
8/27/2020 1

Faculty In-charge:

Pragya Gupta

E-mail: pragya.g@somaiya.edu

Object Oriented Programming Methodology

Module 5: Class Diagram

8/27/2020 2

Contents

• Class Diagram

8/27/2020 3

What is a Class Diagram?

• Suppose you have to design a system. Before implementing a
bunch of classes, you’ll want to have a conceptual understanding of
the system

−What classes do I need?
−What functionality and information will these classes have?
−How do they interact with one another?
−Who can see these classes?

• That’s where class diagrams come in
• Class diagrams are a neat way of visualizing the classes in your

system before you actually start coding them up
• They’re a static representation of your system structure

8/27/2020 4

Class Representation in UML

−A class is represented as a box with 3 compartments.

• The uppermost one contains the class name

• The middle one contains the class attributes

• The last one contains the class methods

ClassName

attributes

operations

8/27/2020 5

Class Names

ClassName

attributes

operations

• The name of the class is the only required tag in the

graphical representation of a class

• It always appears in the top-most compartment

8/27/2020 6

Class attributes

ClassName

attributes

operations

• An attribute is a named property of a

class that describes the object being

modeled

• In the class diagram, attributes appear

in the second compartment just below

the name-compartment

Person

name : String
address : Address
birthdate : Date
ssn : Id

8/27/2020 7

Class attributes (Contd.)

ClassName

attributes

operations

Attributes are usually listed in the form:

 attributeName : Type

• A derived attribute is one that can be
computed from other attributes, but doesn’t
actually exist.

• For example, a Person’s age can be computed
from his birth date

• A derived attribute is designated by a
preceding ‘/’ as in:

 / age : Date

Person

name : String
address : Address
birthdate : Date
ssn : Id

8/27/2020 8

Class attributes (Contd.)

ClassName

attributes

operations

Attributes can be:
+ public
protected
- private
/ derived

Person

+ name : String
address : Address
birthdate : Date
/ age : Date
- ssn : Id

8/27/2020 9

Class Operations

• Operations describe the class behavior and
appear in the third compartment

• You can specify an operation by stating its
signature: listing the name, type, and default
value of all parameters, and, in the case of
functions, a return type

Person

name : String
address : Address
birthdate : Date
ssn : Id

eat
sleep
work
play

PhoneBook

newEntry (n : Name, a : Address, p : PhoneNumber, d : Description)
getPhone (n : Name, a : Address) : PhoneNumber

8/27/2020 10

Depicting Classes

When drawing a class, you needn’t show attributes and operation in every diagram

Person

name : String
birthdate : Date
ssn : Id

eat()
sleep()
work()
play()

Person

Person

name
address

birthdate

Person

eat
play

Person

8/27/2020 11

• In UML, object interconnections (logical or physical), are modeled as relationships

• There are three kinds of relationships in UML:

• dependencies

• generalizations

• associations

Relationships

8/27/2020 12

Relationships

8/27/2020 13

Dependency Relationships

CourseSchedule

add(c : Course)
remove(c : Course)

Course

• A dependency indicates a semantic relationship between two or more elements

• The dependency from CourseSchedule to Course exists because Course is used in both the add and

remove operations of CourseSchedule

8/27/2020 14

Generalization Relationships

Person

• A generalization connects a subclass to its superclass

• It denotes an inheritance of attributes and behavior from the

superclass to the subclass and indicates a specialization in the

subclass of the more general superclass

Student

8/27/2020 15

Generalization Relationships (Contd.)

Student

UML permits a class to inherit from multiple superclasses, although some programming languages (e.g.,

Java) do not permit multiple inheritance

TeachingAssistant

Employee

8/27/2020 16

Inheritance

− Indicates that child (subclass) is considered to be a specialized form of the parent (super class).

− For example consider the following:

8/27/2020 17

Association

− An association is a relationship between two separate classes

− It joins two entirely separate entities.

− There are four different types of association:

• Bi-directional

• Uni-directional

• Aggregation (includes composition aggregation)

• Reflexive

− Bi-directional and uni-directional associations are the most common ones

− This can be specified using multiplicity (one to one, one to many, many to many, etc.)

− A typical implementation in Java is through the use of an instance field

− The relationship can be bi-directional with each class holding a reference to the other

− Associations that have the same class at both ends are known as reflexive associations

8/27/2020 18

Association Relationships

• If two classes in a model need to communicate with each other, there must be link between them

• An association denotes that link

InstructorStudent

8/27/2020 19

Association Relationships (Contd.)

We can indicate the multiplicity of an association by adding multiplicity adornments to the line denoting the
association

The example indicates that a Student has one or more Instructors:

InstructorStudent
1..*

8/27/2020 20

• After specifying the type of association relationship by connecting the classes, you can also declare the
cardinality between the associated entities

• For example:
• The below UML diagram shows that a house has exactly one kitchen, exactly one bath, at least one

bedroom (can have many), exactly one mailbox, and at most one mortgage (zero or one)

Multiplicity

8/27/2020 21

Multiplicity

8/27/2020 22

Association Relationships (Contd.)

The example indicates that every Instructor has one or more Students:

InstructorStudent
1..*

8/27/2020 23

Association Relationships (Contd.)

We can also indicate the behavior of an object in an association (i.e., the role of an object) using
rolename

InstructorStudent
1..*1..*

learns fromteaches

8/27/2020 24

Association Relationships (Contd.)

We can also name the association.

TeamStudent
membership

1..* 1..*

8/27/2020 25

Association Relationships (Contd.)

We can specify dual associations

TeamStudent

member of

1..*

president of1 1..*

1..*

8/27/2020 26

Association Relationships (Contd.)

• We can constrain the association relationship by defining the navigability of the association
• Here, a Router object requests services from a DNS object by sending messages to (invoking the operations of)

the server
• The direction of the association indicates that the server has no knowledge of the Router

Router DomainNameServer

8/27/2020 27

Association Relationships (Contd.)

Associations can also be objects themselves, called link classes or an association classes

WarrantyProduct

Registration

modelNumber
serialNumber
warrantyCode

8/27/2020 28

Association Relationships (Contd.)

A class can have a self association

LinkedListNode

next

previous

8/27/2020 29

Association Relationships (Contd.)

• We can model objects that contain other objects by way of special associations called aggregations and
compositions

• An aggregation specifies a whole-part relationship between an aggregate (a whole) and a constituent part,
where the part can exist independently from the aggregate

• Aggregations are denoted by a hollow-diamond adornment on the association

Car

Engine

Transmission

8/27/2020 30

• A special form of association which is a unidirectional (a.k.a one way) relationship

between classes

• The best way to understand this relationship is to call it a “has a” or “is part of”

relationship

• For example, consider the two classes: Wallet and Money

• A wallet “has” money, but money doesn’t necessarily need to have a wallet so it’s a

one directional relationship

Dependency - Aggregation

8/27/2020 31

Association Relationships (Contd.)

• A composition indicates a strong ownership and coincident lifetime of parts by the whole (i.e.,
they live and die as a whole)

• Compositions are denoted by a filled-diamond adornment on the association

Window

Scrollbar

Titlebar

Menu

1

1

1

1

1

1 .. *

8/27/2020 32

• A restricted form of Aggregation in which two entities (or you can say classes) are

highly dependent on each other

• A human needs a heart to live and a heart needs a human body to function on

• In other words when the classes (entities) are dependent on each other and their life

span are same (if one dies then another one does too) then it’s a composition

Composition

8/27/2020 33

Interfaces

• An interface is a named set of operations that specifies the
behavior of objects without showing their inner structure

• It can be rendered in the model by a one- or two-
compartment rectangle, with the stereotype <<interface>>
above the interface name

<<interface>>
ControlPanel

8/27/2020 34

A relationship between two model elements, in which one model element implements/executes the

behavior that the other model element specifies

Interface

	Object Oriented Programming Methodology
	Contents
	What is a Class Diagram?
	Class Representation in UML
	Class Names
	Class attributes
	Class attributes (Contd.)
	Class attributes (Contd.)
	Class Operations
	Depicting Classes
	Relationships
	Relationships
	Dependency Relationships
	Generalization Relationships
	Generalization Relationships (Contd.)
	Inheritance
	Association
	Association Relationships
	Association Relationships (Contd.)
	Multiplicity
	Multiplicity
	Association Relationships (Contd.)
	Association Relationships (Contd.)
	Association Relationships (Contd.)
	Association Relationships (Contd.)
	Association Relationships (Contd.)
	Association Relationships (Contd.)
	Association Relationships (Contd.)
	Association Relationships (Contd.)
	Dependency - Aggregation
	Association Relationships (Contd.)
	Composition
	Interfaces
	Interface

