
8/27/2020 1

Faculty In-charge:
Pragya Gupta
E-mail: pragya.g@somaiya.edu

Object Oriented Programming Methodology

Module 1 : Fundamentals of Object Oriented Programming

8/27/2020 2

Contents

• Procedural Programming Approach
• Structured Programming Approach
• Modular Programming Approach
• Object Oriented Programming Approach
• Objects and Classes
• OOP Features
• Static and Dynamic Binding
• Cohesion and Coupling

8/27/2020 3

Objective

• Understand what is Object Oriented programming
• Understand the principles of OOP
• How is OOP different from Procedural languages
• Problems in Procedural programming and how OOP overcomes them
• Know Java features and its Runtime Environment
• Understand basic structure of a Java program
• Know about the various constituents of JDK and its development environments

8/27/2020 4

Procedural Programming Approach

• Specifying the steps the program must take to reach the desired state

• Based upon the concept of the procedure call

• Procedures:
q Routines, subroutines, methods, or functions that contain a series of computational steps to be

carried out

• Any given procedure might be called at any point during a program's execution,
including by other procedures or itself

• Using a procedural language, the programmer specifies language statements to
perform a sequence of algorithmic steps

8/27/2020 5

Procedural Programming Approach

• Complexity increases as the length of a program increases .
• Divide a large program into different functions or modules
• Problems with Procedural languages

q functions have unrestricted access to global data
q that they provide poor mapping to real world
q Procedural languages are not extensible

• Example: Fortran, C, Pascal

8/27/2020 6

Structured Programming Approach

• A technique for organizing and coding programs in which hierarchy of modules is

used

• Each module has a single entry and single exit point

• Control is passed downward through the structure without unconditional branches

to higher levels

• Three types of control flow: Sequential, Test or Selection, Iteration

8/27/2020 7

Modular Programming Approach

• A technique for separating functionality into independent, interchangeable modules

• Each module contains everything necessary to execute only one aspect

• Sub-programs or functions

8/27/2020 8

Introduction to OOP

• A programming paradigm
• deals with concepts of object to build programs and software

applications
• Modeled around real world
• The world we live in is full of objects
• Every object has a well defined identity, attributes and behavior
• Objects exhibit the same behavior in programming.

8/27/2020 9

OOP Features

• Data Abstraction
• Encapsulation
• Inheritance
• Polymorphism

8/27/2020 10

OOP Approach

•Uses "objects"
• Data structures encapsulating data fields and procedures together with their

interactions – to design applications and computer programs.

•Object-oriented programming (OOP) involves programming using
objects
•An object represents an entity in the real world that can be distinctly

identified
• For example, a student, a desk, a circle, a button, and even a loan can all be

viewed as objects

•OOP features : Data abstraction, encapsulation, polymorphism, and
inheritance

8/27/2020 11

Comparison of OO and Procedural Languages
Procedural language Object Oriented language

Separate data from function that operate on them Encapsulate data and methods in a class

Not suitable for defining abstract types Suitable for defining abstract types

Debugging is difficult Debugging is easier

Difficult to implement change Easier to manage and implement change

Not suitable for larger applications/programs Suitable for larger programs and applications

Analysis and design not so easy Analysis and Design Made Easier

Faster Slower

Less flexible Highly flexible

Data and procedure based Object oriented

Less reusable More reusable

Only data and procedures are there Inheritance, encapsulation and polymorphism are key
features

Use top down approach Use bottom up approach

Only a function call to another Object communication is there

C, Basic, FORTRAN JAVA,C++, VB.NET, C#.NET

8/27/2020 12

Java Essentials

• A high level language

• Java Bytecode – intermediate code

• Java Virtual Machine (JVM) – interpreter for bytecode

8/27/2020 13

Java Translation

Java source
code

Machine
code

Java
bytecode

Java
interpreter

Bytecode
compiler

Java
compiler

8/27/2020 14

Java Translation

• The Java compiler translates Java source code into a special representation called

bytecode

• Java bytecode is not the machine language for any traditional CPU

• Another software tool, called an interpreter translates bytecode into machine

language and executes it

• Therefore the Java compiler is not tied to any particular machine

• Java is considered to be architecture-neutral

8/27/2020 15

Java Runtime

Java Runtime Environment includes JVM, class libraries and other
supporting files

JAVA SOURCE CODE

JAVA BYTE CODE

JAVA VIRTUAL MACHINE
(JVM)

Compilation

Interpretation

8/27/2020 16

Java Approach

8/27/2020 17

Java Features
• Platform Independence

• Object oriented

• Compiled and interpreted

• Robust

• Security

• Strictly typed language

• Lack of pointers

• Garbage collection

• Strict compile time checking

• Sandbox security

8/27/2020 18

Java Features

• Multithreaded

• Dynamic binding

• Performance

• Networking

• No pointers

• No global variables

• Automatic Garbage collection

8/27/2020 19

Differences between C++ and Java

• Operator overloading
q Not supported in Java
q Exception is ‘+’

• Explicit boolean type
q Boolean is an explicit type, different from int
q Only two boolean literals are provided i.e. true and false
q These cannot be compared with integers 0 and 1 as used in some other

languages
• Array length accessible

q All array objects in java have a length variable associated with them to
determine the length of the array

8/27/2020 20

• goto
q Instead of goto, break and continue are supported

• Pointers
q There are no pointers in Java

• null pointers reasonably caught
q Null pointers are caught by a NullPointerException

• Memory management
q Explicit destructor is not needed
q The use of garbage collection prevents memory leaks and referencing freed memory

• Automatic variable initialization
q Variables are automatically initialized except local variables

• Runtime container bounds checks
q The bounds of containers (arrays, strings, etc.) are checked at runtime and an

IndexOutOfBoundsException is thrown if necessary.

Differences between C++ and Java

8/27/2020 21

• All definitions are well defined
q Methods and fields carry explicitly one of the access modifiers

• Sizes of the integer types defined
q The sizes of the integer types byte, short, int and long are defined to be 1, 2, 4 and 8 bytes.

• Unicode provided
q Unicode represents character in most of the languages for e.g. Japanese, Latin etc

• String class
q An explicit predefined String class is provided along with StringBuffer and new StringBuilder

class

Differences between C++ and Java

8/27/2020 22

• Extended utility class libraries: package java.util
q Supported among others: Enumeration (an Iterator interface), Hashtable, Vector

• Multithreading support with synchronization
q Java supports Multithreading with synchronization among them.

• Default access specifier added
q By default, in java all variables, methods and classes have default privileges which are

different from private access specifier
q Private is the default access specifier in C++

Differences between C++ and Java

8/27/2020 23

JVM and JRE

Java Runtime Environment

Operating Systems (Windows, Unix, etc.)

Hardware (Intel, Motorola, Alpha, etc.)

JVM is a part of JRE

8/27/2020 24

Program Structure

• A Java Application
consists of a collection
of classes

• A class is a template
containing methods and
variables

8/27/2020 25

First Java Program

/* Call this file “Example.java”.*/
class Example {
//your program starts execution with a call to //main()
public static void main(String args[]){
System.out.println(“This is a simple Java program”);
}
}

8/27/2020 26

First Java Program

class Example {

public static void main (String args[])
{
System.out.println("Welcome to OOPM 2022-23");
}

}

8/27/2020 27

Executing Java Programs

• Entering the source code: text editor like notepad or any IDE
• Saving the source code:

q Select File | Save As from the notepad menu
q In the ‘File name’ field, type “Example.java” within the double quotes
q In the ‘Save as type’ field select All Files (*.*).
q Click enter to save the file

• Compiling & running the source
q type cmd at the run prompt
q move to the folder that contains the saved Example.java file
q compile the program using javac
q C:\javaeg\>javac Example.java

8/27/2020 28

Executing Java Programs

• Compilation creates a file called Example.class
• This class contains bytecode which is interpreted by JVM.
• To execute the program type the following command at the dos

prompt:
q C:\javaeg\>java Example

• The output of the program is shown below:
q This is a simple Java program

8/27/2020 29

Why save as Example.java?

• The name of the .class file will match exactly with the name of the
source file

• That is why it is a good idea to give the Java source files the same
name as that of the class they contain

• Java is case-sensitive
• So example and Example are two different class names

8/27/2020 30

Installation of Java

• Download the JDK installer

• Run the JDK installer.

• Update PATH Environment variables.

• Test the installation – run javac and java on command prompt

8/27/2020 31

Installed Directory structure

8/27/2020 32

Installed Directory Structure

• src.zip file contains all the core class binaries, and is used by JDK in this form
• include\ directory contains a set of C and C++ header files for interacting with

C and C++
• lib\ directory contains non-core classes like dt.jar and tools.jar used by tools

and utilities in JDK
• bin\ The bin directory contains the binary executables for Java

q For example, Java Compiler (Java), Java Interpreter (Java)
• jre\ is the root directory for the Java runtime environment
• db\ contains java database

8/27/2020 33

Tools in JDK

Basic Tools in Java

8/27/2020 34

IDE

• Tools specifically designed for writing Java code.
• Tools offer a GUI environment to compile and debug your Java

program easily from the editor environment, as well as browse
through your classes etc.

• Popular IDE’s
q Eclipse
q Netbeans
q Kawa
q JCreator

8/27/2020 35

Objects and Classes

• The state of an object (also known as its properties or attributes) is
represented by data fields with their current values

• Example:
q A circle object has a data field radius, which characterizes a circle
q A rectangle object has the data fields width and height, which characterize a

rectangle
• The behavior of an object (also known as its actions) is defined by methods
• To invoke a method on an object is to ask the object to perform an action
• Example:

q getArea() and getPerimeter() maybe defined
q getArea() maybe invoked by circle object to return its area and getPerimeter() to

return its perimeter

8/27/2020 36

Objects and Classes
• Objects of the same type are defined using a common class
• A class is a template, blueprint, or contract that defines what an

object’s data fields and methods will be
• An object is an instance of a class, many instances can be created
• Creating an instance is referred to as instantiation.
• The terms object and instance are often interchangeable

8/27/2020 3737

Objects

• An object has both a state and behavior

• The state defines the object, and the behavior defines what the object does

Class Name: Circle

Data Fields:

radius is _______

Methods:

getArea

Circle Object 1

Data Fields:

radius is 10

Circle Object 2

Data Fields:

radius is 25

Circle Object 3

Data Fields:

radius is 125

A class template

Three objects of
the Circle class

8/27/2020 3838

Classes

• Classes are constructs that define objects of the same type

• A Java class uses variables to define data fields and methods to define behaviors

• Additionally, a class provides a special type of methods, known as constructors

• Constructors are invoked to construct objects from the class

8/27/2020 3939

Classes
 class Circle {

/** The radius of this circle */
double radius = 1.0;

/** Construct a circle object */
Circle() {
}

/** Construct a circle object */
Circle(double newRadius) {
 radius = newRadius;
}

/** Return the area of this circle */
double getArea() {
 return radius * radius * 3.14159;
}

 }

Data field

Method

Constructors

8/27/2020 40

OOP Concepts

• Key OOP Concepts
– Object, Class
– Data Abstraction
– Encapsulation
– Inheritance and Subclasses
– Polymorphism

q Run-time polymorphism
q Compile-time polymorphism

8/27/2020 41

Object

• Defined as instance of a class

• Example: table, chair are all instances of the class Furniture.

• Objects have unique identity, state and behavior

• State is defined by the attributes of the object.

• Different objects have different attributes (characteristics)

• Example: the attributes of student are name, roll number etc

• Behavior actually determines the way an object interacts with other objects.

• Synonym to functions

8/27/2020 42

Object

• Definition: a thing that has identity, state, and behavior
– identity: a distinguished instance of a class
– state: collection of values for its variables
– behavior: capability to execute methods

– variables and methods are defined in a class

8/27/2020 43

Class

• Blueprint for an object, a plan, or template

• Description of a number of similar objects is also called class

• A class is also defined as a new data type; a user defined type

• Defining a class doesn’t create an object

• Classes are logical in nature.

• Example: Furniture does not have any existence but tables and chairs

do exist

8/27/2020 44

Class

• Definition: a collection of data (fields/ variables) and methods that
operate on that data

– define the contents/capabilities of the instances (objects) of the
class

– a class can be viewed as a factory for objects
– a class defines a recipe for its objects

8/27/2020 45

Instantiation

• Object creation
• Memory is allocated for the object’s fields as defined in the class
• Initialization is specified through a constructor
– a special method invoked when objects are created

8/27/2020 46

Abstraction

• OOP is about abstraction
• In real life, Humans manage complexity by abstracting details away
• In programming, we manage complexity

q by concentrating only on the essential characteristics and
q suppressing implementation details

• Encapsulation and Inheritance are examples of abstraction
q What does the verb “abstract” mean?

8/27/2020 47

Encapsulation

• A key OO concept: “Information Hiding”
• Key points
– The user of an object should have access only to those methods

(or data) that are essential
– Unnecessary implementation details should be hidden from the

user
– Binding of data and procedure
– In Java/C++, use classes and access modifiers (public, private,

protected)

8/27/2020 48

Encapsulation

8/27/2020 49

Inheritance

• Inheritance:
– programming language feature that allows for the implicit

definition of variables/methods for a class through an existing
class

• Subclass relationship
– B is a subclass of A
– B inherits all definitions (variables/methods) in A

8/27/2020 50

Reuse

• Inheritance encourages software reuse
• Existing code need not be rewritten
• Successful reuse occurs only through careful planning and design
– when defining classes, anticipate future modifications and

extensions

8/27/2020 51

Polymorphism

• “Many forms”
– allow several definitions under a single method name

• Example:
– “move” means something for a person object but means

something else for a car object
• Dynamic binding:
– capability of an implementation to distinguish between the

different forms during run-time

8/27/2020 52

Static and Dynamic Binding

• Association of method call to the method body is known as binding

• There are two types of binding:

o Static Binding that happens at compile time

o Dynamic Binding that happens at runtime

8/27/2020 53Lecture1253

• If you have more than one method of same name (method overriding) or two variable of same name in

same class hierarchy it gets tricky to find out which one is used during runtime as a result of there

reference in code.

• This problem is resolved using static and dynamic binding in Java.

• Binding is the process used to link which method or variable to be called as result of the reference in

code.

o Most of the references is resolved during compile time but some references which depends upon Object

and polymorphism in Java is resolved during runtime when actual object is available.

o When a method call is resolved at compile time, it is known as static binding, while if method invocation is

resolved at runtime, it is known as Dynamic binding or Late binding.

Static and Dynamic Binding

8/27/2020 54Lecture1254

• private, final and static methods and variables uses static binding and resolved by compiler because

compiler knows that they can't be overridden and only possible methods are those, which are defined

inside a class, whose reference variable is used to call this method.

• Static binding uses Type information for binding while Dynamic binding uses Object to resolve binding.

• Static Binding

o Variables – static binding
Variables are resolved using static binding which makes there execution fast because no time is wasted to find
correct method during runtime.

o Private, final, static methods – static binding

o Overloaded methods are resolved using static binding

• Dynamic Binding

o Overridden methods are resolved using dynamic binding at runtime.

Static and Dynamic Binding

8/27/2020 55

Coupling

Coupling refers to the extent to
which a class knows about the
other class.
There are two types of coupling
− Tight Coupling(a bad

programming design)
− Loose Coupling(a good

programming design)

8/27/2020 56

Tight Coupling

If a class A has some public data members and another class B is accessing these data
members directly using the dot operator (which is possible because data members were
declared public), the two classes are said to be tightly coupled

Let's say, the same class A has a String data member, name, which is declared public and this
class also has getter and setter methods that have implemented some checks to make sure -
• A valid access of the data member, name i.e. it is only accessed when its value is not null,

and
• A valid setting of the data member, name i.e. it cannot be set to a null value

But these checks implemented in the methods of class A to ensure a valid access and valid
setting of its data member, name, are bypassed by its direct access by class B, due to tight
coupling between two classes.

8/27/2020 57

Tight Coupling

Program Analysis

• Class A has an instance variable, name, which is declared public

• Class A has two public getter and setter methods which check for a valid access and valid

setting of data member - name

• Class B creates an object of class A and directly sets the value of its data member, name,

to null and directly accesses its value because it was declared public

• Thus, the validity checks for the data member, name, which were implemented

within getName() and setName() methods of class A are bypassed, which shows that

class A is tightly coupled to class B, and it is a bad design

8/27/2020 58

Loose Coupling

• A good application designing is creating an application with loosely coupled classes by
following encapsulation

• i.e. by declaring data members of a class with the private access modifier, which disallows
other classes to directly access these data members, and forcing them to call
the public getter, setter methods to access these private data members

8/27/2020 59

Loose Coupling

Program Analysis

• Class A has an instance variable, name, which is declared private

• Class A has two public getter and setter methods which check for a valid access and valid

setting of the data member, name

• Class B creates an object of class A, calls the getName() and setName() methods and

their implemented checks are properly executed before the value of instance

member, name, is accessed or set

• It shows that class A is loosely coupled to class B, which is a good programming design

8/27/2020 60

Cohesion

• Cohesion refers to the extent to which
a class is defined to do a specific
specialized task

• A class created with high cohesion is
targeted towards a single specific
purpose, rather than performing many
different purposes

• There are two types of cohesion
− Low cohesion(a bad programming

design)
− High Cohesion(a good

programming design)

8/27/2020 61

Low Cohesion
• When a class is designed to do many different tasks rather than focus on a single specialized

task, this class is said to be a "low cohesive" class

• Low cohesive classes are said to be badly designed, as it requires a lot of work at creating,

maintaining and updating them

Program
Example of a low cohesion class

class PlayerDatabase

{ public void connectDatabase();

public void printAllPlayersInfo();

public void printSinglePlayerInfo();

public void printRankings();

public void printEvents();

public void closeDatabase(); }

8/27/2020 62

Low Cohesion
Program Analysis

• Here, we have a class PlayerDatabase which is performing many different tasks like

connecting to a database, printing the information of all the players, printing information of a

single player, printing all the events, printing all the rankings and finally closing all opened

database connections

Now, such a class is not easy to create, maintain and update, as it is involved in performing

many different tasks i.e. a programming design to avoid

8/27/2020 63

High Cohesion

• A good application design

is creating an application

with high cohesive classes,

which are targeted towards

a specific specialized

task and such classes are

not only easy to create but

also easy to maintain and

update

Program

//Example of high cohesion classes

class PlayerDatabase {

ConnectDatabase connectD= new connectDatabase();

PrintAllPlayersInfo allPlayer= new PrintAllPlayersInfo();

PrintRankings rankings = new PrintRankings();

CloseDatabase closeD= new CloseDatabase();

PrintSinglePlayerInfo singlePlayer = PrintSinglePlayerInfo(); }

class ConnectDatabase { //connecting to database. }

class CloseDatabase { //closing the database connection. }

class PrintRankings { //printing the players current rankings. }

class PrintAllPlayersInfo { //printing all the players information. } class

PrintSinglePlayerInfo { //printing a single player information. }

8/27/2020 64

High Cohesion

Program Analysis

• Here we have created several different classes, where each class is performing a specific

specialized task, which leads to an easy creation, maintenance and modification of these classes

• Classes created by following this programming design are said to performing a cohesive role

and are termed as high cohesion classes, which is an appropriate programming design to follow

while creating an application

8/27/2020 65

Thank You

