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What is a Class Diagram?

• Suppose you have to design a system. Before implementing a 
bunch of classes, you’ll want to have a conceptual understanding of 
the system

−What classes do I need? 
−What functionality and information will these classes have? 
−How do they interact with one another? 
−Who can see these classes? 

• That’s where class diagrams come in
• Class diagrams are a neat way of visualizing the classes in your 

system before you actually start coding them up
• They’re a static representation of your system structure
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Class Representation in UML

−A class is represented as a box with 3 compartments. 

• The uppermost one contains the class name

• The middle one contains the class attributes 

• The last one contains the class methods

ClassName

attributes

operations
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Class Names

ClassName

attributes

operations

• The name of the class is the only required tag in the 

graphical representation of a class

• It always appears in the top-most compartment
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Class attributes

ClassName

attributes

operations

• An attribute is a named property of a 

class that describes the object being 

modeled

• In the class diagram, attributes appear 

in the second compartment just below 

the name-compartment

Person

name      : String
address   : Address
birthdate : Date
ssn          : Id
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Class attributes (Contd.)

ClassName

attributes

operations

Attributes are usually listed in the form:

        attributeName : Type

• A derived attribute is one that can be 
computed from other attributes, but doesn’t 
actually exist. 

• For example, a Person’s age can be computed 
from his birth date

• A derived attribute is designated by a 
preceding ‘/’ as in:

      / age : Date

Person

name      : String
address   : Address
birthdate : Date
ssn          : Id
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Class attributes (Contd.)

ClassName

attributes

operations

Attributes can be:
+ public
# protected
- private
/ derived

Person

+ name      : String
# address   : Address
# birthdate  : Date
/ age           : Date
- ssn           : Id
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Class Operations

• Operations describe the class behavior and 
appear in the third compartment

• You can specify an operation by stating its 
signature: listing the name, type, and default 
value of all parameters, and, in the case of 
functions, a return type

Person

name      : String
address   : Address
birthdate : Date
ssn          : Id

eat
sleep
work
play

PhoneBook

newEntry (n : Name, a : Address, p : PhoneNumber, d : Description)
getPhone ( n : Name, a : Address) : PhoneNumber
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Depicting Classes

When drawing a class, you needn’t show attributes and operation in every diagram

Person

name      : String
birthdate : Date
ssn          : Id

eat()
sleep()
work()
play()

Person

Person

name
address

birthdate

Person

eat
play

Person
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• In UML, object interconnections (logical or physical), are modeled as relationships 

• There are three kinds of relationships in UML:

• dependencies

• generalizations

• associations

Relationships
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Relationships
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Dependency Relationships

CourseSchedule

add(c : Course)
remove(c : Course)

Course

• A dependency indicates a semantic relationship between two or more elements

• The dependency from CourseSchedule to Course exists because Course is used in both the add and 

remove operations of CourseSchedule
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Generalization Relationships

Person

• A generalization connects a subclass to its superclass

• It denotes an inheritance of attributes and behavior from the 

superclass to the subclass and indicates a specialization in the 

subclass of the more general superclass

Student
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Generalization Relationships (Contd.)

Student

UML permits a class to inherit from multiple superclasses, although some programming languages (e.g., 

Java) do not permit multiple inheritance

TeachingAssistant

Employee
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Inheritance

− Indicates that child (subclass) is considered to be a specialized form of the parent (super class). 

− For example consider the following:
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Association

− An association is a  relationship between two separate classes

−  It joins two entirely separate entities. 

− There are four different types of association: 

• Bi-directional

• Uni-directional 

• Aggregation (includes composition aggregation) 

• Reflexive

− Bi-directional and uni-directional associations are the most common ones

− This can be specified using multiplicity (one to one, one to many, many to many, etc.)

− A typical implementation in Java is through the use of an instance field

− The relationship can be bi-directional with each class holding a reference to the other

− Associations that have the same class at both ends are known as reflexive associations
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Association Relationships

• If two classes in a model need to communicate with each other, there must be link between them

• An association denotes that link

InstructorStudent
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Association Relationships (Contd.)

We can indicate the multiplicity of an association by adding multiplicity adornments to the line denoting the 
association

The example indicates that a Student has one or more Instructors:

InstructorStudent
1..*
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• After specifying the type of association relationship by connecting the classes, you can also declare the 
cardinality between the associated entities

• For example:
• The below UML diagram shows that a house has exactly one kitchen, exactly one bath, at least one 

bedroom (can have many), exactly one mailbox, and at most one mortgage (zero or one)

Multiplicity
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Multiplicity
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Association Relationships (Contd.)

The example indicates that every Instructor has one or more Students:

InstructorStudent
1..*
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Association Relationships (Contd.)

We can also indicate the behavior of an object in an association (i.e., the role of an object) using 
rolename

InstructorStudent
1..*1..*

learns fromteaches
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Association Relationships (Contd.)

We can also name the association.

TeamStudent
membership

1..* 1..*
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Association Relationships (Contd.)

We can specify dual associations

TeamStudent

member of

1..*

president of1 1..*

1..*
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Association Relationships (Contd.)

• We can constrain the association relationship by defining the navigability of the association
•  Here, a Router object requests services from a DNS object by sending messages to (invoking the operations of) 

the server
• The direction of the association indicates that the server has no knowledge of the Router

Router DomainNameServer
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Association Relationships (Contd.)

Associations can also be objects themselves, called link classes or an association classes

WarrantyProduct

Registration

modelNumber
serialNumber
warrantyCode
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Association Relationships (Contd.)

A class can have a self association

LinkedListNode

next

previous
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Association Relationships (Contd.)

• We can model objects that contain other objects by way of special associations called aggregations and 
compositions

• An aggregation specifies a whole-part relationship between an aggregate (a whole) and a constituent part, 
where the part can exist independently from the aggregate

• Aggregations are denoted by a hollow-diamond adornment on the association

Car

Engine

Transmission
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• A special form of association which is a unidirectional (a.k.a one way) relationship 

between classes

• The best way to understand this relationship is to call it a “has a” or “is part of” 

relationship

• For example, consider the two classes: Wallet and Money

• A wallet “has” money, but money doesn’t necessarily need to have a wallet so it’s a 

one directional relationship

Dependency - Aggregation
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Association Relationships (Contd.)

• A composition indicates a strong ownership and coincident lifetime of parts by the whole (i.e., 
they live and die as a whole)

• Compositions are denoted by a filled-diamond adornment on the association

Window

Scrollbar

Titlebar

Menu

1

1

1

1

1

1 .. *
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• A restricted form of Aggregation in which two entities (or you can say classes) are 

highly dependent on each other

• A human needs a heart to live and a heart needs a human body to function on

• In other words when the classes (entities) are dependent on each other and their life 

span are same (if one dies then another one does too) then it’s a composition

Composition
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Interfaces

• An interface is a named set of operations that specifies the 
behavior of objects without showing their inner structure

• It can be rendered in the model by a one- or two-
compartment rectangle, with the stereotype <<interface>> 
above the interface name

<<interface>>
ControlPanel
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A relationship between two model elements, in which one model element implements/executes the 

behavior that the other model element specifies

Interface
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