
8/27/2020 1

Faculty In-charge:
Pragya Gupta
E-mail: pragya.g@somaiya.edu

Object Oriented Programming Methodology

Module 2 : Class, Object, Method and Constructor



8/27/2020 2

Contents

• Class

• Objects

• Methods

• Constructors



8/27/2020 3

Parts of a class

• The class contains two different sections:

− Variable declarations: Describe state

− Method declaration: Describe behavior
classDeclaration {
memberVariableDeclarations
methodDeclarations
}



8/27/2020 4

Example

Class SalesTaxCalculator for calculating and displaying the tax

class SalesTaxCalculator {
float amount=100.0f;
float taxRate=10.2f;
void calculateTax() {

float taxAmt = amount*taxRate/100;
System.out.println(taxAmt);

}
}



8/27/2020 5

Modularity and
information hiding i.e. data
encapsulation can be
incorporated using an
object, in software.
Classes, being blueprints,
provide the benefit of
reusability.

Why should we use classes and objects?



8/27/2020 6

Creating Objects

• Java object is created with a statement like this one: 
SalesTaxCalculator obj1 = new SalesTaxCalculator ( );

• This statement creates a new SalesTaxCalculator object

• This single statement declares, instantiates, and

initializes the object



8/27/2020 7

Declaring an Object
• Object declaration is same as variable declaration

− for e.g. SalesTaxCalculator obj1;

• Generally the declaration is as follows:

type name;

− Where type is the type of the object (i.e. class name)

− name is the name of the reference variable used to refer the object

• Difference between variables and objects:

− A variable holds a single type of literal

− An object is an instance of a class with a set of instance variables and methods which

performs certain tasks depending on what methods have been defined for



8/27/2020 8

Initializing an object

• By initializing an object we mean that the instances variables are
assigned some values

• This task is accomplished using a constructor.
• The final object creation can be said as complete when the objects

are initialized, either with an implicit constructor or an explicit
constructor

• This object creation can be used in programming code:
− SalesTaxCalculator obj1 = new SalesTaxCalculator ( );

• Here all the three operations, object declaration, object instantiation
and object initialization are done by one statement only



8/27/2020 9

The above process actually takes place in following way:

Initializing an object



8/27/2020 10

Instance Variable
• A class can have many instances, each instance having its own set of variables

E.g.
class SalesTaxCalculator {

float amount=100.0f; // instance variable
float taxRate=10.2f; //instance variable
void calculateTax() {
float taxAmt = amount*taxRate/100;
System.out.println(taxAmt); }
public static void main (String args[ ]) {
SalesTaxCalculator obj1 = new SalesTaxCalculator();
SalesTaxCalculator obj2 = new SalesTaxCalculator();

System.out.println("Amount in Object 1: "+ obj1.amount);
System.out.println("Tax Rate in Object 1: "+ obj1.taxRate);
System.out.println("Amount in Object 2: "+ obj2.amount);
System.out.println("Tax Rate in Object 2: "+ obj2.taxRate);
}}



8/27/2020 11

• For accessing value of an object
− Objectname.variablename

• To assign values to the variables of an object
− Objectname.variablename = value

• There are three ways of assigning values to the instance variables in 
the objects:
− Assigning values directly to the instance variables as shown below,

float amount=100.0f;
− Assigning values through a setter method 
− Values can be assigned using constructors

Accessing Instance Variables



8/27/2020 12

Instance variable (contd.)

• Each variable declared inside a class and outside the methods
• Except static variables, because they are created whenever an

instance (object) of the class is created
• These variables are initialized by the constructors
• In the above example the two objects obj1 and obj2 will have their

own set of instance variables.
• i.e. obj1 will have its own amount and taxRate whereas obj2 will

have its own set of amount and taxRate

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora



8/27/2020 13

Methods

• Similar to a function in any other programming languages.

• None of the methods can be declared outside the class.

• Why use methods?
− To make code reusable

− To parameterize code

− For top-down programming

− To simplify code

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora



8/27/2020 14

Method (contd.)

• General syntax for a method declaration:
[modifiers] return_type method_name (parameter_list) [throws_clause] {

[statement_list]}
• The method declaration includes:

− Modifiers: The modifiers are optional. They can be, public, protected, default
or private, static, abstract, final, synchronized, throws

Praneel T Bora

Praneel T Bora

Praneel T Bora



8/27/2020 15

Method (contd.)

• Return Type:
− can be either void or if a value is returned, it can be either a primitive

type or a class
− If the method declares a return type, then before it exits it must have a

return statement
• Method Name:

− The method name must be a valid Java identifier
• Parameter List:

− Contains zero or more type/identifier pairs make up the parameter list
− Each parameter in parameter list is separated by a comma

• Curly Braces:
− The method body is contained in a set of curly braces (opening ‘{‘ and

closing ‘}’)

Praneel T Bora

Praneel T Bora



8/27/2020 16

Method Example

class Circle {
float pi = 3.14f;
float radius;
void setRadius(float rad) {

radius = rad;}
float calculateArea() {
float area = pi* radius*radius;
return (area);

} }



8/27/2020 17

Method invocation

• Methods cannot run on their own, they need to be invoked by the
objects they are a part of

• When an object calls a method, it can pass on certain values to the
methods (if methods accept them)

• The methods can also return values from themselves if they wish to
• Data that are passed to a method are known as arguments or

parameters

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora



8/27/2020 18

Method Invocation

• Formal Parameters: The identifier used in a method to stand for the value that is
passed into the method by a caller

• Actual Parameters: The actual value that is passed into the method by a caller

• The number and type of the actual and formal parameters should be same for a
method

• In Java, all values are passed by value. This is unlike some other programming
languages that allow pointers to memory addresses to be passed into methods

Praneel T Bora

Function Call


Praneel T Bora

Function Definition



Praneel T Bora

Praneel T Bora



8/27/2020 19

Method Invocation

class CallMethod {
public static void main (String args[]) {

float area1;
Circle circleobj = new Circle();
circleobj.setRadius(3.0f);
area1 = circleobj.calculateArea();
System.out.println("Area of Circle = " + area1);

}}



8/27/2020 20

Constructors

• Java has a mechanism, known as constructor, for automatically initializing the
values for an object, as soon as the object is created

• Constructors have the same name as the class it resides in and is syntactically
similar to a method

• It is automatically called immediately after the object for the class is created by
new operator

• Constructors have no return type, not even void, as the implicit return type of a
class’ constructor is the class type itself

• Types of Constructors: Implicit/Default, Explicit, Parameterized

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora



8/27/2020 21

Constructors
Circle() {
}

Circle(double newRadius) {  
radius = newRadius;

}

Constructors are a special kind of 
methods that are invoked to construct 
objects.

Praneel T Bora



8/27/2020 22

Constructors, cont.

A constructor with no parameters is referred to as a no-arg
constructor

− Constructors must have the same name as the class itself

− Constructors do not have a return type—not even void 

− Constructors are invoked using the new operator when an object is created

− Constructors play the role of initializing objects

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora



8/27/2020 23

Creating Objects Using Constructors

new ClassName();
Example:

new Circle();

new Circle(5.0);



8/27/2020 24

Default Constructor

• A class may be defined without constructors

• A no-arg constructor with empty body is implicitly defined in 
the class

• This constructor, called a default constructor
– is provided automatically only if no constructors are explicitly 

defined in the class

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora



8/27/2020 25

Static keyword

• Different objects, variables and methods will occupy different areas of
memory when created/called

• Sometimes we would like to have multiple objects, share variables or
methods

• The static keyword effectively does this for us
• Static keyword can be applied to variables/methods and blocks of code.
• Java supports three types of variables: Local, Instance and Class

variables
– Local variables are declared inside a method, constructor, or a block of code
– Instance variable are declared inside a class, but outside a method

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora



8/27/2020 26

Static keyword

• Class/static variables declaration is preceded with a static keyword. They are
also declared inside a class, but outside a method

• The most important point about static variables is that there exists only one a
single copy of static variables per class
− The effect of doing this is that when we create multiple objects of that class, every object

shares the static variable i.e. there is only one copy of the variable declared as static. We can
declare a variables as static as under:

static int var = 0;

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora



8/27/2020 27

Instance Variables vs. Class Variables

• All instances of the class share the static variables of the class
• A class variable can be accessed directly with the class name,

without the need to create an instance
• Without the static keyword, it's called “instance variable”, and

each instance of the class has its own copy of the variable

Praneel T Bora

Praneel T Bora



8/27/2020 28

Static Methods
• Like static variables, we do not need to create an object to call our

static method
• Simply using the class name will suffice
• Static methods however can only access static variables directly
• Variables that have not been declared static cannot be accessed by the

static method directly
• i.e. the reason why we create an object of the class within the main

(which is static) method to access the instance variables and call
instance methods

• To make a method static, we simply precede the method declaration
with the static keyword

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora



8/27/2020 29

Static Methods
static void aMethod(int param1) {

.....

.....
}

• When we declare a method static, we are basically saying that there
should only be one instance of this method within our program (e.g, as
in the main method)

• Methods can also be declared with the static keyword
– static int computeArea(int length, int width) { }

Praneel T Bora



8/27/2020 30

Static initialization block
• A block of statements with static keyword applied to it.
• used for initializing static or class variables.
• in case some logic is used for assigning values to the variables, static

blocks can be used.
• The syntax for static block is as follows:

static{
...
}

Praneel T Bora



8/27/2020 31

Static initialization block
• The static executes as soon as the class loads even before the JVM

executes the main method
• There can be any number of static blocks within the class and they will

be executed in the order in which they have appeared in the source
code

Praneel T Bora

Praneel T Bora



8/27/2020 32

Instance initialization block
• In case the static keyword is dropped from this block, it becomes an

instance initialization block
• Actually the code of instance initialization block is placed in the <init>

method, which is created for every constructor by the compiler, before
the source code mentioned by programmer in the constructor

Praneel T Bora

Praneel T Bora



8/27/2020 33

Automatic Garbage Collection
• The Garbage Collector (GC) collects and removes unreferenced objects

from the heap area
• It is the process of reclaiming the runtime unused memory

automatically by destroying them
• Garbage collection makes Java memory efficient because it removes

the unreferenced objects from heap memory and makes free space for
new objects

• It involves two phases:
• Mark - in this step, the GC identifies the unused objects in memory
• Sweep - in this step, the GC removes the objects identified during the

previous phase

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora

Praneel T Bora



8/27/2020 34

Unreferenced Objects



8/27/2020 35

Unreferenced Objects
• By nulling a reference

Employee e=new Employee();
e=null;

• By assigning a reference to another
Employee e1=new Employee();
Employee e2=new Employee();

e1=e2;//now the first object referred by e1 is available for garbage collection

• By anonymous object 
new Employee();

Praneel T Bora

Praneel T Bora

Praneel T Bora


