Object Oriented Programming Methodology

Module 3 : Arrays, Strings and Vectors

Faculty In-charge:
Pragya Gupta
E-mail: pragya.g(@somaiya.edu

@“‘% SOMAIYA

Q 5 VIDYAVIHAR UNIVERSITY

N &

“a\vie¥® K J Somaiya College of Engineering T RU S T

Contents

* Arrays

Q & VIDYAVIHAR UNIVERSITY

N

@“‘% SOMAIYA

BN 'S
“a\vie¥® K J Somaiya College of Engineering

Arrays

Array 1s a memory space allocated, which can store multiple values of same data type, in

contiguous locations

This memory space, which can be perceived to have many logical contiguous locations, can be

accessed with a common name

A specific element in an array is accessed by the use of a subscript or index used in brackets, along
with the name of the array

— For example, marks[5] would mean marks of 5th student

While the complete set of values is called an array, the individual values are known as elements

Arrays can be two types:
— one dimensional array

— multi-dimensional array

‘“‘ i SOMAIYA

@ «\5 VIDYAVIHAR UNIVERSITY

%) :

“a \i o K J Somaiya College of Engineering T RU S T

1-D Arrays

* In one-dimensional array, a single subscript or index is used, where each index value refers to
individual array element

* The indexation will start from 0 and will go up to n-1, i.e. the first value of the array will have an
index of 0 and the last value will have an index of n—1, where 1 is the number of elements in the
array

* So, if an array named marks has been declared to store the marks of 5 students, the computer

reserves five contiguous locations in the memory, as shown below

#3s SOMAIYA

VIDYAVIHAR UNIVERSITY

&
/S

QJ'a VA o K J Somaiya College of Engineering

1-D Arrays

Marks[0] = 60;

Marks[1] = 58;

60 38 50 8 89 Marks[2] =50;
marks[0] marks[l] marks2] marks[3] marks[4] Marks[3]=78:
Marks[4] = 89;

@“‘% SOMAIYA

Q 5 VIDYAVIHAR UNIVERSITY

N &

“a\vie¥® K J Somaiya College of Engineering T RU S T

Creation of Arrays

* Creating an array, similar to an object creation, can inherently

involve three steps:
— Declaring an array
— Creating memory locations

— Initializing/assigning values to an array

SO
MAIYA
5 VIDYAVIHAR UNIVERSITY
9)) £3
J’VcN K J Somaiya College of Engineering T RU S T

Declaring an Array

* Declaring an array 1s same as declaring a normal variable except
that you must use a set of square brackets with the variable type

* There can be two ways 1n which an array can be declared:
— type arrayname] |;
— type| | arrayname;

* Fore.g.
— int marks[|; or

— Int[] marks;

SOMAIYA
o¢ «\5 VIDYAVIHAR UNIVERSITY
2 Ya \iot® K J Somaiya College of Engineering i

Creating memory locations

* An array i1s more complex than a normal variable, so we have to assign memory
to the array when we declare it

* You assign memory to an array by specifying its size

* Interestingly, our same old new operator helps in doing the job, just as shown

below:
— Arrayname = new type [size];
* So, allocating space and size for the array named as marks can be done as,

— marks = new int[5];

SO
MAIYA
5 VIDYAVIHAR UNIVERSITY
%) £3
J’Vd\! K J Somaiya College of Engineering T RU S T

Initializing/assigning values to an array

* Assignment of values to an array, which can also be termed as
initialization of array, can be done as follows,
— Arrayname[index] = value;

* The creation of list of marks to be assigned in array, named as

marks has already been shown in the section above

7 E@ SOMAIYA
Q 5 VIDYAVIHAR UNIVERSITY
i, &
Yq v\d‘!'g\ K J Somaiya College of Engineering T RU S T

Setting values 1n an array

public class Array {
public static void main(String[] args) {
int[] marks = new int[5];

marks[0] = 60;
marks_l_ = 358;
marks[2] = 50;
marks[3] = 78;
marks[4] = 89;
g

Alternatively you can also use:
int marks[] = {60, 58, 50, 78, 89}

%\ =(IIIIIIIIIIIIIIIIII
e,
‘s"yav\d‘!g\ J Somaiya College of Engineering T RU S T

Using for-each with Arrays

 The format of for-each is as follows:
— for (type var : arr){
— // Body of loop

* For example, to calculate the sum of the elements of the array, for-each can be
used as follows.
— int[] arr= {2,3,4,5,6};
— Int sum = 0;
— for(int a : arr)
— // a gets successively each value in arr
-

- sum += a;

» The disadvantage of for-each approach is that it is possible to iterate in forward
direction only by single steps

SOMAIYA
o¢ «\5 VIDYAVIHAR UNIVERSITY
2 Ya \iot® K J Somaiya College of Engineering i

Multidimensional Arrays/ Jagged Arrays

@“‘% SOMAIYA

Q 5 VIDYAVIHAR UNIVERSITY

N &

“a\vie¥® K J Somaiya College of Engineering T RU S T

Collection Framework

* Provides an architecture to store and manipulate a group of objects

* Achieve all the operations that you perform on a data such as
searching, sorting, insertion, manipulation, and deletion

* Java Collection means a single unit of objects

* Java Collection framework provides many interfaces (Set, List,
Queue, Deque) and classes (ArrayList, Vector, LinkedList,
PriorityQueue, HashSet, LinkedHashSet, TreeSet)

SOMAIYA
o¢§ VIDYAVIHAR UNIVERSITY
g vio¥ K J Somaiya College of Engineering it

[interface
Iterable B class
. implements
Collection T extends

: ArrayList

B Linkedlist [t §

PriorityQueue

Iy

ArrayDeque SortedSet

#3» SOMAIYA

s
G

HI
I

P2

/& VIDYAVIHAR UNIVERSITY
N

“avie¥® K J Somaiya College of Engineering

0)08

[terator interface

* Iterator interface provides the facility of iterating the elements in forward
direction only

No. Method Description

1 public boolean hasNext() It returns true if the iterator has more elements otherwise it returns false.
2 public Object next() It returns the element and moves the cursor pointer to the next element.
3 public void remove() It removes the last elements returned by the iterator. It is less used.

“{‘* SOMAIYA
5 VIDYAVIHAR UNIVERSITY
%) $
“a\vie¥® K J Somaiya College of Engineering T RU S T

Collection Interface

Interface which 1s implemented by all the classes in the collection
framework

It declares the methods that every collection will have

Collection interface builds the foundation on which the collection
framework depends

Some of the methods of Collection interface are
o Boolean add (Object obj)
o Boolean addAll (Collection c)
o void clear(), etc.
which are implemented by all the subclasses of Collection interface

P ey o 4,
@‘“F& SOMAIYA
Q s VIDYAVIHAR UNIVERSITY
i, &
Yq v\cﬂ'f K J Somaiya College of Engineering T RU S T

[.ist Interface

List interface is the child interface of Collection interface

It inhibits a list type data structure in which we can store the ordered collection of objects
It can have duplicate values

List interface 1s implemented by the classes ArrayList, LinkedList, Vector, and Stack.

To instantiate the List interface, we must use :

List <data-type> list]= new ArrayList();

List <data-type> list2 = new LinkedList();

List <data-type> list3 = new Vector();

List <data-type> list4 = new Stack();

SO
MAIYA
5 VIDYAVIHAR UNIVERSITY
%) £3
J’Vd\! K J Somaiya College of Engineering T RU S T

ArrayList

Java ArrayList class uses a dynamic array for storing the elements(there is no size
limit)

We can add or remove elements anytime, much more flexible than the traditional array
It 1s found 1in the java.util package

The ArrayList in Java can have the duplicate elements also

It implements the List interface so we can use all the methods of List interface here.
The ArrayList maintains the insertion order internally

SO
MAIYA
5 VIDYAVIHAR UNIVERSITY
%) £3
J’Vd\! K J Somaiya College of Engineering T RU S T

https://www.javatpoint.com/array-in-java

LinkedList

» Java LinkedList class uses a doubly linked list to store the elements
It provides a linked-list data structure

NULL 10 [/ 20 — 30 — NULL
Method Description
addFirst() Adds an item to the beginning of the list.
addLast() Add an item to the end of the list
removeFirst() Remove an item from the beginning of the list.
removelast() Remove an item from the end of the list
getFirst() Get the item at the beginning of the list
getlLast() Get the item at the end of the list

VIDYAVIHAR UNIVERSITY

&
<

O

#5% SOMAIYA
Sy

%,
“a \i o K J Somaiya College of Engineering

#3» SOMAIYA

8

e, kS
“a\vie¥® K J Somaiya College of Engineering

ArrayList

1) ArrayList internally uses a dynamic array to store the

elements.

2) Manipulation with ArrayList is slow because it internally uses an
array. If any element is removed from the array, all the bits are
shifted in memory.

3) An ArrayList class can act as a list only because it implements

List only.

4) ArrayList is better for storing and accessing data.

VIDYAVIHAR UNIVERSITY

&
5

ArrayList v/s LinkedList

LinkedList

LinkedList internally uses a doubly linked list to store

the elements.

Manipulation with LinkedList is faster than ArrayList
because it uses a doubly linked list, so no bit shifting is

required in memory.

LinkedList class can act as a list and queue both
because it implements List and Deque interfaces.

LinkedList is better for manipulating data.

Vectors

* Vector implements a dynamic array of objects

* Vector proves to be very useful if you don't know the size of the
array in advance or you just need one that can change sizes over
the lifetime of a program

* Vector can contain heterogeneous objects

* We cannot store elements of primitive data type; first it need to
be converted to objects. A vector can store any objects

* Its defined 1n java.util package and class member of the Java
Collections Framework

‘“‘** SOMAIYA
8 @ VIDYAVIHAR UNIVERSITY
2, Ya \iot® K J Somaiya College of Engineering i

Vectors

* Vector implements List Interface

* A vector has an 1nitial capacity, i1f this capacity 1s reached then size of
vector automatically increases

* This default 1nitial capacity of vectors are 10

* Each vector tries to optimize storage management by maintaining a
capacity and a capacitylncrement arguments

* To traverse elements of a vector class we use Enumeration interface

SO
MAIYA
s VIDYAVIHAR UNIVERSITY
% £3
J’Vd\! K J Somaiya College of Engineering T RU S T

Vector Methods

void addElement(Object element)

The object specified by element is
added to the vector

int capacity()

Returns the capacity of the vector

boolean contains(Object element)

Returns true if element is
contained by the vector, else false

void copyInto(Object array/])

The elements contained in the
invoking vector are copied into the
array specified by array/ |

elementAt(int index)

Returns the element at the location
specified by index

Object firstElement().

Returns the first element in the
vector

#3s SOMAIYA

z 'S
g \ioY®

5 VIDYAVIHAR UNIVERSITY
S

K J Somaiya College of Engineering

T RU S T

Vector Methods

void insertElement At(Object Adds element to the vector at the

element, int index) location specified by index

boolean isEmpty() Returns true if Vector is empty,
else false

Object lastElement() Returns the last element in the
vector

void removeAllElements() Empties the vector. After this
method executes, the size of vector
1S Zero.

void removeElementAt(int index) Removes element at the location
specified by index

void setElementAt(Object e/ement, int | The location specified by index is

index) assigned element

#3» SOMAIYA

VIDYAVIHAR UNIVERSITY

.
¢ N

i, kS
“a\vie¥® K J Somaiya College of Engineering

Vector Methods

void setSize(int size) Sets the number of elements in the
vector to size. If the new size is less
than the old size, elements are lost.
If the new size is larger than the
old, null elements are added

int size() Returns the number of elements
currently in the vector

SOMAIYA

& VIDYAVIHAR UNIVERSITY

N

’ S
“a\vie¥® K J Somaiya College of Engineering

Le

\))OS

Access Protection

* Four Access specifier in Java

public(maximum access) applied to variables,contructors, methods, and classes

protected applied to variables,contructors, methods, and 1nner
classes (not top- level classes)

default applied to variables,contructors,methods, and classes

private(minimum access) can be applied to variables, methods and inner classes (not
top-level classes)

SO
MAIYA
;5 VIDYAVIHAR UNIVERSITY
9)) £3
J’Vd\l K J Somaiya College of Engineering T RU S T

Access Specifiers

* public means accessibility for all

* private means accessibility from within the class only

* default (blank) access specifiers are accessible only from within the
package

* protected means accessibility outside the packages but only to subclasses

7 E@ SOMAIYA
Q 5 VIDYAVIHAR UNIVERSITY
i, &
Yq v\d‘!'g\ K J Somaiya College of Engineering T RU S T

Access Specifiers

public class A

void abc()
protected void xyz()
public void pqr()
B can access abc() A
xyz(), and pqr() TC inherits A
B C

C can access abc(),
xyz(), and pqr()

D inherits A
y Can access xyz(), pqr(),butnot abc()

D E

E can only access
par() ofclass A

SOMAIYA

& VIDYAVIHAR UNIVERSITY

N

Le

\))OS

’ S
“a\vie¥® K J Somaiya College of Engineering

Access Protection

* method abc() 1s accessible from A, B as well as C, but neither from D

nor E

* protected method are accessible outside the package also, but only to
subclasses outside the package. For example, the method xyz()

accessible from classes A, B, C, D, but not from E

* public method pqgr() is accessible from all classes A, B, C, D and E

7 E@ SOMAIYA
Q 5 VIDYAVIHAR UNIVERSITY
i, &
Yq v\d‘!'g\ K J Somaiya College of Engineering T RU S T

toString() Method

 If you want to represent any object as a string, toString()
method comes into existence

* The toString() method returns the String representation of the object

* By overriding the toString() method of the Object class, we can return
values of the object, so we don't need to write much code

7 E@ SOMAIYA
Q 5 VIDYAVIHAR UNIVERSITY
i, &
Yq v\d‘!'g\ K J Somaiya College of Engineering T RU S T

Java Wrapper Classes

 For each primitive type, there i1s a corresponding wrapper class
designed

* Are wrapper around primitive data types

 Allow for situations where primitives cannot be used but their
corresponding objects are required

* Normally Used to convert a numeric value to a String or vice-versa

* Just like String, Wrapper objects are also immutable

* All the wrapper classes except Character and Float have two
constructors—one that takes the primitive value and another that takes
the String representation of the value

* Character has one constructor and float has three

‘** SOMAIYA
Q (& VIDYAVIHAR UNIVERSITY
4) Vis¥? K J Somaiya College of Engineering o U

Java Wrapper Classes
Primitive Wrapper
boolean java.lang.Boolean
byte java.lang.Byte
char java.lang.Character
double java.lang.Double
float java.lang.Float
int java.lang.Integer
long java.lang.Long
short java.lang.Short
void java.lang.Void

‘“:"** SOMAIYA
8 @ VIDYAVIHAR UNIVERSITY
2, Ya \iot® K J Somaiya College of Engineering i

Java Wrapper Classes

 For each primitive type, there i1s a corresponding wrapper class
designed

* Are wrapper around primitive data types

 Allow for situations where primitives cannot be used but their
corresponding objects are required

* Normally Used to convert a numeric value to a String or vice-versa

* Just like String, Wrapper objects are also immutable

* All the wrapper classes except Character and Float have two
constructors—one that takes the primitive value and another that takes
the String representation of the value

* Character has one constructor and float has three

‘** SOMAIYA
Q (& VIDYAVIHAR UNIVERSITY
4) Vis¥? K J Somaiya College of Engineering o U

Java Wrapper Classes

* They convert primitive data types into objects. Objects are needed 1f
we wish to modify the arguments passed into a method (because
primitive types are passed by value).

* The classes 1n java.util package handles only objects and hence
wrapper classes help 1n this case also.

e Data structures in the Collection framework, such
as ArrayList and Vector, store only objects (reference types) and not
primitive types.

* An object 1s needed to support synchronization in multithreading

‘““’** SOMAIYA
8 Q',; VIDYAVIHAR UNIVERSITY
% vio¥ K J Somaiya College of Engineering it

https://www.geeksforgeeks.org/arraylist-in-java/
https://www.geeksforgeeks.org/vector-vs-arraylist-java/

Java Wrapper Classes

* Converts primitive to wrapper
o double a =4.3;
o Double wrp = new Double(a);

* Each wrapper provides a method to return the primitive value.
o double r = wrp.doubleValue();

SOMAIYA
o¢ Q(; VIDYAVIHAR UNIVERSITY
2 Ya \iot® K J Somaiya College of Engineering i

Autoboxing and Unboxing

* Autoboxing: Automatic conversion of primitive types to the object of
their corresponding wrapper classes 1s known as autoboxing

* Unboxing: It Automatically converting an object of a wrapper class to
its corresponding primitive type 1s known as unboxing

7 E@ SOMAIYA
Q 5 VIDYAVIHAR UNIVERSITY
i, &
Yq v\d‘!'g\ K J Somaiya College of Engineering T RU S T

String Class

Are basically immutable objects 1n Java
Immutable means once created the, strings cannot be changed
* Whenever we create strings, 1t 1s this class that 1s instantiated

 In Java strings can be instantiated in two ways:
o String x= “String Literal Object”;
o String y=new String (“‘String object is created here”);

7“3 SO
MAIYA
5 VIDYAVIHAR UNIVERSITY
%) £3
VcN K J Somaiya College of Engineering T RU S T

String Example

String a="Hello”; String b="Hello”;
String c=new String(“Hello™);
String d=new String(“Hello”);
String e=new String(‘““‘Hello, how are you?”);
1f(a==
System.out.println(“object 1s same and is being shared by a & b”);

else
System.out.println(“Different objects™);

if(a==c)
System.out.println(“object 1s same and is being shared by a & ¢”);

else
System.out.println(“Different objects™);

SOMAIYA
o¢§ VIDYAVIHAR UNIVERSITY
g vio¥ K J Somaiya College of Engineering it

String Example

if(c==d)
System.out.println(“same object”);
else

System.out.println(“Different objects™);
String f=e.intern();
if(f==
System out.println(“Interned object f refer to the already created object a
in the pool”);
else
System.out.println(“Interned object does not refer to the already created
objects, as literal was not present in the pool. It is a new object which has
been created 1n the pool”);

SOMAIYA
o¢§ VIDYAVIHAR UNIVERSITY
g vio¥ K J Somaiya College of Engineering it

String Example

References Objects
a - -
. —$ Helo
N (a) Objects in the memory pool

c » Hello

d » Helo

e » Hello, how are you?
(b) Explicit memory allocation

f » Hello, how are you?
(c) Interned object in the memory pool

SO
MAIYA
5 VIDYAVIHAR UNIVERSITY
9)) £3
J’Vd\! K J Somaiya College of Engineering T RU S T

String Manipulation

* Strings 1n Java are immutable (read only) in nature, Once defined cannot
be changed.

* Let us take an example:
o String x = “Hello”; // ok
o String x = x +”World”; // ok, but how?
* the ‘+’ operator concatenates If at least one of the operand is a string.
* The second statement gets converted to the following statement

automatically
o String x=new StringBuffer(). append(x). append(“World”). toString();

#» SOMAIYA
o¢ @ VIDYAVIHAR UNIVERSITY
2 Vis¥? K J Somaiya College of Engineering o U

B st LY
$ e,

[02) ('5
Q.
Ya SN

SOMAIYA

VIDYAVIHAR UNIVERSITY

K J Somaiya College of Engineering

Common Methods of String Class

Method Name with
Signature

Method Details

int length()

to find length of the string (Line 1, Example 6.8)

boolean equals(String str)

Used to check equality of String objects. In contrast to ==
operator, the check is performed character by character.
If all the characters in both the Strings are same, true is
returned else false. (Line 2, Example 6.8)

int comparetTo(String s)

Used to find whether the invoking String (Figure 6.2) is
Greater than, less than or equal to the String argument. It
returns an integer value.

If the integer value is

a) <thanzero - invoking string is less than String
Argument

b) =than Zero — invoking String is greater than
String Argument

c) =to Zero — invoking String and String
argument are Equal (Line 3 - 9,
Example 6.8)

boolean regionlatches(int
startinglndx, String str,int
strStartingindx,int numChars)

Matches a specific region of String with specific region of
the invoking String.

The argument details :

startinglndx — specifies the region from the invoking
String to be matched.

str — is the second string to be matched

strStartinglndx — specifes the region from str to be
matched with invoking String.

numChars — specifies the number of character to be
matched in both strings from their respective starting
indexes. (Line 10, Example 6.8)

B st LY
$ e,

[02) ('5
Q.
Ya SN

SOMAIYA

VIDYAVIHAR UNIVERSITY

K J Somaiya College of Engineering

Common Methods of String Class

int indexOf(char c)

to find the index of a character in the invoking String
object. (Line 11, Example 6.8)

int indexOf(String s)

Overloaded method to find the starting index of a String
argument in the invoking String object. (Line 12, Example
6.8)

int lastindexOf(char c)

to find the last occurrence of character in the invoking
String. (Line 13, Example 6.8)

int lastindexOf(String s)

Overloaded method to find the last occurrence of String
argument in the invoking String object. (Line 14, Example
6.8)

String substring(int sindex)

to extract the String from the invoking String Object
starting with sindex till the End of the String. (Line 15,
Example 6.8)

String substring(int
startingindex, int endingindex)

Overloaded method to extract the String starting with
startinglndex till the endinglndex from the invoking String
Object String. (Line 16, Example 6.8)

int charAt(int pos)

to find the character at a particular position(pos). (Line 17,
Example 6.8)

String toUpperCase()

to change the case of entire String to Capital letters.
(Line 18)

String toLowerCase()

to change the case of entire String to small letters. (Line 19)

boolean startsWith(String ss)

to find whether invoking String starts with String
argument (Line 20)

boolean endsWith(String es)

to find whether invoking String ends with String argument
(Line 21)

Static String valueOf(int is)

Converts primitive type int value to String. (Line 22)

Static String valueOf(float f)

Overloaded static method to Convert Primitive type float
value to String.

Static String valueOf(long [)

Overloaded static method to Convert Primitive type long
value to String.

Static String valueOf(double d)

Overloaded static method to Convert Primitive type
double value to String.

StringBuffer Class

* StringBuffer class 1s used for representing changing strings

 StringBuffer offers more performance enhancement whenever we change
Strings, because 1t 1s this class that is actually used behind the curtain

* Just like any other buffer, StringBuffer also has a capacity and if the
capacity 1s exceeded, then it 1s automatically made larger

* The mitial capacity of StringBuffer can be known by using a method
capacity()

39 Alone 4,
7 E*a SOMAIYA
@ s VIDYAVIHAR UNIVERSITY
i, &
Yq v\d\!ﬁ\ K J Somaiya College of Engineering T RU S T

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Methods of StringBuffer Class

Method Name with Signature Method Details

int capacity() Returns the current capacity of the storage available
for character in the Buffer. (Line 2). When the capacity
is approached the capacity is automatically increased.

(Line 6)
StringBuffer append(String str) | appends String argument to the Buffer. (Llne 3)
StringBuffer replace(int The characters from start to end are removed and str is
sindx,int elndx,String str) inserted at that position (Line 4)
StringBuffer reverse() Reverses the buffer character by character (Line 5)
Char charAf(int index) Returns the character at specified index (Line 7)
Void setCharAt(int indx,char ¢) | Sets the specified character at specified index (Line 8)

SO
MAIYA
5 VIDYAVIHAR UNIVERSITY
%) £3
J’Vd\! K J Somaiya College of Engineering T RU S T

StringBuilder Class

o StringBuilder s=new StringBuilder();

o construct a StringBuilder object with an initial capacity of 16 characters. Similar to that

of StringBuffer

735 SOMAIYA ﬂ
Q / @ VIDYAVIHAR UNIVERSITY
3 T RU S T

%a\vio® K J Somaiya College of Engineering

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

