

K.J Somaiya College of Engineering, Mumbai -77
[bookmark: _heading=h.gjdgxs]

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No.01

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE : Complex Arithmetic

AIM: Write a program to perform addition, subtraction, multiplication and division of two complex numbers. Demonstrate the use of classes and objects.
Variations :
Implementation of Program with One class
Accessibility with static and non-static methods within class and outside class.
__
Expected OUTCOME of Experiment:

CO2: Explore arrays, vectors, classes and objects in C++ and Java ___
Books/ Journals/ Websites referred:

1. E. Balagurusamy , “Programming with Java” McGraw-Hill.

2. Sachin Malhotra, Saurabh Choudhary, “Programming in Java”, Oxford Publications.

Pre Lab/ Prior Concepts:

The Scanner class is a class in java.util, which allows the user to read values of various types. There are far more methods in class Scanner than you will need in this course. We only cover a small useful subset, ones that allow us to read in numeric values from either the keyboard or file without having to convert them from strings and determine if there are more values to be read.

Scanner in = new Scanner(System.in); // System.in is an InputStream
 Numeric and String Methods

	Method
	Returns

	int nextInt()
	Returns the next token as an int. If the next token is not an integer,InputMismatchException is thrown.

	long nextLong()
	Returns the next token as a long. If the next token is not an integer,InputMismatchException is thrown.

	float nextFloat()
	Returns the next token as a float. If the next token is not a float or is out of range, InputMismatchException is thrown.

	double nextDouble()
	Returns the next token as a long. If the next token is not a float or is out of range, InputMismatchException is thrown.

	String next()
	Finds and returns the next complete token from this scanner and returns it as a string; a token is usually ended by whitespace such as a blank or line break. If not token exists,NoSuchElementException is thrown.

	String nextLine()
	Returns the rest of the current line, excluding any line separator at the end.

	void close()
	Closes the scanner.

The Scanner looks for tokens in the input. A token is a series of characters that ends with what Java calls whitespace. A whitespace character can be a blank, a tab character, a carriage return. Thus, if we read a line that has a series of numbers separated by blanks, the scanner will take each number as a separate token. .
The numeric values may all be on one line with blanks between each value or may be on separate lines. Whitespace characters (blanks or carriage returns) act as separators. The next method returns the next input value as a string, regardless of what is keyed. For example, given the following code segment and data
· int number = in.nextInt();
· float real = in.nextFloat();
· long number2 = in.nextLong();
· double real2 = in.nextDouble();
· String string = in.next();

Class Diagram:

Same Class:

	Class name
	exp1a

	Variables
	-

	Functions
	add (), sub(), multi(), div(), main()

Different Class:

	Class name
	exp1

	Variables
	-

	Functions
	main()

	Class name
	complex

	Variables
	r : double
i : double

	Functions
	add (), sub(), multi(), div(), main()

Algorithm:
1. Start
2. Get input for num1
3. Get input for num2
4. Print addition : call add()
5. Print subtraction : call sub()
6. Print multiplication: call multi()
7. Print Division : call div()

Add()
1. Start
2. Add real numbers together
3. Add imaginary numbers together
4. Return the respective complex number

Sub()
1. Start
2. Subtract real numbers together
3. Subtract imaginary numbers together
4. Return the respective complex number

Multi()
1. Start
2. Multiply the given complex numbers using the mathematical formula for multiplication of complex numbers.
3. Return the respective complex number

Div()
1. Start
2. Divide the given complex numbers using the mathematical formula for Division of complex numbers.
3. Return the respective complex number

Implementation details:
Same Class:
import java.util.Scanner;

class exp1a {
 static void add(double r1,double i1,double r2,double i2) {
 System.out.println("Addition Result:");
 System.out.println("The Real part is: " + (r1+r2) + " Imaginary part is: " + (i1 + i2));
 }

 static void sub(double r1,double i1,double r2,double i2) {
 System.out.println("Subtraction Result:");
 System.out.println("The Real part is: " + (r1 - r2) + " Imaginary part is: " + (i1 - i2));
 }

 static void multi(double r1,double i1,double r2,double i2) {
 System.out.println("Multiplication Result:");
 double real, img;
 real = (r1 * r2) - (i1 * i2);
 img = (r1 * i2) + (i1 * r2);
 System.out.println("The Real part is: " + real + " Imaginary part is: " + img);
 }

 static void div(double r1,double i1,double r2,double i2) {
 System.out.println("Division Result:");
 double den = (r2 * r2) + (i2 * i2);
 double real = (r1 * r2) + (i1 * i2);
 double img = (i1 * r2) - (r1 * i2);
 System.out.println("The Real part is: " + real / den + " Imaginary part is: " + img / den);
 }
 public static void main(String args[]) {
 Scanner sc = new Scanner(System.in);
 System.out.print("Enter Real Part for num1: ");
 double real1 = sc.nextDouble();
 System.out.print("Enter Img Part for num1: ");
 double img1 = sc.nextDouble();
 System.out.print("Enter Real Part for num2: ");
 double real2 = sc.nextInt();
 System.out.print("Enter Img Part for num2: ");
 double img2 = sc.nextInt();
 exp1a.add(real1, img1, real2, img2);
 exp1a.sub(real1, img1, real2, img2);
 // Calling non-static methods
 exp1a.multi(real1, img1, real2, img2);
 exp1a.div(real1, img1, real2, img2);
 sc.close();
 }
}

Different Class:
import java.util.Scanner;

class exp1 {
 public static void main(String args[]) {
 Scanner sc = new Scanner(System.in);
 System.out.print("Enter Real Part for num1: ");
 double real = sc.nextDouble();
 System.out.print("Enter Img Part for num1: ");
 double img = sc.nextDouble();
 // Creating a complex number num1
 complex num1 = new complex(real, img);
 System.out.print("Enter Real Part for num2: ");
 real = sc.nextInt();
 System.out.print("Enter Img Part for num2: ");
 img = sc.nextInt();
 // Creating a complex number num2
 complex num2 = new complex(real, img);
 // Calling static methods
 complex.add(num1, num2);
 complex.sub(num1, num2);
 // Calling non-static methods
 num1.multi(num1, num2);
 num2.div(num1, num2);
 sc.close();
 }
}

class complex {
 double r, i;

 complex(double r, double i) {
 this.r = r;
 this.i = i;
 }

 static void add(complex num1, complex num2) {
 System.out.println("Addition Result:");
 System.out.println("The Real part is: " + (num1.r + num2.r) + " Imaginary part is: " + (num1.i + num2.i));
 }

 static void sub(complex num1, complex num2) {
 System.out.println("Subtraction Result:");
 System.out.println("The Real part is: " + (num1.r - num2.r) + " Imaginary part is: " + (num1.i - num2.i));
 }

 void multi(complex num1, complex num2) {
 System.out.println("Multiplication Result:");
 double real, img;
 real = (num1.r * num2.r) - (num1.i * num2.i);
 img = (num1.r * num2.i) + (num1.i * num2.r);
 System.out.println("The Real part is: " + real + " Imaginary part is: " + img);
 }

 void div(complex num1, complex num2) {
 System.out.println("Division Result:");
 double den = (num2.r * num2.r) + (num2.i * num2.i);
 double real = (num1.r * num2.r) + (num1.i * num2.i);
 double img = (num1.i * num2.r) - (num1.r * num2.i);
 System.out.println("The Real part is: " + real / den + " Imaginary part is: " + img / den);
 }
}

Output:
Same Class:
[image:]
Different Class:
[image:]

Conclusion:
In this experiment, we learnt how to implement program with one class and multiple classes. Along with accessibility with static and non-static methods within class and outside class.

Date: _____________ 			 Signature of faculty in-charge

Post Lab Descriptive Questions:

Q.1 Write a program to find the area and circumference of a circle using two classes.

Code:
import java.util.*;
class post1{
 public static void main(String[] args) {
 Scanner sc=new Scanner(System.in);
 System.out.print(">>Enter Cirle Radius: ");
 double r=sc.nextDouble();
 circle.area(r);
 circle.circum(r);
 }
}
class circle{
 static void area(double r){
 System.out.println(">>The Area of circle is: "+(3.14*r*r));
 }
 static void circum(double r){
 System.out.println(">>The Circumference of circle is: "+(2*3.14*r));
 }
}

Output:

[image:]

Q.2 Write the output of following program
1. public class BreakExample2 {
2. public static void main(String[] args) {
3. //outer loop
4. for(int i=1;i<=3;i++){
5. //inner loop
6. for(int j=1;j<=3;j++){
7. if(i==2&&j==2){
8. //using break statement inside the inner loop
9. break;
10. }
11. System.out.println(i+" "+j);
12. }
13. }
14. }
15. }

Output:

1 1
1 2
1 3
2 1
3 1
3 2
3 3

Q.3 Why is Java known as a platform independent language?

Java is based on Write-Once-Run-Anywhere concept that makes it Platform independent. It is platform independent because the program written in it is not directly converted into machine code but instead is converted into byte code by Java compiler, this byte code is then converted into machine readable code by Java Virtual Machine (JVM). JDK including JVM must be installed in a platform.

Q.4 Write a recursive static method for calculation of gcd of a number.

class post2 {
 public static void main(String[] args) {
 int a = 15, b = 150;
 System.out.println("G.C.D is: "+gcd(a,b));
 }
 public static int gcd(int a, int b) {
 if (b != 0)
 return gcd(b, a % b);
 else
 return a;
 }
}

Output:
[image:]

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No. 02

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE : Control Statement

AIM: Create a class myMath. The class contains the following static methods.
i) power (x, y) – to compute x y
ii) fact (x) – to compute x!
Write a program to find the following series.
· ex = 1 +(x/1!)+ (x2/2!) + (x3/3!) + (x4/4!) + … upto n terms (n given by user).
· (1+x)n = 1 +(nx/1!)+ ((n(n-1)x2)/2!) upto n terms (n given by user).
(Do not make use of inbuilt functions. Use the functions of user defined class MyMath.)

Expected OUTCOME of Experiment:

CO2: Explore arrays, vectors, classes and objects in C++ and Java.
__
Books/ Journals/ Websites referred:
1. E. Balagurusamy , “Programming with Java” McGraw-Hill.

2. Sachin Malhotra, Saurabh Choudhary, “Programming in Java”, Oxford Publications.

Pre Lab/ Prior Concepts
Java basic constructs (like if else statement, control structures, and data types
Programming languages provide various control structures that allow for more complicated execution paths.
A loop statement allows us to execute a statement or group of statements multiple times and following is the general form of a loop statement in most of the programming languages −
	Sr.No.
	Loop & Description

	1
	while loop
Repeats a statement or group of statements while a given condition is true. It tests the condition before executing the loop body.

	2
	for loop
Execute a sequence of statements multiple times and abbreviates the code that manages the loop variable.

	3
	do...while loop
Like a while statement, except that it tests the condition at the end of the loop body.

Loop Control Statements
Loop control statements change execution from its normal sequence. When execution leaves a scope, all automatic objects that were created in that scope are destroyed.
Java supports the following control statements. Click the following links to check their details.
	Sr.No.
	Control Statement & Description

	1
	break statement
Terminates the loop or switch statement and transfers execution to the statement immediately following the loop or switch.

	2
	continue statement
Causes the loop to skip the remainder of its body and immediately retest its condition prior to reiterating.

Class Diagram:
	Class name
	exp2

	Variables
	-

	Functions
	main()

	Class name
	myMath

	Variables
	-

	Functions
	power(), fact(), expo(), series()

Algorithm:

1. Start
2. Print 2^5 power : call power()
3. Print 5 factorial : call fact()
4. Take user input for n and x
5. Print result (1+x)^n : call series()
6. Print e^x result : call expo()

power()
1. Start
2. x and n are parameters
3. Initialize ans = 1
4. Loop n times
a) Ans = ans * x
5. return ans

fact()
1. Start
2. n is a parameter
3. if n>1
· return n * fact(n-1)
4. else return 1.

series()
1. Start
2. x and n are parameters
3. initialize ans = 0
4. loop n+1 times
· ans = ans + (power(x, i) * (fact(n) / fact(n - i))) / fact(i)
5. return ans

expo()
1. Start
2. x and n are parameters
3. initialize ans = 0
4. loop n times
· ans = ans + (power(x, i) / fact(i))
5. return ans

Implementation details:
import java.util.Scanner;

class exp2 {
 public static void main(String[] args) {
 Scanner sc = new Scanner(System.in);
 System.out.println("2^5 is: " + myMath.power(2, 5));
 System.out.println("5 factorial is: " + myMath.fact(5));
 System.out.println("Enter n :");
 int n = sc.nextInt();
 System.out.println("Enter x: ");
 double x = sc.nextDouble();
 System.out.println("(1+x)^n : "+myMath.series(n, x));
 System.out.println("e^x for first n terms: "+myMath.expo(n, x));

 }
}

class myMath {
 static double power(double x, int y) {
 double ans = 1;
 for (int i = 0; i < y; i++)
 ans = ans * x;
 return ans;
 }

 static int fact(int n) {
 if (n > 1)
 return n * fact(n - 1);
 else
 return 1;
 }

 static double expo(int n, double x) {
 double ans = 0;
 for (int i = 0; i < n; i++)
 ans = ans + (power(x, i) / fact(i));
 return ans;
 }

 static double series(int n, double x) {
 double ans = 0;
 for (int i = 0; i <= n; i++)
 ans = ans + (power(x, i) * (fact(n) / fact(n - i))) / fact(i);
 return ans;
 }
}

Output:
[image:]

Conclusion:
Developed custom math functions in java and implement it using static class concept.
Successfully executed the given problem statement.

Date: _____________ Signature of faculty in-charge

Post Lab Descriptive Questions

Q.1 Write a program to find the largest of three numbers using the if-else construct.

Code:
import java.util.Scanner;

class exp2post {
 public static void main(String[] args) {
 Scanner sc=new Scanner(System.in);
 System.out.println("Enter 3 numbers");
 double a=sc.nextDouble();
 double b=sc.nextDouble();
 double c=sc.nextDouble();
 if(a>b){
 if(a>c)
 System.out.println(a+" is the largest");
 else
 System.out.println(c+" is the largest");
 }
 else{
 if(b>c)
 System.out.println(b+" is the largest");
 else
 System.out.println(c+" is the largest");
 }
 }
}

Output:

[image: Text

Description automatically generated]

Q.2 Write a program to determine the sum of the following series for a given value of n:
1+½+⅓+....+1/n

Code:

import java.util.Scanner;

class ex2post2 {
 public static void main(String[] args) {
 Scanner sc=new Scanner(System.in);
 System.out.print("Enter n: ");
 int n=sc.nextInt();
 double ans=0;
 for(int i=1;i<=n;i++)
 ans=ans + 1.0/i;
 System.out.println("The answer is: "+ans);
 }
}

Output:

[image:]

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No. 03

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE :Multi-dimensional Arrays (Jagged Array)

AIM: Write a program which stores information about n players in a two dimensional array. The array should contain the number of rows equal to the number of players. Each row will have a number of columns equal to the number of matches played by that player which may vary from player to player. The program should display player number (index +1), runs scored in all matches and its batting average as output. (It is expected to assign columns to each row dynamically after getting value from the user.

Expected OUTCOME of Experiment:

CO2: Explore arrays, vectors, classes and objects in C++ and Java.
__
Books/ Journals/ Websites referred:

1. E. Balagurusamy , “Programming with Java” McGraw-Hill.

2. Sachin Malhotra, Saurabh Choudhary, “Programming in Java”, Oxford Publications.

Pre Lab/ Prior Concepts:

Arrays
Multi-Dimensional Array:
10 12 43 11 22
20 45 56 1 33
30 67 32 14 44
40 12 87 14 55
50 86 66 13 66
60 53 44 12 11
A multi-dimensional array is one that can hold all the values above. You set them up like this:
int[][] numbers = new int[6][5];
The first set of square brackets is for the rows and the second set of square brackets is for the columns. In the above line of code, we're telling Java to set up an array with 6 rows and 5 columns.
aryNumbers[0][0] = 10;
aryNumbers[0][1] = 12;
aryNumbers[0][2] = 43;
aryNumbers[0][3] = 11;
aryNumbers[0][4] = 22;
So the first row is row 0. The columns then go from 0 to 4, which is 5 items.

Class Diagram:

	Class name
	Exp3

	Variables
	-

	Functions
	main()

Algorithm:
1. Start
2. Take n Input
3. Initialize 2D array row
4. Loop n times
· Take number of matches as input
· Initialize column as number of matches +1
· Store first element of every row as jersey number
· Loop m times
· Take number of runs as input
· Store in 2D array
5. Print Player Stats
· Print Player Number
· Print number of matches
· Calculate total runs and print
· Print Batting Average i.e Total runs/ Number of matches

Implementation details:
import java.util.Scanner;
class exp3 {
 public static void main(String[] args) {
 Scanner sc=new Scanner(System.in);
 System.out.print("Enter the value of n: ");
 int n=sc.nextInt();
 int team[][]=new int[n][];
 for(int i=0;i<n;i++){
 System.out.print("\nEnter the number of matches for Player "+(i+1)+" : ");
 int m=sc.nextInt();
 team[i]=new int[m+1];
 team[i][0]=i+1;
 for(int j=0;j<m;j++){
 System.out.print("Enter runs in match "+(j+1)+" : ");
 team[i][j+1]=sc.nextInt();
 }
 }
 System.out.println();
 for(int i=0;i<n;i++){
 System.out.println("Player "+(i+1)+" Stats");
 System.out.println("------------------------\nNumber of Matches Played : "+(team[i].length-1));
 double totalRuns=0;
 for(int j=1;j<team[i].length;j++){
 System.out.println("Runs in Match "+(j)+" : "+team[i][j]);
 totalRuns+=team[i][j];
 }
 System.out.println("Total Runs : "+totalRuns);
 System.out.println("Batting Average : "+totalRuns/(team[i].length-1));
 System.out.println();
 }
 }
}

Output:
[image: Text

Description automatically generated]
Conclusion:
This experiment involved studying of multidimensional and jagged arrays. The latter was used for implementing the given problem statement and achieving desired results.

Date: _____________ 			 Signature of faculty in-charge

Post Lab Descriptive Questions

Q.1 Create a jagged array of integers. This array should consist of two 2-D arrays. First 2-D array should contain 3 rows having length of 4,3,and 2 respectively. Second 2-D array should contain 2 rows with length 3 and 4 respectively.

class post3q1 {
 public static void main(String[] args) {
 int arr1[][]=new int[3][];
 arr1[0]=new int[4];
 arr1[1]=new int[3];
 arr1[2]=new int[2];
 int arr2[][]=new int[2][];
 arr2[0]=new int[3];
 arr2[1]=new int[4];
 System.out.println("Array 1");
 for(int i=0;i<arr1.length;i++){
 for(int j=0;j<arr1[i].length;j++)
 System.out.print(arr1[i][j]+" ");
 System.out.println();
 }
 System.out.println("\nArray 2");
 for(int i=0;i<arr2.length;i++){
 for(int j=0;j<arr2[i].length;j++)
 System.out.print(arr2[i][j]+" ");
 System.out.println();
 }
 }
}

Output:
[image: Text

Description automatically generated]
Q.2 Consider the following code
int number[] = new int[5];
After execution of this statement, which of the following are true?
(A) number[0] is undefined
(B) number[5] is undefined
(C) number[4] is null
(D) number[2] is 0
(E) number.length() is 5
	
 (i) (C) & (E)
 (ii) (A) & (E)
 (iii) (E)
 (iv) (B), (D) & (E)

Ans: (iv) (B), (D) & (E)

Q.3 Write a program to create an array where ith row has i columns.
class post3q1 {
 public static void main(String[] args) {
 int arr1[][]=new int[5][];
 for(int i=0;i<arr1.length;i++)
 arr1[i]=new int[i];
 for(int i=0;i<arr1.length;i++){
 for(int j=0;j<arr1[i].length;j++)
 System.out.print(arr1[i][j]+" ");
 System.out.println();
 }
 }
}

[image: Graphical user interface, text

Description automatically generated]

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No. 04

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE :An Array of Objects

AIM: Write a program which accepts information about n no of customers from user .Create an array of objects to store account_id ,name,balance.
Your program should provide following functionalities
1. To add account
2. To delete any account detail
3. To display account details.

Expected OUTCOME of Experiment:

CO1: Understand the features of object oriented programming compared with procedural approach with C++ and Java
CO2: Explore arrays, vectors, classes and objects in C++ and Java.
__
Books/ Journals/ Websites referred:

1. Ralph Bravaco , Shai Simoson , “Java Programing From the Group Up” Tata McGraw-Hill.
2. Grady Booch, Object Oriented Analysis and Design .

Pre Lab/ Prior Concepts:

Arrays of Objects:
Unlike traditional array which store values like string, integer, boolean, etc. array of objects stores objects. The array elements store the location of reference variables of the object.

For example:

class Student {
 int rno;
 String name;
 float avg;
}
Student(int r, String name, float average)
{
 rno=r;
 this.name=name;
 avg=average;
}

Student studentArray[] = new Student[n];

· The above statement creates the array which can hold references to n number of Student objects. It doesn't create the Student objects themselves. They have to be created separately using the constructor of the Student class. The studentArray contains n number of memory spaces in which the address of n Student objects may be stored.

for (int i=0; i<studentArray.length; i++) {
studentArray[i]=new Student(r,name,average);
}

· The above for loop creates n Student objects and assigns their reference to the array elements. Now, a statement like the following would be valid.
studentArray[i].r=1001;
.
Class Diagram:
	Class name
	Exp4

	Variables
	-

	Functions
	main()

	Class name
	acccount

	Variables
	Int id, String name, double balance

	Functions
	-

Algorithm:
1. Create a class Account with attributes int is, String name and float Balance.
2. Create a constructor for this class.
3. Create a public class Expt_4.
4. Define the main method in this class.
5. Create an object of Scanner class.
6. Get the total number of customers from the user and declare the array of same length.
7. Define a while loop.
8. In this while loop get choice from the user to Add, Delete, Display the account or to Exit.
9. If user selects option 1.
10. Get the number of accounts to be added initially.
11. Get account number, account holder name and balance.
12. Store this in the array of objects defines earlier.
13. If user selects option 2.
14. Get the account number from the user.
15. Find that account number in the array and shift the next element of the array at that position.
16. If user selects option 3.
17. Print the contents of array using for loop.
18. If user selects option 4.
19. Exit

Implementation details:
import java.util.Scanner;

class exp4 {
 public static void main(String[] args) {
 Scanner sc = new Scanner(System.in);
 System.out.print("Enter the number of customers: ");
 int n = sc.nextInt();
 account arr[] = new account[n];
 int t = 0;
 while (t != 4) {
 System.out.println("(1) Add Account");
 System.out.println("(2) Delete Account");
 System.out.println("(3) Display Accounts");
 System.out.println("(4) Exit");
 t = sc.nextInt();
 if (t == 1)
 addAccount(arr, n);
 else if (t == 2) {
 System.out.print("Enter Account ID. to Delete: ");
 int id = sc.nextInt();
 deleteAccount(arr, id, n);
 } else if (t == 3){
 System.out.println("Enter the account id to search: ");
 int id=sc.nextInt();
 displayAccount(arr, id,n);
 }
 else if (t == 4)
 break;
 else
 System.out.println("Please Enter Correct Option!");

 }
 }

 static void addAccount(account arr[], int n) {
 Scanner sc = new Scanner(System.in);
 System.out.print("Enter Account ID: ");
 int id = sc.nextInt();
 sc.nextLine();
 System.out.print("Enter Account Name: ");
 String name = sc.nextLine();
 System.out.print("Enter Account Balance: ");
 double balance = sc.nextDouble();
 boolean check = false;
 for (int i = 0; i < n; i++) {
 if(arr[i]!=null){
 if(arr[i].id==id){
 check=true;
 System.out.println("Cannot add the above account id");
 break;
 }
 }
 else {
 arr[i] = new account(id, name, balance);
 check = true;
 break;
 }
 }
 if (check == false)
 System.out.println("There is not enough space in Array!");
 }

 static void deleteAccount(account arr[], int id, int n) {
 boolean check = false;
 for (int i = 0; i < n && arr[i]!=null; i++) {
 if (arr[i].id == id) {
 check = true;
 for (int j = i; j < n - 1; j++)
 arr[j] = arr[j + 1];
 arr[n - 1] = null;
 }
 }
 if (check == false)
 System.out.println("Account ID not found!");
 }

 static void displayAccount(account arr[], int id,int n) {
 boolean check=false;
 for(int i=0;i<n && arr[i]!=null;i++){
 if(arr[i].id==id){
 System.out.println("\nAccount id: " + arr[i].id);
 System.out.println("Account name: " + arr[i].name);
 System.out.println("Account balance: " + arr[i].balance + "\n");
 check=true;
 break;
 }
 }

 if(check==true)
 System.out.println("Account Not Found!");
 }
}

class account {
 int id;
 String name;
 double balance;

 account() {
 id = 0;
 name = null;
 balance = 0;
 }

 account(int pid, String pname, double pbalance) {
 id = pid;
 name = pname;
 balance = pbalance;
 }
}
Output:
 [image: Text

Description automatically generated]
[image:]
Conclusion: The experiment was executed successfully.

Date: _____________ 			 Signature of faculty in-charge

Post Lab Descriptive Questions

Q.1 If an array of objects is of size 10 and a data value have to be retrieved from 5th object then ________________ syntax should be used.

a)Array_Name[4].data_variable_name;
b)Data_Type Array_Name[4].data_variable_name;
c)Array_Name[4].data_variable_name.value;
d) Array_Name[4].data_variable_name(value);
Ans: a

 Q.2)The Object array is created in _____________________
a)Heap memory
b) Stack memory
c) HDD
d) ROM

Ans: a

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No.05

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE :Vector

AIM: Create a class Employee which stores E-Name, E-Id and E-Salary of an Employee. Use class Vector to maintain an array of Employee with respect to the E-Salary. Provide the following functions
1) Create (): this function will accept the n Employee records in any order and will arrange them in the sorted order.
2) Insert (): to insert the given Employee record at appropriate index in the vector depending upon the E-Salary.
3) delete ByE-name(): to accept the name of the Employee and delete the record having given name
4) deleteByE-Id (): to accept the Id of the Employee and delete the record having given E-Id.

Provide the following functions
1) boolean add(E e) : This method appends the specified element to the end of this Vector.
2) void addElement(E obj) This method adds the specified component to the end of this vector, increasing its size by one.
3) int lastIndexOf(Object o, int index) This method returns the index of the last occurrence of the specified element in this vector, searching backwards from index, or returns -1 if the element is not found.
4) void removeElementAt(int index)This method deletes the component at the specified index.
__
Expected OUTCOME of Experiment:
CO2: Explore arrays, vectors, classes and objects in C++ and Java.

Books/ Journals/ Websites referred:
1. Ralph Bravaco , Shai Simoson , “Java Programing From the Group Up” Tata McGraw-Hill.

2.Grady Booch, Object Oriented Analysis and Design .
__
Pre Lab/ Prior Concepts:

Vectors in Java are one of the most commonly used data structures. Similar to Arrays data structures which hold the data in a linear fashion. Vectors also store the data in a linear fashion, but unlike Arrays, they do not have a fixed size. Instead, their size can be increased on demand.
Vector class is a child class of AbstractList class and implements on List interface. To use Vectors, we first have to import Vector class from java.util package:
import java.util.Vector;
Access Elements in Vector:
We can access the data members simply by using the index of the element, just like we access the elements in Arrays.
Example- If we want to access the third element in a vector v, we simply refer to it as v[3].
Vectors Constructors
Listed below are the multiple variations of vector constructors available to use:
1. Vector(int initialCapacity, int Increment) – Constructs a vector with given initialCapacity and its Increment in size.
2. Vector(int initialCapacity) – Constructs an empty vector with given initialCapacity. In this case, Increment is zero.
3. Vector() – Constructs a default vector of capacity 10.
4. Vector(Collection c) – Constructs a vector with a given collection, the order of the elements is same as returned by the collection’s iterator.
There are also three protected parameters in vectors
· Int capacityIncrement()- It automatically increases the capacity of the vector when the size becomes greater than capacity.
· Int elementCount() – tell number of elements in the vector
· Object[] elementData() – array in which elements of vector are stored

Memory allocation of vectors:

Vectors do not have a fixed size, instead, they have the ability to change their size dynamically. One might think that the vectors allocate indefinite long space to store objects. But this is not the case. Vectors can change their size based on two fields ‘capacity’ and ‘capacityIncrement’. Initially, a size equal to ‘capacity’ field is allocated when a vector is declared. We can insert the elements equal to the capacity. But as soon as the next element is inserted, it increases the size of the array by size ‘capacityIncrement’. Hence, it is able to change its size dynamically.
For a default constructor, the capacity is doubled whenever the capacity is full and a new element is to be inserted.

Methods of Vectors :
· Adding elements
· Removing elements
· Changing elements
· Iterating the vector

Class Diagram:

	Class name
	Exp5

	Variables
	-

	Functions
	main(), addAccount(Vector<Employee> arr, int n),
deleteAccount(Vector<Employee> arr),
displayAccount(Vector<Employee> arr)

	Class name
	Employee

	Variables
	Int id, String name, double salary

	Functions
	-

Algorithm:
1. Start
2. Create a Vector object Emp of the type Employee(E_Name, E_Id, E_Salary)
3. while(true)
4. 1.Create 2.Insert by salary 3.Delete by name 4.Delete by Id 5.Display 6. Exit
5. read choice
6. (Switch Case), Case 1(choice=1)
6.1 read number of employee records to be added(n)
6.2 for i=0, i<n, accept the employee details(e_name. e_id, e_salary)
6.3 Sort the employee records using comparator interface
6.3.1 if a.E_Salary>b.E_Salary, return 1
6.3.2 else if a.E_Salary<b.E_Salary, return -1
6.3.3 else, return 0
7. Case 2(choice=2)
7.1 accept the employee details
7.2 for i=0, i<Emp.size()
If Emp.get(i).E_Salary>e_salary, add the record to the i
th index.
8. Case 3(choice=3)
8.1 Declare a=0
8.2 read the name of record to be deleted 8.3 for i=0, i<Emp.size()
if e_name = Emp.get(i).E_Name, remove the corresponding record and increment a
8.4 if a=0, print “Employee name not found.”
9. Case 4(choice=4)
9.1 Declare b=0
9.2 read the name of record to be deleted 9.3 for i=0, i<Emp.size()
if e_id = Emp.get(i).E_Id, remove the corresponding record and increment b
9.4 if b=0, print “Employee id not found.”
10. Case 5(choice=5)
Print all the records
11. Case 6(choice=6)
12. Exit

Implementation details:
import java.util.*;

class exp5 {
 public static void main(String[] args) {
 Scanner sc = new Scanner(System.in);
 Vector<Employee> arr = new Vector<>();
 int t = 0;
 System.out.print("Enter the number of Employees to add: ");
 int n = sc.nextInt();
 addAccount(arr, n);
 while (t != 4) {
 System.out.println("(1) Add Employee");
 System.out.println("(2) Delete Employee");
 System.out.println("(3) Display Employee");
 System.out.println("(4) Exit");
 t = sc.nextInt();
 if (t == 1)
 addAccount(arr, 1);
 else if (t == 2)
 deleteAccount(arr);
 else if (t == 3)
 displayAccount(arr);
 else if (t == 4)
 break;
 else
 System.out.println("Please Enter Correct Option!");

 }
 }

 static void addAccount(Vector<Employee> arr, int n) {
 Scanner sc = new Scanner(System.in);
 for (int i = 0; i < n; i++) {
 System.out.print("Enter Employee ID: ");
 int id = sc.nextInt();
 sc.nextLine();
 System.out.print("Enter Employee Name: ");
 String name = sc.nextLine();
 System.out.print("Enter Employee salary: ");
 double balance = sc.nextDouble();
 int check = 0;
 for (Employee e : arr) {
 if (e.id == id) {
 System.out.println("Cannot add the above Employee data!");
 check = -1;
 break;
 } else if (e.name.equals(name)) {
 System.out.println("Cannot add the above Employee data!");
 check = -1;
 break;
 }
 }
 if (check != -1)
 arr.add(new Employee(id, name, balance));
 }
 Collections.sort(arr, new Comparator<Employee>() {
 public int compare(Employee s1, Employee s2) {
 if (s1.salary > s2.salary)
 return -1;
 else if (s1.salary < s2.salary)
 return 1;
 else
 return 0;
 }
 });
 }

 static void deleteAccount(Vector<Employee> arr) {
 Scanner sc = new Scanner(System.in);
 System.out.println("(1) Delete by ID");
 System.out.println("(2) Delete by Name");
 int t = sc.nextInt();
 int id = -1, count = 0;
 String name = null;
 if (t == 1) {
 System.out.println("Enter Id");
 id = sc.nextInt();
 } else if (t == 2) {
 System.out.println("Enter Name");
 sc.nextLine();
 name = sc.nextLine();
 }
 for (Employee e : arr) {
 if (e.id == id && t == 1) {
 arr.remove(e);
 System.out.println("Deleted Employee!");
 break;
 } else if (e.name.equals(name) && t == 2) {
 arr.remove(e);
 System.out.println("Deleted Employee!");
 break;
 }
 count++;
 }
 }

 static void displayAccount(Vector<Employee> arr) {
 for (Employee employee : arr) {
 System.out.println("\n\nName: " + employee.name);
 System.out.println("Id: " + employee.id);
 System.out.println("Salary: " + employee.salary);
 }
 }
}

class Employee {
 int id;
 String name;
 double salary;

 Employee() {
 id = 0;
 name = null;
 salary = 0;
 }

 Employee(int pid, String pname, double pbalance) {
 id = pid;
 name = pname;
 salary = pbalance;
 }
}

Output:
 [image: Text

Description automatically generated]
[image:][image: Text

Description automatically generated]
Conclusion:
The concept of vectors in Java was studied and implemented.

Date:_______ Signature of faculty in-charge

Post Lab Descriptive Questions

1) What is the output of the following Program

	import java.util.*;
class demo2 {
 public static void main(String[] args)
 {
 Vector v = new Vector(20);
 v.addElement("Geeksforgeeks");
 v.insertElementAt("Java", 2);
 System.out.println(v.firstElement());
 }
}

Output: It gives no output because of ArrayindexOutOfBound Exception
because initially there was only one element at index 0. Next it expects a value to
be added at index 1, but we are adding at index 2. Hence an exception is raised.

2) Expain any 10 methods of Vector class in detail with the help of example

1. void add(int index, Object element)
Inserts the specified element at the specified position in this Vector.
Example: v.add(1, “apple”);

2. boolean add(Object o)
Appends the specified element to the end of this Vector.
Example: v.add(“pear”);

3. boolean addAll(int index, Collection c)
Inserts all of the elements in the specified Collection into this Vector at the
specified position.
Example: v.addAll(3, arr);

4. void addElement(Object obj)
Adds the specified component to the end of this vector, increasing its size
by one.
Example: v.addElement(“plum”);

5. int capacity()
Returns the current capacity of this vector.
Example: v.capacity();

6. boolean contains(Object elem)
Tests if the specified object is a component in this vector.
Example: v.contains(“apple”);

7. void copyInto(Object[] anArray)
Copies the components of this vector into the specified array.
Example: v.copyInto(arr);

8. Object elementAt(int index)
Returns the component at the specified index.
Example: v.elementAt(2);

9. Object remove(int index)
Removes the element at the specified position in this vector.
Example: v. remove(3);

10.int size()
Returns the number of components in this vector.
Example: v.size();

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No.06

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE :Case Study (for Class Diagram)

AIM: Draw class Diagram for the chosen Case Study . Clearly show
· Attributes
· Multiplicities between classes
· Aggregations/compositions/Association between classes
· Generalization between classes in the class diagram.
And show the implementation of aggregation, association, composition and generalization between the classes.
__
Expected OUTCOME of Experiment:
CO1: Understand the features of object oriented programming compared with procedural approach with C++ and Java.
CO2: Explore arrays, vectors, classes and objects in C++ and Java.
CO3: Implement scenarios using object oriented concepts (Drawing class diagram, relationship between classes, sequence diagram)
CO4: Explore the interface, exceptions, multithreading, packages

Books/ Journals/ Websites referred:

1.Ralph Bravaco , Shai Simoson , “Java Programing From the Group Up” Tata McGraw-Hill.

2.Grady Booch, Object Oriented Analysis and Design .
__
Pre Lab/ Prior Concepts:

Define Class, Methods, Object.
Understanding of Aggregation, Association, Composition and Generalization between classes

List Of Classes:
Staff: Contains the staff details
Doctor: Contains the details of doctors
Patient: Contains the patients details
Medical: Contains medicine details
Facility: Contains details about facilities available
Identify Attributes for each class:
Staff: sid, sname, desg, gender
Doctor: did, dname, specilist, doc_qual, droom
Patient: pid, pname, disease, gender, admit_status, age
Medical: med_name, exp_date, med_cost, count
Facility: fac_name
Lab: facility, lab_cost
Identify List of Methods in each classes:
Staff: new_staff(id,name,deg,gender,salary), staff_info(id), staff_del()
Doctor: new_doctor(did, dname, specilist, doc_qual, droom), doctor_info(), doctor_del()
Patient: new_patient(), patient_info(id), patient_del()
Medical: new_medi(), medi_info(id),medical_delete()
Facility: add_faci(), show_faci(id),facility_delete()

Class Diagram:
[image: Diagram

Description automatically generated]
Algorithm:
1. Start
2. import java.util.* and java.util.calendar
3. Declare a class Staff
4. Declare attributes of class Staff sid, sname, desg, sex, salary.
5. Declare a method new_staff in Staff class to set the attributes for new members of the class.
6. Declare a method staff_info to print these details.
7. Declare a class Doctor
8. Declare attributes of class Doctor did, dname, specilist, appoint, doc_qual, droom
9. Declare method new_doctor and doctor_jnfo which has same purpose as class Staff methods had for Staff.
10. In the same way as done in previous steps declare classes Patient, Medical, Facility, Lab
11. Declare following attributes for the respective classes
Patient: pid, pname, disease, sex, admit_status, age
Medical: med_name, med_comp, exp_date, med_cost, count Facility: fac_name
Lab: facility, lab_cost.
12. Now, declare following methods for the classes and these methods serve the same purpose as described for class Staff and Doctor i.e. to set the attributes for new members of the class and to print the details.
Patient: new_patient(), patient_info() Medical: new_medi()
Facility: add_faci(), show_faci() Lab: new_faci(), faci_list()
13. In the main method define a String containing months names
14. Create a object calendar for calendar.
15. Declare variables count1, count2, count3, count4, count5,count6.
16. Print current date and time.
17. Create Array of objects for the respective classes.
18. Initialize the for loops for the classes which are used to add new objects to the class.
19. Add some objects to this array list.
20. Get choice from the user.
21. If 1 is selected then user gets two options 1. Add New Entry 2. Existing Doctorslist
22. After to go back enter 1 and 0 for main menu.
23. According to choose entered by the user add the objects to the class or display the details using the methods defined earlier.
24. Repeat step 22 and 23 for all other options.
25. If user enters 1.
26. Exit

Conclusion : Successfully completed the given task.

Date: __________ Signature of faculty in-charge

Post Lab Descriptive Questions
1. Consider the following class:
public class TypeOfVariable{
	public static int a;
	int b,c;
	public void printValue(){
		int x = 10;
	}
	public static void main(String args[]){
		TypeOfVariable object=new TypeOfVariable();
		object.printValue();
	}
}
a). What are the class/static variables?
A static variable is common to all the instances (or objects) of the class because it is a class level variable. In other words you can say that only a single copy of static variable is created and shared among all the instances of the class. Memory allocation for such variables only happens once when the class is loaded in the memory. Static variables are also known as Class Variables.
Unlike non-static variables, such variables can be accessed directly in static and non-static methods.
Here a is static variable.

b). What are the instance variables?
Instance variable in Java is used by Objects to store their states. Variables which are defined without the STATIC keyword and are Outside any method declaration are Object-specific and are known as instance variables. They are called so because their values are instance specific and are not shared among instances.
Here b and c are instance variables.
c.)What are local variables?
A local variable in Java is a variable that's declared within the body of a method. Then you can use the variable only within that method. Other methods in the class aren't even aware that the variable exists. You don't specify static on a declaration for a local variable.
Here x is a local variable.

2.What is the output from the following code:
public class Test
{
 static int x = 11;
 private int y = 33;
 public void method1(int x)
 {
 Test t = new Test();
 this.x = 22;
 y = 44;

 System.out.println("Test.x: " + Test.x);
 System.out.println("t.x: " + t.x);
 System.out.println("t.y: " + t.y);
 System.out.println("y: " + y);
 }

 public static void main(String args[])
 {
 Test t = new Test();
 t.method1(5);
 }
}

Output
Test.x = 22 t.x = 22
t.y = 33
y = 44

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No.07

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE : User Defined Exception

AIM:
Create a user defined exception subclass TimeException with necessary constructors and overridden toString method. Write a program which accepts two integers with time in minutes and seconds and find the sum. It throws an object of the TimeException class if the value exceeds 60seconds otherwise it displays the total time. On printing, the exception object should display an exception name, appropriate message for exception.

Expected OUTCOME of Experiment:

CO1: Understand the features of object oriented programming compared with procedural approach with C++ and Java
CO4:Explore the interface, exceptions, multithreading, packages ___
Books/ Journals/ Websites referred:

 1.Ralph Bravaco , Shai Simoson , “Java Programming From the Group Up” Tata McGraw-Hill.

2.Grady Booch, Object Oriented Analysis and Design.

Pre Lab/ Prior Concepts:
Exception handling in java is a powerful mechanism or technique that allows us to handle runtime errors in a program so that the normal flow of the program can be maintained. All the exceptions occur only at runtime. A syntax error occurs at compile time.
Exception in Java:
In general, an exception means a problem or an abnormal condition that stops a computer program from processing information in a normal way.
An exception in java is an object representing an error or an abnormal condition that occurs at runtime execution and interrupts (disrupts) the normal execution flow of the program.

An exception can be identified only at runtime, not at compile time. Therefore, it is also called runtime errors that are thrown as exceptions in Java. They occur while a program is running.
For example:
· If we access an array using an index that is out of bounds, we will get a runtime error named ArrayIndexOutOfBoundsException.
· If we enter a double value while the program is expecting an integer value, we will get a runtime error called InputMismatchException.

When JVM faces these kinds of errors or dividing an integer by zero in a program, it creates an exception object and throws it to inform us that an error has occurred.If the exception object is not caught and handled properly, JVM will display an error message and will terminate the rest of the program abnormally.
If we want to continue the execution of remaining code in the program, we will have to handle exception objects thrown by error conditions and then display a user-friendly message for taking corrective actions. This task is known as exception handling in java.

Types of Exceptions in Java

Basically, there are two types of exceptions in java API. They are:
1. Predefined Exceptions (Built-in-Exceptions)
2. Custom (User defined)Exceptions

Predefined Exceptions:
Predefined exceptions are those exceptions that are already defined by the Java system. These exceptions are also called built-in-exceptions.Java API supports exception handling by providing the number of predefined exceptions. These predefined exceptions are represented by classes in java.
When a predefined exception occurs, JVM (Java runtime system) creates an object of predefined exception class. All exceptions are derived from java.lang.Throwable class but not all exception classes are defined in the same package. All the predefined exceptions supported by java are organized as subclasses in a hierarchy under the Throwable class.

All the predefined exceptions are further divided into two groups:

1. Checked Exceptions: Checked exceptions are those exceptions that are checked by the java compiler itself at compilation time and are not under runtime exception class hierarchy. If a method throws a checked exception in a program, the method must either handle the exception or pass it to a caller method.

2. Unchecked Exceptions: Unchecked exceptions in Java are those exceptions that are checked by JVM, not by java compiler. They occur during the runtime of a program. All exceptions under the runtime exception class are called unchecked exceptions or runtime exceptions in Java.

Custom exceptions:
Custom exceptions are those exceptions that are created by users or programmers according to their own needs. The custom exceptions are also called user-defined exceptions that are created by extending the exception class.
So, Java provides the liberty to programmers to throw and handle exceptions while dealing with functional requirements of problems they are solving.

Exception Handling Mechanism using Try-Catch block:
The general syntax of try-catch block (exception handling block) is as follows:

Syntax:
try
{
 // A block of code; // generates an exception
}
catch(exception_class var)
{
 // Code to be executed when an exception is thrown.
}

Example:
public class TryCatchEx
{
public static void main(String[] args)
{
 System.out.println("11");
 System.out.println("Before divide");
 int x = 1/0;
 System.out.println("After divide");
 System.out.println("22");
 }
}

Output:
 11
 Before divide
 Exception in thread "main" java.lang.ArithmeticException: / by zero

Class Diagram:

Algorithm:
Step 1: Create a class that extends the class Exception and call the constructor of that class.
Step 2: In the constructor initialize the class variables.
Step 3: In the main method of class Exp7 input the time from the user and check if they
are valid in the try block.
Step 4: If the time is invalid then throws an exception .In the catch block print the
exception name and the message that needs to be printed along with it.
Step 5: If the time entered is vaild then display the total seconds.

Implementation details :
import java.util.Scanner;

class TimeException extends Exception {
 String msg;

 public TimeException(String s) {
 this.msg = s;
 }

 public String toString() {
 return (msg);
 }
}

public class Exp7 {

 public static void main(String args[]) {
 Scanner sc = new Scanner(System.in);

 try {
 System.out.print("Enter minutes: ");
 int min = sc.nextInt();
 System.out.print("Enter seconds: ");
 int sec = sc.nextInt();
 if (sec > 60)
 throw new TimeException("seconds can't be more than 60 secs");
 else {
 sec=60*min+sec;
 System.out.println("Total Seconds is "+sec+"sec");
 }
 } catch (TimeException e) {
 System.out.print("TimeException Error: ");
 System.out.println(e.toString());
 }
 }
}

Output:
[image:]
[image: Text

Description automatically generated with medium confidence]

Conclusion: User defined exceptions were understood and implemented successfully.

Date: ___________ 		Signature of faculty in-charge

Post Lab Descriptive Questions

1. Compare throw and throws.
	throw
	throws

	The throw keyword is used inside a function. It is used when it is required to throw an Exception logically.
	The throws keyword is used in the function signature. It is used when the function has some statements that can lead to exceptions.

	The throw keyword is used to throw an exception explicitly. It can throw only one exception at a time.
	The throws keyword can be used to declare multiple exceptions, separated by a comma. Whichever exception occurs, if matched with the declared ones, is thrown automatically then.

	Syntax of throw keyword includes the instance of the Exception to be thrown. Syntax wise throw keyword is followed by the instance variable.
	Syntax of throws keyword includes the class names of the Exceptions to be thrown. Syntax wise throws keyword is followed by exception class names.

	throw keyword cannot propagate checked exceptions. It is only used to propagate the unchecked Exceptions that are not checked using the throws keyword.
	throws keyword is used to propagate the checked Exceptions only.

2. Explain how to create a user defined exception and explicitly throw an exception in a program with a simple example.
Java user-defined exception is a custom exception created and throws that exception using a keyword ‘throw’. It is done by extending a class ‘Exception’. An exception is a problem that arises during the execution of the program. In Object-Oriented Programming language, Java provides a powerful mechanism to handle such exceptions. Java allows to create own exception class, which provides own exception class implementation. Such exceptions are called user-defined exceptions or custom exceptions.

Example:

class Example {
 public static void main(String args[]) {
 try {
 throw new NewException(100);
 } catch (NewException e) {
 System.out.println(e);
 }
 }
}

class NewException extends Exception {
 int a;

 NewException(int b) {
 a = b;
 }

 public String toString() {
 return ("Status code = " + a);
 }
}

3. Suppose the statement2 causes an exception in following try-catch block:

try {
 	statement1;
	statement2;
	statement3;
}
catch(Exception1 e1) {
}
	catch(Exception2 e2){
}
	
	statement4;
	
Answer the following questions:
· Will statement3 be executed?
NO, the statement 3 will not be executed.
· If the exception is not caught, will statement4 be executed?
NO, the statement 4 will not be executed.
· If the exception is caught in the catch block, will statement4 be executed?
YES, if the exception is caught in the catch block, statement 4 will be executed.
· If the exception is passed to the caller, will the statement4 be executed?
YES, it the exception is passed to the caller, statement 4 will be executed.

4. Explain finally block with the help of an example.

The finally block in java is used to put important codes such as clean up code e.g. closing the file or closing the connection. The finally block executes whether exception rise or not and whether exception handled or not. A finally contains all the crucial statements regardless of the exception occurs or not.

Example:
class Test {
 public static void main(String args[]) {
 try {
 int data = 25 / 5;
 System.out.println(data);
 } catch (NullPointerException e) {
 System.out.println(e);
 } finally {
 System.out.println("finally block is always executed");
 }
 System.out.println("rest of the code...");
 }
}

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No.08

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE : Multithreading Programming

AIM: Write a java program that implements a multi-thread application that has three threads. First thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number.

__
Expected OUTCOME of Experiment:

CO1: Understand the features of object oriented programming compared with procedural approach with C++ and Java
CO4: Explore the interface, exceptions, multithreading, packages.
. ___
Books/ Journals/ Websites referred:

1. Ralph Bravaco , Shai Simoson , “Java Programming From the Group Up” Tata McGraw-Hill.

2.Grady Booch, Object Oriented Analysis and Design .

Pre Lab/ Prior Concepts:
Java provides built-in support for multithreaded programming. A multithreaded program contains two or more parts that can run concurrently. Each part of such a program is called a thread, and each thread defines a separate path of execution. A multithreading is a specialized form of multitasking. Multithreading requires less overhead than multitasking processing.
Multithreading enables you to write very efficient programs that make maximum use of the CPU, because idle time can be kept to a minimum.

Creating a Thread:
Java defines two ways in which this can be accomplished:
1. You can implement the Runnable interface.
2. You can extend the Thread class itself.

Create Thread by Implementing Runnable:
The easiest way to create a thread is to create a class that implements the Runnable interface.
To implement Runnable, a class needs to only implement a single method called run(), which is declared like this:
 				public void run()
You will define the code that constitutes the new thread inside run() method. It is important to understand that run() can call other methods, use other classes, and declare variables, just like the main thread can.

After you create a class that implements Runnable, you will instantiate an object of type Thread from within that class. Thread defines several constructors. The one that we will use is shown here:
Thread(Runnable threadOb, String threadName);

Here, threadOb is an instance of a class that implements the Runnable interface and the name of the new thread is specified by threadName.
After the new thread is created, it will not start running until you call its start() method, which is declared within Thread. The start() method is shown here:
void start();
Here is an example that creates a new thread and starts it running:
class NewThread implements Runnable {
 Thread t;
 NewThread() {
 t = new Thread(this, "Demo Thread");
 System.out.println("Child thread: " + t);
 t.start(); // Start the thread
 }
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Child Thread: " + i);
 // Let the thread sleep for a while.
 Thread.sleep(50);
 }
 } catch (InterruptedException e) {
 System.out.println("Child interrupted.");
 }
 System.out.println("Exiting child thread.");
 }
}

public class ThreadDemo {
 public static void main(String args[]) {
 new NewThread();
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Main Thread: " + i);
 Thread.sleep(100);
 }
 } catch (InterruptedException e) {
 System.out.println("Main thread interrupted.");
 }
 System.out.println("Main thread exiting.");
 }
}

The second way to create a thread is to create a new class that extends Thread, and then to create an instance of that class.
The extending class must override the run() method, which is the entry point for the new thread. It must also call start() to begin execution of the new thread.
class NewThread extends Thread {
 NewThread() {
 super("Demo Thread");
 System.out.println("Child thread: " + this);
 start(); // Start the thread
 }
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Child Thread: " + i);
 // Let the thread sleep for a while.
 Thread.sleep(50);
 }
 } catch (InterruptedException e) {
 System.out.println("Child interrupted.");
 }
 System.out.println("Exiting child thread.");
 }
}

public class ExtendThread {
 public static void main(String args[]) {
 new NewThread(); // create a new thread
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Main Thread: " + i);
 Thread.sleep(100);
 }
 } catch (InterruptedException e) {
 System.out.println("Main thread interrupted.");
 }
 System.out.println("Main thread exiting.");
 }
}

Some of the Thread methods

	Methods
	Description

	void setName(String name)
	Changes the name of the Thread object. There is also a getName() method for retrieving the name

	Void setPriority(int priority)
	Sets the priority of this Thread object. The possible values are between 1 and 10. 5

	boolean isAlive()
	Returns true if the thread is alive, which is any time after the thread has been started but before it runs to completion.

	void yield()
	Causes the currently running thread to yield to any other threads of the same priority that are waiting to be scheduled.

	void sleep(long millisec)

	Causes the currently running thread to block for at least the specified number of milliseconds.

	Thread currentThread()

	Returns a reference to the currently running thread, which is the thread that invokes this method.

Class Diagram:
[image:]

Algorithm:
Step 1: Create class random and extend Thread to it
Step 2: Override the function run
i. In function run generate a random number by using random package
ii. Create objects of thread Square and thread cube
iii. Check if the number generated is even, if so , then start thread Square else
start thread Cube
Step 3: In class Square, create a parametrized constructor to initialize the class variables
Step 4: Override the function run , which prints the square of the number.
Step 5: In class Cube, create a parametrized constructor to initialize the class variables
Step 6: Override the function run , which prints the cube of the number .
Step 7: Create a class Main , with a main function.
Step 8: The main function is used to create an object of class Random .This object is
then used to start the Random thread.
Implementation details:
import java.util.Random;

class random extends Thread {
 public void run() {
 Random r = new Random();
 for (int i = 0; i < 5; i++) {
 int x = r.nextInt(100);
 try {
 Thread.sleep(1000);
 } catch (Exception e) {
 } finally {
 Square obj2 = new Square(x);
 Cube obj3 = new Cube(x);
 if (x % 2 == 0)
 obj2.start();
 else
 obj3.start();
 }
 }
 }
}

class Square extends Thread {
 public int x;

 public Square(int x) {
 this.x = x;
 }

public void run()
{
System.out.println("Random Number is "+x+", Square is: "+x*x);
}
}

class Cube extends Thread {
 int x;

 Cube(int x) {
 this.x = x;
 }

public void run()
{
System.out.println("Random Number is "+x+", Cube is : "+x*x*x);
}
}

public class exp8 {
 public static void main(String args[]) {
 random obj1 = new random();
 obj1.start();
 }
}

Output:
[image:]
Conclusion:
Thus, multithreading was understood and implemented.

Date:________ 		Signature of faculty in-charge

Post Lab Descriptive Questions

1. What do you mean by multithreading?

Multithreading in Java is a process of executing two or more threads
simultaneously to maximum utilization of CPU. Multithreaded applications
execute two or more threads run concurrently. Hence, it is also known as
Concurrency in Java. Each thread runs parallel to each other. Multiple threads
don’t allocate separate memory area, hence they save memory. Also, context
switching between threads takes less time.

2. Explain the use of sleep and run function with an example?

Thread.sleep() method can be used to pause the execution of current thread for
specified time in milliseconds. The argument value for milliseconds can’t be negative,
else it throws IllegalArgumentException.
Example :
public class ThreadSleep {
 public static void main(String[] args) throws InterruptedException {
 long start = System.currentTimeMillis();
 Thread.sleep(2000);
 System.out.println("Sleep time in ms = " + (System.currentTimeMillis() - start));
 }}
The run() method of thread class is called if the thread was constructed using a separate
Runnable object otherwise this method does nothing and returns. When the run()
method calls, the code specified in the run() method is executed. You can call the run()
method multiple times

public class RunExp1 implements Runnable {
 public void run() {
 System.out.println("Thread is running...");
 }

 public static void main(String args[]) {
 RunExp1 r1 = new RunExp1();
 Thread t1 = new Thread(r1);
 // this will call run() method
 t1.start();
 }
}

3. Explain any five methods of Thread class with Example ?

activeCount() : Returns an estimate of the number of active threads in the current thread’s thread group and its subgroups.

checkAccess() : Determines if the currently running thread has permission to modify this thread.

Clone(): Throws CloneNotSupportedException as a Thread can not be meaningfully cloned

currentThread() : Returns a reference to the currently executing thread object

dumpStack(): Prints a stack trace of the current thread to the standard error stream

class MyThread extends Thread {
 public void run() {
 System.out.println("Thread is running created by extending to parent Thread class");
 }
 public static void main(String[] args) {
 MyThread myThread = new MyThread();
 myThread.start();
 }
}

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No. 9

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE :Java Packages

AIM: Create a Package Engineering which has two classes as Student and Marks. Accept (n) student details like roll_no, Subject_name, Student_name,calculate total marks in the class Student Write display () method to display details and sort () method to sort the students records as per increasing order of the total marks. The function sort must be statically defined to invoke it without referring to any object. Both the functions are written in the Marks class.
Create a main class which will use a package to display all the records of the student in the increasing order of their total marks.

Expected OUTCOME of Experiment:

CO4: Explore the interface, exceptions, multithreading, packages.

Books/ Journals/ Websites referred:

1. Ralph Bravaco , Shai Simoson , “Java Programming From the Group Up” Tata McGraw-Hill.

2.Grady Booch, Object Oriented Analysis and Design .

Pre Lab/ Prior Concepts:

Java Packages:
A package in Java is a group of similar types of classes, interfaces, and sub-packages. They can be categorized into two categories, the built-in package (java, lang, util, awt, javax, swing, net, io, sql et), and user-defined package.

They are used for the following tasks –
· To prevent the naming conflicts which can occur between the classes.
· Make the searching and locating of classes or enumerations or annotations much easier.
· Provide access control to the classes.
· Used for data encapsulation.

Advantages of Java Package:
· A Java package is mainly used for the categorization of classes and interfaces so that we can maintain them easily.
· They always provide access protection
· Used to bundle classes and interfaces.
· With the help of packages, we can reuse the existing code
· By using the package, we can easily locate the classes related to it.
· Also, remove the naming collision.

Built-in Packages in Java
Built-in is a part of Java API and it offers a variety of packages are –

lang – Automatically imported and it contains language support classes.
io – Contains classes for input and output operations.
util – Contains utility classes for implementing data structures.
applet – This package contains classes that create applets.
awt – Contain classes that implement compounds for GUI.
net – This package contains classes that support networking operations.

User-defined Packages in Java
1. package First;
2.
3. public class MyClass
4. {
5. public void getNames(String name)
6. {
7. System.out.println(name);
8. }
9.
10. }

1. package First;
2. import First.MyClass;
3. public class MyClass1 {
4. public static void main(String args[])
5. {
6. // Initializing the String variable with a value
7. String name = "Welcome";
8. // Creating an instance of class MyClass in the package.
9. MyClass obj = new MyClass();
10. obj.getNames(name);
11. }
12. }

.
Class Diagram:
	CLASS NAME
	MAIN

	VARIABLES NAME
	+name: String
+n: int
+rno: int
+eng: int
+math: int
+sci: int
+total_marks : int

	METHODS
	+main (): void

	CLASS NAME
	Student

	VARIABLES NAME
	+Student_name: String
+ roll_no:int
+English: int
+Maths:int
+Science:int
+total_marks:int
+e:int
+m:int
+s:int

	METHODS
	+cal(int , int): int
+Student (int, int, int, int ,String):

	CLASS NAME
	Marks

	VARIABLES NAME
	+Student_name : String
+ roll_no:int +English: int
+Maths:int
+Science:int
+total_marks:int
+n:int

	METHODS
	+sort (int , int, int , int, String , int , int):void +display():void

Algorithm:

Step 1: Create a package ‘Engineering’ having two classes: Student and Marks

Step 2: Class Student –
1. cal Function: Calculates total marks and returns it

Class Marks -
a.) sort Function: Sorts student information according to total marks obtained. If i+1 th student (marks) < i th student(marks) swap (continue process till n-1 iteration).
b.) display function: Displays student information

Step 3 Create MAIN class and import package ‘Engineering

Step 4: In main function accept number of students and their information.

Step 5: Store information of students in different arrays.

Step 6: call cal function and calculate total marks

Step 7: call sort function and then display the information using display function

Implementation details:
Main
import Engineering.*;
public class Main {
 public static void main(String[] args) {
 Student student = new Student ();
 Student sorted = new Student (student.RollNo.length);

 student.getDetails();
 student.calculateTotal();
 sorted = Marks.sort(student);
 Marks.display(sorted);
 }
}

Marks
package Engineering;
public class Marks {
 public static Student sort (Student students)
 {
 Student sorted = new Student (students.MarksTotal.length);
 double toSort [] = students.MarksTotal;
 int indexArr [] = new int [students.MarksTotal.length];

 double min;
 int minInd = 0;

 for (int i = 0; i < indexArr.length; i++) {
 indexArr[i] = i;
 }

 for (int i = 0; i < indexArr.length; i++) {
 min = toSort[i];
 minInd = i;

 // find minInd
 for (int j = i; j < indexArr.length; j++) {
 if (toSort[j] < min) {
 minInd = i;
 }
 }

 // swap minInd with i
 int temp = indexArr[i];
 indexArr[i] = indexArr[minInd];
 indexArr[minInd] = temp;
 }

 // now sort

 for (int i = 0; i < indexArr.length; i++) {
 int ind = indexArr[i];

 // move students[ind] to sorted[i]
 sorted.RollNo[i] = students.RollNo[ind];
 sorted.StudentName[i] = students.StudentName[ind];
 sorted.MarksChemistry[i] = students.MarksChemistry[ind];
 sorted.MarksMaths[i] = students.MarksMaths[ind];
 sorted.MarksPhysics[i] = students.MarksPhysics[ind];
 sorted.MarksTotal[i] = students.MarksTotal[ind];
 }

 return sorted;
 }

 public static void display (Student students)
 {
 System.out.println("\nDetails of students");

 for (int i = 0; i < students.RollNo.length; i++) {
 System.out.println("\nStudent "+(i+1));
 System.out.println("Student Roll Number: " + students.RollNo[i]);
 System.out.println("Student Name: " + students.StudentName[i]);
 System.out.println("Marks in Physics: " + students.MarksPhysics[i]);
 System.out.println("Marks in Chemistry: " + students.MarksChemistry[i]);
 System.out.println("Marks in Maths: " + students.MarksMaths[i]);
 System.out.println("Total Marks: " + students.MarksTotal[i]);
 }
 }
}

Student
package Engineering;
import java.util.Scanner;

public class Student {
 Scanner scanner = new Scanner (System.in);
 public int RollNo [];
 public String StudentName[];
 public int MarksMaths[];
 public int MarksPhysics [];
 public int MarksChemistry [];
 public double MarksTotal [];

 public Student ()
 {
 System.out.print ("Enter number of students: ");
 int n = scanner.nextInt();

 RollNo = new int [n];
 StudentName = new String [n];
 MarksMaths = new int [n];
 MarksPhysics = new int [n];
 MarksChemistry = new int [n];
 MarksTotal = new double [n];
 }

 public Student (int n)
 {
 RollNo = new int [n];
 StudentName = new String [n];
 MarksMaths = new int [n];
 MarksPhysics = new int [n];
 MarksChemistry = new int [n];
 MarksTotal = new double [n];
 }

 public void getDetails ()
 {
 for (int i = 0; i < RollNo.length; i++)
 {
 System.out.println ("\nDetails for student " + (i+1));
 System.out.print ("Enter roll number of the student: ");
 RollNo[i] = scanner.nextInt();

 System.out.print ("Enter name of the student: ");
 String trash = scanner.nextLine();
 StudentName[i] = scanner.nextLine();

 System.out.print ("Enter marks in maths: ");
 MarksMaths[i] = scanner.nextInt();

 System.out.print ("Enter marks in physics: ");
 MarksPhysics[i] = scanner.nextInt();

 System.out.print ("Enter marks in chemistry: ");
 MarksChemistry[i] = scanner.nextInt();
 }
 }

 public void calculateTotal ()
 {
 // System.out.println ("\nTotal marks for students ");
 for (int i = 0; i < MarksTotal.length; i++) {
 MarksTotal[i] = (MarksMaths[i] + MarksPhysics[i] + MarksChemistry[i]);
 // System.out.print (MarksTotal[i] + " ");
 }
 }
}

Output:
[image:]
[image:]
Conclusion:
The concept of packages is understood and successfully implemented.

Date: __________ Signature of faculty in-charge

Post Lab Descriptive Questions

Q.1 What are Java Packages? What's the significance of packages?

Packages are used in Java in order to prevent naming conflicts, to control access, to make searching/locating and usage of classes, interfaces, enumerations and annotations easier, etc.
A Package can be defined as a grouping of related types (classes, interfaces, enumerations and annotations) providing access protection and namespace management.
Since the package creates a new namespace there won't be any name conflicts with names in other packages. Using packages, it is easier to provide access control and it is also easier to locate the related classes.

 Q.2 Does Importing a package imports its sub-packages as well in Java?

In java, when a package is imported, its sub-packages aren’t imported and the developer needs to import them separately if required.
For example, if a developer imports a package university.*, all classes in the package named university are loaded but no classes from the sub-package are loaded. To load the classes from its sub-package (say department), the developer has to import it explicitly as follows: Import university.department.*

Department of Computer Engineering

Page No OOPM Sem III/August - Nov 2022
image3.png
® pargat@Pargats-MacBook-Air Practice % cd "/Users/pargat/Documents/(
>>Enter Cirle Radius: 15
>>The Area of circle is: 706.5
>>The Circumference of circle is: 94.2
pargat@Pargats-MacBook-Air Practice % I

image4.png
® pargat@Pargats-MacBook-Air Practice %
.00 1sf 15
pargat@Pargats-MacBook-Air Practice %

image5.png
 pargat@Router Exp2 % cd "/Users/pargat/Doct
28 188 E2.0

5 factorial is: 120

Enter n :

10

Enter x:

il

(1+x)~n : 1024.0

e~x for first n terms: 2.7182815255731922
pargat@Router Exp2 % [

image6.png
pargat@Router Exp2 % cd "/Use
&& java exp2post

Enter 3 numbers

10 -5 70

70.0 is the largest
pargat@Router Practice % []

image7.png
pargat@Router Practice % cd "/Usel
Enter n: 5

The answer is: 2.283333333333333
pargat@Router Practice % ||

image8.png
cd "/Users/pargat/Documents/COLLEGE/O0OPS/Progr
pargat@Router Programs % cd "/Users/pargat/Doc

ava exp3

Enter the value of n: 2

Enter the number of matches for Player 1 : 3
Enter runs in match 1 : 2

Enter runs in match 2 : 3

Enter runs in match 3 : 4

Enter the number of matches for Player 2 : 1
Enter runs in match 1 : 10

Player 1 Stats

Number of Matches Played : 3
Runs in Match 1 : 2
Runs in Match 2 : 3
Runs in Match 3 : 4

Total

Runs : 9.0

Batting Average : 3.0

Player 2 Stats

Number of Matches Played : 1
Runs in Match 1 : 10

Total

Runs : 10.0

Batting Average : 10.0

pargat@Router Exp3 % [

image9.png
pargat@outer Programs % cd
OLLEGE/OOPS/Programs/" && jav
ost3ql

Array 1

0000

000

00

Array 2

000

0000

pargat@Router Programs % []

image10.png
pargat@Router Programs % cd "/l

0
0
000

0000

gat@Router Programs % []

00

pa

image11.png
Enter the number of customers:
(1) Add Account

(2) Delete Account

(3) Display Accounts

(4) Exit

1

Enter Account ID: 1

Enter Account Name: Pargat
Enter Account Balance: 100000
(1) Add Account

(2) Delete Account

(3) Display Accounts

(4) Exit

1

Enter Account ID: 2

Enter Account Name: Vishrut
Enter Account Balance: 2000
(1) Add Account

(2) Delete Account

(3) Display Accounts

(4) Exit

1

Enter Account ID: 3

Enter Account Name: Meet
Enter Account Balance: 3000
(1) Add Account

(2) Delete Account

(3) Display Accounts

(4) Exit

3

Enter the account id to search:
1

Account id: 1
Account name: Pargat
Account balance: 100000.0

image12.png
(1) Add Account

(2) Delete Account

(3) Display Accounts

(4) Exit

1

Enter Account ID: 3

Enter Account Name: Meet
Enter Account Balance: 3000
(1) Add Account

(2) Delete Account

(3) Display Accounts

(4) Exit

3

Enter the account id to search:
1

Account id: 1
Account name: Pargat
Account balance: 100000.0

Account Not Found!

(1) Add Account

(2) Delete Account

(3) Display Accounts

(4) Exit

2

Enter Account ID. to Delete: 2
(1) Add Account

(2) Delete Account

(3) Display Accounts

(4) Exit

3

Enter the account id to search:
2

(1) Add Account

(2) Delete Account

(3) Display Accounts

(4) Exit

4

pargat@Router Exp4 % ‘]

image13.png
Enter the number of Employees to add:
Enter Employee ID: 1

Enter Employee Name: Pargat
Enter Employee salary: 500000
Enter Employee ID: 2

Enter Employee Name: Vishrut
Enter Employee salary: 3000
Enter Employee ID: 3

Enter Employee Name: Meet
Enter Employee salary: 40000
(1) Add Employee

(2) Delete Employee

(3) Display Employee

(4) Exit

3

Name: Pargat
Id: 1
Salary: 500000.0

Name: Meet
Id: 3
Salary: 40000.0

Name: Vishrut

Id: 2

Salary: 3000.0

(1) Add Employee

(2) Delete Employee

(3) Display Employee

(4) Exit

1

Enter Employee ID: 7
Enter Employee Name: Raj
Enter Employee salary: 100000

image14.png
(1) Add Employee

(2) Delete Employee
(3) Display Employee
(4) Exit

3

Name: Pargat
Id: 1
Salary: 500000.0

Name: Raj
Id: 7
Salary: 100000.0

Name: Meet
Id: 3
Salary: 40000.0

Name: Vishrut

Id: 2

Salary: 3000.0

(1) Add Employee

(2) Delete Employee
(3) Display Employee
(4) Exit

2

(1) Delete by ID

(2) Delete by Name

1

Enter Id

2

Deleted Employee!
(1) Add Employee

(2) Delete Employee
(3) Display Employee
(4) Exit

image15.png
Name: Vishrut

Id: 2

Salary: 3000.0

(1) Add Employee

(2) Delete Employee
(3) Display Employee
(4) Exit

2

(1) Delete by ID

(2) Delete by Name

1

Enter Id

2

Deleted Employee!
(1) Add Employee

(2) Delete Employee
(3) Display Employee
(4) Exit

3

Name: Pargat
Id: 1
Salary: 500000.0

Name: Raj
Id: 7
Salary: 100000.0

Name: Meet

Id: 3

Salary: 40000.0

(1) Add Employee

(2) Delete Employee
(3) Display Employee
(4) Exit

4

pargat@Router Exp5 % [

image16.png
sid : int

sname : String
desg : String
gender : boolean

operations()

med_name : String
exp_date : String
med_cost : Double
count : int

new_medi()
medi_info()
medical_delete()

did: int

dname: String
specilist: String
doc_qual: String
droom : String

new_doctor()
doctor_info()
doctor_del()

pid: int

pname : String
disease: String
gender : boolean
admit_status :boolean
age : int

new_patient()
patient_info()
paitent_del()

fac_name : String

main()

add_faci()
show_faci()
facility_delete()

facility: String
lab_cost : double

image17.png
pargat@Router Programs % cd "/Users/pargat/Documents/C
OLLEGE/O0PS/Programs/" && javac Exp7.java && java Exp7

Enter minutes: 1

Enter seconds: 10

Total Seconds is 70
pargat@Router Programs % []

image18.png
pargat@Router Programs % cd "/Users/pargat/Documents/COLL
Enter minutes: 1

Enter seconds: 100
TimeException Error: seconds can't be more than 60 secs

pargat@Router Programs % [|

image19.png
Main

+main():void
v
random
I |

Square Cube +run():void
+x:int +x:int

+Square(int): +Cube(int):

+run():void +run():void

image20.png
pargat@Router Exp8 % cd "/Users/pargat/Do
Random Number is 3, Cube is : 27

Random Number is 63, Cube is : 250047
Random Number is 5, Cube is : 125

Random Number is 72, Square is: 5184
Random Number is 88, Square is: 7744
pargat@Router Exp8 % []

image21.png
pargat@outer Exp9 % ca “/Users/pargat
Main
Enter number of students: 3

Details for student 1

Enter roll number of the student: 45
Enter name of the student: Pargat
Enter marks in maths: 100

Enter marks in physics: 99

Enter marks in chemistry: 100

Details for student 2

Enter roll number of the student: 43
Enter name of the student: Beet
Enter marks in maths: 80

Enter marks in physics: 90

Enter marks in chemistry: 70

Details for student 3

Enter roll number of the student: 51
Enter name of the student: Meet
Enter marks in maths: 99

Enter marks in physics: 90

Enter marks in chemistry: 80

image22.png
Details of students

Student 1

Student Roll Number: 45
Student Name: Pargat
Marks in Physics: 99
Marks in Chemistry: 100
Marks in Maths: 100
Total Marks: 299.0

Student 2

Student Roll Number: 43
Student Name: Beet
Marks in Physics: 90
Marks in Chemistry: 70
Marks in Maths: 80
Total Marks: 240.0

Student 3

Student Roll Number: 51
Student Name: Meet
Marks in Physics: 90
Marks in Chemistry: 80
Marks in Maths: 99
Total Marks: 269.0
pargat@Router Exp9 % [

image1.png
pargat@Pargats-MacBook-Air 00PS % cd "/Users/pargat/Documents/COLLEGE/OOPS/"
Enter Real Part for numl: 10

Enter Ing Part for numl: 5

Enter Real Part for num2: 20

Enter Ing Part for num2: 4

Addition Resul
The Real part is
Subtraction Resul
The Real part is: ~10.0 Imaginary part is: 1.0
Multiplication Result:

The Real part is: 180.0 Imaginary part is: 148.0
Division Resul
The Real part is: 0.5288461538461530 Imaginary part is: 0.14423076023076922
pargat@Pargats-MacBook-Air 00PS % [

30.0 Inaginary part is: 9.0

image2.png
pargat@Pargats—MacBook-Air 00PS % cd "/Users/pargat/Documents/COLLEGE/OOPS/"
Enter Real Part for numl: 10

Enter Ing Part for numl: 2

Enter Real Part for num2: 20

Enter Ing Part for num2: 1

Addition Result:

30.0 Inaginary part is: 3.0

The Real part is: -10.0 Inaginary part is: 1.0
Multiplication Result:

The Real part is: 198.0 Imaginary part is:
Division Result:
The Real part is: 0.5037406483799524 Inaginary part is: 0.07481296758104738
pargat@Pargats-MacBook-Air 00PS % [|

50.0

