
8/27/2020 1

Faculty In-charge:
Pragya Gupta
E-mail: pragya.g@somaiya.edu

Object Oriented Programming Methodology

Module 3 : Arrays, Strings and Vectors

8/27/2020 2

Contents

• Arrays

8/27/2020 3

Arrays
• Array is a memory space allocated, which can store multiple values of same data type, in

contiguous locations

• This memory space, which can be perceived to have many logical contiguous locations, can be

accessed with a common name

• A specific element in an array is accessed by the use of a subscript or index used in brackets, along

with the name of the array

− For example, marks[5] would mean marks of 5th student

• While the complete set of values is called an array, the individual values are known as elements

• Arrays can be two types:

− one dimensional array

− multi-dimensional array

8/27/2020 4

1-D Arrays
• In one-dimensional array, a single subscript or index is used, where each index value refers to

individual array element

• The indexation will start from 0 and will go up to n-1, i.e. the first value of the array will have an

index of 0 and the last value will have an index of n–1, where ŋ is the number of elements in the

array

• So, if an array named marks has been declared to store the marks of 5 students, the computer

reserves five contiguous locations in the memory, as shown below

8/27/2020 5

1-D Arrays

8/27/2020 6

Creation of Arrays

• Creating an array, similar to an object creation, can inherently

involve three steps:
− Declaring an array

− Creating memory locations

− Initializing/assigning values to an array

8/27/2020 7

Declaring an Array

• Declaring an array is same as declaring a normal variable except

that you must use a set of square brackets with the variable type

• There can be two ways in which an array can be declared:
− type arrayname[];

− type[] arrayname;

• For e.g.
− int marks[]; or

− int[] marks;

8/27/2020 8

Creating memory locations

• An array is more complex than a normal variable, so we have to assign memory

to the array when we declare it

• You assign memory to an array by specifying its size

• Interestingly, our same old new operator helps in doing the job, just as shown

below:
− Arrayname = new type [size];

• So, allocating space and size for the array named as marks can be done as,
− marks = new int[5];

8/27/2020 9

Initializing/assigning values to an array

• Assignment of values to an array, which can also be termed as

initialization of array, can be done as follows,
− Arrayname[index] = value;

• The creation of list of marks to be assigned in array, named as

marks has already been shown in the section above

8/27/2020 10

Setting values in an array
public class Array {

public static void main(String[] args) {
int[] marks = new int[5];
marks[0] = 60;
marks[1] = 58;
marks[2] = 50;
marks[3] = 78;
marks[4] = 89;
} }

Alternatively you can also use:
int marks[] = {60, 58, 50, 78, 89}

8/27/2020 11

Using for-each with Arrays
• The format of for-each is as follows:

− for (type var : arr){
− // Body of loop
− }

• For example, to calculate the sum of the elements of the array, for-each can be
used as follows.
− int[] arr= {2,3,4,5,6};
− int sum = 0;
− for(int a : arr)
− // a gets successively each value in arr
− {
− sum += a;
− }

• The disadvantage of for-each approach is that it is possible to iterate in forward
direction only by single steps

8/27/2020 12

Multidimensional Arrays/ Jagged Arrays

8/27/2020 13

Collection Framework
• Provides an architecture to store and manipulate a group of objects
• Achieve all the operations that you perform on a data such as

searching, sorting, insertion, manipulation, and deletion
• Java Collection means a single unit of objects
• Java Collection framework provides many interfaces (Set, List,

Queue, Deque) and classes (ArrayList, Vector, LinkedList,
PriorityQueue, HashSet, LinkedHashSet, TreeSet)

8/27/2020 14

8/27/2020 15

Iterator interface

• Iterator interface provides the facility of iterating the elements in forward
direction only

8/27/2020 16

Collection Interface

• Interface which is implemented by all the classes in the collection
framework

• It declares the methods that every collection will have
• Collection interface builds the foundation on which the collection

framework depends
• Some of the methods of Collection interface are

o Boolean add (Object obj)
o Boolean addAll (Collection c)
o void clear(), etc.
which are implemented by all the subclasses of Collection interface

8/27/2020 17

List Interface

• List interface is the child interface of Collection interface
• It inhibits a list type data structure in which we can store the ordered collection of objects
• It can have duplicate values
• List interface is implemented by the classes ArrayList, LinkedList, Vector, and Stack.
• To instantiate the List interface, we must use :

List <data-type> list1= new ArrayList();
List <data-type> list2 = new LinkedList();
List <data-type> list3 = new Vector();
List <data-type> list4 = new Stack();

8/27/2020 18

ArrayList

• Java ArrayList class uses a dynamic array for storing the elements(there is no size
limit)

• We can add or remove elements anytime, much more flexible than the traditional array
• It is found in the java.util package
• The ArrayList in Java can have the duplicate elements also
• It implements the List interface so we can use all the methods of List interface here.
• The ArrayList maintains the insertion order internally

https://www.javatpoint.com/array-in-java

8/27/2020 19

LinkedList
• Java LinkedList class uses a doubly linked list to store the elements
• It provides a linked-list data structure

8/27/2020 20

ArrayList v/s LinkedList

8/27/2020 21

21

Vectors

• Vector implements a dynamic array of objects
• Vector proves to be very useful if you don't know the size of the

array in advance or you just need one that can change sizes over
the lifetime of a program

• Vector can contain heterogeneous objects
• We cannot store elements of primitive data type; first it need to

be converted to objects. A vector can store any objects
• Its defined in java.util package and class member of the Java

Collections Framework

8/27/2020 22

Vectors

•Vector implements List Interface
•A vector has an initial capacity, if this capacity is reached then size of

vector automatically increases
•This default initial capacity of vectors are 10
•Each vector tries to optimize storage management by maintaining a
capacity and a capacityIncrement arguments
•To traverse elements of a vector class we use Enumeration interface

8/27/2020 23

Vector Methods

8/27/2020 24

Vector Methods

8/27/2020 25

Vector Methods

8/27/2020 26

Access Protection

•Four Access specifier in Java

8/27/2020 27

Access Specifiers

• public means accessibility for all
• private means accessibility from within the class only
• default (blank) access specifiers are accessible only from within the

package
• protected means accessibility outside the packages but only to subclasses

8/27/2020 28

Access Specifiers

8/27/2020 29

Access Protection

• method abc() is accessible from A, B as well as C, but neither from D

nor E

• protected method are accessible outside the package also, but only to

subclasses outside the package. For example, the method xyz()

accessible from classes A, B, C, D, but not from E

• public method pqr() is accessible from all classes A, B, C, D and E

8/27/2020 30

toString() Method

• If you want to represent any object as a string, toString()
method comes into existence

• The toString() method returns the String representation of the object
• By overriding the toString() method of the Object class, we can return

values of the object, so we don't need to write much code

8/27/2020 31

Java Wrapper Classes

• For each primitive type, there is a corresponding wrapper class
designed

• Are wrapper around primitive data types
• Allow for situations where primitives cannot be used but their

corresponding objects are required
• Normally Used to convert a numeric value to a String or vice-versa
• Just like String, Wrapper objects are also immutable
• All the wrapper classes except Character and Float have two

constructors—one that takes the primitive value and another that takes
the String representation of the value

• Character has one constructor and float has three

8/27/2020 32

Java Wrapper Classes

8/27/2020 33

Java Wrapper Classes

• For each primitive type, there is a corresponding wrapper class
designed

• Are wrapper around primitive data types
• Allow for situations where primitives cannot be used but their

corresponding objects are required
• Normally Used to convert a numeric value to a String or vice-versa
• Just like String, Wrapper objects are also immutable
• All the wrapper classes except Character and Float have two

constructors—one that takes the primitive value and another that takes
the String representation of the value

• Character has one constructor and float has three

8/27/2020 34

Java Wrapper Classes

• They convert primitive data types into objects. Objects are needed if
we wish to modify the arguments passed into a method (because
primitive types are passed by value).

• The classes in java.util package handles only objects and hence
wrapper classes help in this case also.

• Data structures in the Collection framework, such
as ArrayList and Vector, store only objects (reference types) and not
primitive types.

• An object is needed to support synchronization in multithreading

https://www.geeksforgeeks.org/arraylist-in-java/
https://www.geeksforgeeks.org/vector-vs-arraylist-java/

8/27/2020 35

Java Wrapper Classes

• Converts primitive to wrapper
o double a = 4.3;
o Double wrp = new Double(a);

• Each wrapper provides a method to return the primitive value.
o double r = wrp.doubleValue();

8/27/2020 36

Autoboxing and Unboxing

• Autoboxing: Automatic conversion of primitive types to the object of
their corresponding wrapper classes is known as autoboxing

• Unboxing: It Automatically converting an object of a wrapper class to
its corresponding primitive type is known as unboxing

8/27/2020 37

String Class

• Are basically immutable objects in Java
• Immutable means once created the, strings cannot be changed
• Whenever we create strings, it is this class that is instantiated
• In Java strings can be instantiated in two ways:

o String x= “String Literal Object”;
o String y=new String (“String object is created here”);

8/27/2020 38

String Example

String a=”Hello”; String b=”Hello”;
String c=new String(“Hello”);
String d=new String(“Hello”);
String e=new String(“Hello, how are you?”);
if(a==b)

System.out.println(“object is same and is being shared by a & b”);
else

System.out.println(“Different objects”);
if(a==c)

System.out.println(“object is same and is being shared by a & c”);
else

System.out.println(“Different objects”);

8/27/2020 39

String Example

if(c==d)
System.out.println(“same object”);

else
System.out.println(“Different objects”);

String f=e.intern();
if(f==a)
System.out.println(“Interned object f refer to the already created object a
in the pool”);
else
System.out.println(“Interned object does not refer to the already created
objects, as literal was not present in the pool. It is a new object which has
been created in the pool”);

8/27/2020 40

String Example

8/27/2020 41

String Manipulation

• Strings in Java are immutable (read only) in nature, Once defined cannot
be changed.

• Let us take an example:
o String x = “Hello”; // ok
o String x = x +”World”; // ok, but how?

• the ‘+’ operator concatenates If at least one of the operand is a string.
• The second statement gets converted to the following statement

automatically
o String x=new StringBuffer(). append(x). append(“World”). toString();

8/27/2020 42

Common Methods of String Class

8/27/2020 43

Common Methods of String Class

8/27/2020 44

StringBuffer Class

• StringBuffer class is used for representing changing strings

• StringBuffer offers more performance enhancement whenever we change

Strings, because it is this class that is actually used behind the curtain

• Just like any other buffer, StringBuffer also has a capacity and if the

capacity is exceeded, then it is automatically made larger

• The initial capacity of StringBuffer can be known by using a method

capacity()

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

8/27/2020 45

Methods of StringBuffer Class

8/27/2020 46

StringBuilder Class

• A substitute of StringBuffer class.
• This class is faster than StringBuffer class, as it is not synchronized
• append(), insert(), delete(), deleteCharAt(), replace(), and reverse() return
StringBuilder objects rather than StringBuffer objects

• The line creates a StringBuilder object
o StringBuilder s=new StringBuilder();

o construct a StringBuilder object with an initial capacity of 16 characters. Similar to that

of StringBuffer

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

