can have parameters. This helps you to

assign initial value to an object at the time of its creation

class MyClass {

 int x; // Following is the constructor MyClass(int i) {

 x = i;

 }

 }

public class ConsDemo {

 public static void main(String args[]) { MyClass t1 = new MyClass(10

);

 MyClass t2 = new MyClass(20); System.out.println(t1.x + " " + t2.x);

} }

11

 This keyword

• this is a keyword in Java which is used as a reference to the object of the

current class, with in an instance method or a constructor. Using this you

can refer the members of a class such as constructors, variables and

methods.

• usage of java this keyword.
1. this keyword can be used to refer current class instance variable.

2. this() can be used to invoke current class constructor.

3. this keyword can be used to invoke current class method

(implicitly)

4. this can be passed as an argument in the method call.

5. this can be passed as argument in the constructor call.

6. this keyword can also be used to return the current class instance.

12

Destructor

• A destructor is a special member function of a class that

is executed whenever an object of it's class goes out of

scope or whenever the delete expression is applied to a

pointer to the object of that class.

• A destructor will have exact same name as the class

prefixed with a tilde (~) and it can neither return a value

nor can it take any parameters. Destructor can be very

useful for releasing resources before coming out of the

program like closing files, releasing memories etc.

13

Finalize()

• The finalize() method is equivalent to

a destructor of C++. When the job of an object is

over, or to say, the object is no more used in the

program, the object is known as garbage. The

process of removing the object from a running

program is known as garbage collection. finalize()

method can be best utilized by the programmer to

close the I/O streams, JDBC connections or socket

handles etc.

14

Access Specifiers in Java

• Public: A class, method, constructor, interface etc declared public can be accessed from any

other class. Therefore fields, methods, blocks declared inside a public class can be accessed from

any class belonging to the Java Universe. However if the public class we are trying to access is in a

different package, then the public class still need to be imported. Because of class inheritance, all

public methods and variables of a class are inherited by its subclasses.

• Protected: Variables, methods and constructors which are declared protected in a superclass

can be accessed only by the subclasses in other package or any class within the package of the

protected members' class. The protected access modifier cannot be applied to class and

interfaces. Methods, fields can be declared protected, however methods and fields in a interface

cannot be declared protected. Protected access gives the subclass a chance to use the helper

method or variable, while preventing a nonrelated class from trying to use it.

• Private: Methods, Variables and Constructors that are declared private can only be accessed

within the declared class itself. Private access modifier is the most restrictive access level. Class

and interfaces cannot be private. Variables that are declared private can be accessed outside the

class if public getter methods are present in the class. Using the private modifier is the main way

that an object encapsulates itself and hide data from the outside world.

• Default: Default access modifier means we do not explicitly declare an access modifier for a class,

field, method, etc. A variable or method declared without any access control modifier is available to

any other class in the same package. The fields in an interface are implicitly public static final and

the methods in an interface are by default public.

15

Scope of access specifiers

16

List of Java Object class methods.

• The Object class is the parent class of all the classes in java bydefault.

In other words, it is the topmost class of java.

• The Object class is beneficial if you want to refer any object whose type

you don't know.

clone() - Creates and returns a copy of this object.

equals() - Indicates whether some other object is "equal to" this one.

finalize() - Called by the garbage collector on an object when garbage

collection determines that there are no more references to the object.

 getClass() - Returns the runtime class of an object.

hashCode() - Returns a hash code value for the object.

 notify() - Wakes up a single thread that is waiting on this object's monitor.

 notifyAll() - Wakes up all threads that are waiting on this object's monitor.

toString() - Returns a string representation of the object. wait() - Causes

current thread to wait until another thread invokes the notify() method or

the notifyAll() method for this object.

18

Dot operator in java

• It enables you to access instance variables of any

objects within a class. It is used to call object methods.

“the dot" connects classes and objects to members.

• when you are connecting a class name to one of

its static fields. An example of this is the dot between

"System" and "out" in the statements we use to print stuff

to the console window. System is the name of a class

included in every Java implementation. It has an object

reference variable that points to a PrintStream object for

the console. So, "System.out.println("text") invokes the

println() method of the System.out object.

19

Example
class Exp07

{

public static void main(String args[])

{

 Scanner src=new Scanner(System.in);

 System.out.println("enter distance1 in feet and inches");

 double m=src.nextDouble();

 double n=src.nextDouble();

 Distance d1=new Distance(m,n);

 System.out.println("enter distance2 in feet and inches");

 m=src.nextDouble();

 n=src.nextDouble();

 Distance d2=new Distance(m,n);

 Distance d3=new Distance();

 d3.add(d1,d2);

 d3.display();

 if(d1.compare(d2))

 System.out.println("distances are equal");

 else

 System.out.println("distances are not equal"); }}

20

