
8/27/2020 1

Faculty In-charge:

Pragya Gupta

E-mail: pragya.g@somaiya.edu

Object Oriented Programming Methodology

Module 6 : Exception Handling, Packages, Multithreading

8/27/2020 2

Contents

• Exception Handling

• Packages

8/27/2020 3

Exception

• Exceptions in real life are rare

• are usually used to denote something unusual that does not conform to

the standard rules

• In programming, exceptions are events that arise due to the occurrence of

unexpected behaviour in certain statements, disrupting the normal

execution of a program

8/27/2020 4

Causes of Exception

• Exceptions can arise due to a number of situations. For example,

o Trying to access the 11th element of an array when the array contains of only 10

element (ArrayIndexOutOfBoundsException)

o Division by zero (ArithmeticException)

o Accessing a file which is not present (FileNotFoundException)

o Failure of I/O operations (IOException)

o Illegal usage of null. (NullPointerException)

8/27/2020 5

Exception classes

• Top class in exception hierarchy is Throwable

• This class has two siblings: Error and Exception

• All the classes representing exceptional conditions are subclasses of the

Exception class

8/27/2020 6

What happens when an execution occurs?

• runtime environment identifies the type of Exception and throws the
object of it

• If the method does not employ any exception handling mechanism
– the exception is passed to the caller method, and so on

• If no exception handling mechanism is employed in any of the Call Stack
methods
– the runtime environment passes the exception object to the default exception

handler available with itself
– The default handler prints the name of the exception along with an explanatory

message followed by stack trace at the time the exception was thrown and the
program is terminated

8/27/2020 7

Stack Trace

8/27/2020 8

Types of Exceptions

8/27/2020 9

Exception Hierarchy

8/27/2020 10

Exception Handling Techniques

• try..catch

• throw

• throws

• finally

8/27/2020 11

Packages

• Collection of classes and interfaces

• Provides a unique namespace for the classes

• Declaration resides at the top of a Java source file

• A package can contain the following.

o Classes

o Interfaces

o Enumerated types

o Annotations

8/27/2020 12

Packages (Contd.)

• Class that reside inside a package cannot be referred by their own name
alone

• The package name has to precede the name of the class of which it is a
part of

• All classes are part of some or the other package
• If the package keyword is not used in any class for mentioning the name

of the package, then it becomes part of the default/unnamed package

8/27/2020 13

Access Protection

• Four access specifiers in Java

8/27/2020 14

Access Specifiers

• Public: Accessibility for all

• Private: Accessibility from within the class only

• Default (blank): Accessible only from within the package

• Protected: Accessibility outside the packages but only to subclasses

8/27/2020 15

Access Protection

8/27/2020 16

Thread Life Cycle

• In Java, a thread always exists in any one of the following states
• These states are:

• New
• Active
• Blocked / Waiting
• Timed Waiting
• Terminated

8/27/2020 17

Thread States

• New

o Whenever a new thread is created, it is always in the new state.

o For a thread in the new state, the code has not been run yet and thus has not begun

its execution

• Active

o When a thread invokes the start() method, it moves from the new state to the

active state

o The active state contains two states within it: one is runnable, and the other

is running

.

8/27/2020 18

Thread States(Contd.)

• Runnable:
− A thread, that is ready to run is then moved to the runnable state

− In the runnable state, the thread may be running or may be ready to run at any given instant of time

− It is the duty of the thread scheduler to provide the thread time to run, i.e., moving the thread the

running state

− A program implementing multithreading acquires a fixed slice of time to each individual thread

− Each and every thread runs for a short span of time and when that allocated time slice is over, the thread

voluntarily gives up the CPU to the other thread, so that the other threads can also run for their slice of

time

− Whenever such a scenario occurs, all those threads that are willing to run, waiting for their turn to run,

lie in the runnable state

− In the runnable state, there is a queue where the threads lie

.

8/27/2020 19

Thread States(Contd.)

• Running
oWhen the thread gets the CPU, it moves from the runnable to the

running state

o Generally, the most common change in the state of a thread is from

runnable to running and again back to runnable

8/27/2020 20

Thread States(Contd.)

• Blocked or Waiting

o Whenever a thread is inactive for a span of time (not permanently) then, either the thread is in the

blocked state or is in the waiting state

o For example, a thread (let's say its name is A) may want to print some data from the printer.

However, at the same time, the other thread (let's say its name is B) is using the printer to print

some data. Therefore, thread A has to wait for thread B to use the printer. Thus, thread A is in the

blocked state. A thread in the blocked state is unable to perform any execution and thus never

consume any cycle of the Central Processing Unit (CPU). Hence, we can say that thread A

remains idle until the thread scheduler reactivates thread A, which is in the waiting or blocked

state

8/27/2020 21

Thread States(Contd.)

• Timed Waiting

o Sometimes, waiting for leads to starvation

o For example, a thread (A) has entered the critical section of a code and is not willing to leave that

critical section. In such a scenario, another thread (B) has to wait forever, which leads to

starvation. To avoid such scenario, a timed waiting state is given to thread B. Thus, thread lies in

the waiting state for a specific span of time, and not forever. A real example of timed waiting is

when we invoke the sleep() method on a specific thread. The sleep() method puts the thread in the

timed wait state. After the time runs out, the thread wakes up and start its execution from when it

has left earlier.

8/27/2020 22

Thread States(Contd.)

• Terminated
o A thread reaches the termination state because of the following reasons:

−When a thread has finished its job, then it exists or terminates normally.

−Abnormal termination: It occurs when some unusual events such as an unhandled

exception or segmentation fault

o A terminated thread means the thread is no more in the system. In other words,

the thread is dead, and there is no way one can respawn (active after kill) the dead

thread

8/27/2020 23

Life Cycle of a Thread

8/27/2020 24

Multithreading

• A thread is a single sequential flow of control within a program

• Multitasking

o Process Based

o Thread Based

8/27/2020 25

Process Vs Thread

• If we assume programs as processes, then process based multitasking is nothing

but execution of more than one program concurrently

• While the thread based multitasking is executing a program having more than

one thread, performing different tasks simultaneously

• Processes are heavyweight tasks

• Threads are light weight tasks

8/27/2020 26

Thread based Multitasking: Multithreading

• Multithreading enables programs to have more than one execution paths

(separate) which execute concurrently

• Each such path of execution is a thread

• Through multithreading, efficient utilization of system resources can be

achieved, such as maximum utilization of CPU cycles and minimizing idle time

of CPU

8/27/2020 27

Thread class

• In Java, there is a class named as Thread class, which belongs to java.lang

package, declared as,

• public class Thread extends Object implements Runnable

• This class encapsulates any thread of execution. Threads are created as the

instance of this class, which contains run() methods in it. The functionality of

the thread can only be achieved by overriding this run() method.

• public void run() {

 // statement for implementing thread

 }

8/27/2020 28

Methods

• run() should be invoked by an object of the concerned
thread

• This can be achieved by creating the thread and
calling start() on that

8/27/2020 29

Thread class Constructors

• Thread()

• Thread(String threadName)

• Thread(ThreadGroup threadGroup, String threadName)

8/27/2020 30

Main Thread

• Every Java program has a default thread, main thread

• When the execution of Java program starts, the JVM creates

the main thread and calls the program's main() method

within that thread

• Apart from this JVM also creates some invisible threads,

which are important for JVM housekeeping tasks

• Programmers can always take control of the main thread

8/27/2020 31

Main Thread (contd.)

• thread object can be created by using the currentThread()

method, which returns a reference to the current thread

• The main thread can be controlled by this reference only

8/27/2020 32

Thread creation

• By extending the Thread class

• By implementing the Runnable interface

Extending the Thread class

Steps to be undertaken for Thread creation

• Declare your own class as extending the Thread class

• Override the run() method, which constitutes the body of the thread

• Create the thread object and use the start() method to initiate the

thread execution

8/27/2020 33

Declaring a class

Any new class can be declared to extend the Thread class, thus
inheriting all the functionalities of the Thread class.

class NewThread extends Thread
{

 …………………………..
 …………………………..

}
Here, we have a new type of thread, named as ‘NewThread’

8/27/2020 34

Overriding the run()method

• The run() method has been inherited by the class NewThread.
• The run() method has to be overridden by writing code required for

the thread. The thread behaves as per this code segment.
public void run()

{
 //code segment providing the functionality of thread

}

8/27/2020 35

Starting New Thread

• Third part talks about start() method, required to create and initiate an instance

of our thread class

• Following piece of code is responsible for the same

NewThread thread1 = new NewThread();

thread1.start();

• First line creates an instance of class NewThread, where the object is just

created. The thread is in newborn state

• Second line, which calls the start() method moves the thread in runnable state,

where the java runtime will schedule the thread to run by invoking the run()

method automatically

8/27/2020 36

Implementing the Runnable interface

• Runnable interface is implemented by Thread class in the package java.lang

• This interface is declared as,

• public interface Runnable

• The interface needs to be implemented by any class whose instance is to be executed by a

thread

• The implementing class must also override a void method named as run(), defined as a lone

method in the Runnable interface as

public void run()

{

 …………………

 }

8/27/2020 37

Runnable interface (contd.)

• The object's run() method is called automatically whenever the

thread is scheduled for execution by the thread scheduler

• The functionality of the thread depends on the code written within

this run() method

• Other methods can be called from within run()

• The Thread will stop as soon as the run() exits

8/27/2020 38

Runnable interface (contd.)

• Once a class that implements Runnable interface is created, an object

of Thread class must be instantiated from within that class

• The constructors of Thread class helps in instantiating the object of

Thread class

• Thread(Runnable threadObj)

• Thread(Runnable threadObj, String threadName)

• Thread(ThreadGroup threadGroup, Runnable threadObj)

• Thread(ThreadGroup threadGroup, Runnable threadObj, String threadName)

8/27/2020 39

Runnable interface (contd.)

• Even if thread is created, it will not start executing unless the start()

method of the Thread class is called

• This start() method when called, in turn calls the run()

	Object Oriented Programming Methodology
	Contents
	Exception
	Causes of Exception
	Exception classes
	What happens when an execution occurs?
	Stack Trace
	Types of Exceptions
	Exception Hierarchy
	Exception Handling Techniques
	Packages
	Packages (Contd.)
	Access Protection
	Access Specifiers
	Access Protection
	Thread Life Cycle
	Thread States
	Thread States(Contd.)
	Thread States(Contd.)
	Thread States(Contd.)
	Thread States(Contd.)
	Thread States(Contd.)
	Life Cycle of a Thread
	Multithreading
	Process Vs Thread
	Thread based Multitasking: Multithreading
	Thread class
	Methods
	Thread class Constructors
	Main Thread
	Main Thread (contd.)
	Thread creation
	Declaring a class
	Overriding the run()method
	Starting New Thread
	Implementing the Runnable interface
	Runnable interface (contd.)
	Runnable interface (contd.)
	Runnable interface (contd.)

