
"Discrete Mathematics and its Applications" Kenneth 
Rosen, 5th Edition, McGraw Hill. 

 



Graph Theory 

Chapter 8 



Varying Applications (examples) 

• Computer networks 

• Distinguish between two chemical compounds with 
the same molecular formula but different structures 

• Solve shortest path problems between cities 

• Scheduling exams and assign channels to television 
stations 



Topics Covered 

• Definitions  

• Types 

• Terminology 

• Representation 

• Sub-graphs 

• Connectivity 

• Hamilton and Euler definitions 

•  Isomorphism of Graphs 

• Planar Graphs 

 

 

 



Definitions - Graph 

  
 A generalization of the simple concept of a set of dots, links, 

edges or arcs.  

 Representation: Graph G =(V, E) consists set of 

vertices denoted by V, or by V(G) and set of 

edges E, or E(G) 

 



Definitions – Edge Type 
 Directed: Ordered pair of vertices. Represented as (u, v) 

directed from vertex u to v. 

 

 
 Undirected: Unordered pair of vertices. Represented as {u, v}. 

Disregards any sense of direction and treats both end vertices 
interchangeably. 
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Definitions – Graph Type 

 Simple (Undirected) Graph: consists of V, a nonempty set 

of vertices, and E, a set of unordered pairs of distinct 

elements of V called edges (undirected)  

 Representation Example: G(V, E), V = {u, v, w}, E = {{u, v}, 

{v, w}, {u, w}} 
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Definitions – Graph Type 

 Directed Graph: G(V, E), set of vertices V, and set of Edges E, 

that are ordered pair of elements of V (directed edges) 

 Representation Example: G(V, E), V = {u, v, w}, E = {(u, v), (v, 

w), (w, u)} 
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• Degree of a vertex: Number of edges having that 
vertex as an end point 

• Loop: A graph may contain an edge from a vertex to 
itself referred to as a loop  

    Isolated vertex: Vertex with degree 0 

• Adjacent vertices : A pair of vertices that determine 
an edge  

 



• For V = {u, v, w} ,  
    E = { {u, w}, {u, w}, (u, v) },  
    deg (u) = 2, deg (v) = 1, deg (w) = 1, deg (k) = 0,  
• k is isolated 
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Terminology – Directed graphs 
 
• In-degree (u): number of in coming edges 
 
• Out-degree (u): number of outgoing edges 
 
Representation Example:  For V = {u, v, w} , E = { (u, w), ( v, w), (u, v) },  

indeg(u) = 0,  outdeg (u) = 2,  

indeg(v) = 1,  outdeg(v)=   1  

indeg(w) = 2, outdeg (w) = 0 
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Types of Graphs  

                              L2                          L3 

•  Linear Graph                

• Discrete Graph (only vertices , no edges ) 
 

       D2                          D4 

 

 

• Complete Graph 

• Connected Graph 
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COMPLETE GRAPH 
• Complete graph: Kn, where every vertex is connected to 

every other vertex 

• Kn is called a complete graph for n vertices if the 

number of edges are n(n-1)/2 

• DRAW COMPLETE GRAPH K6 

 

 

Representation Example: K1, K2, K3, K4  
K2 K1 K4 

K3 



 



CONNECTED GRAPH 
• If there is a path  from any vertex to any other 

vertex in the graph 

• Otherwise it is a disconnected graph(various 
connected pieces are called components of 
graph) 
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Problem 
Determine whether the graph is connected or 
disconnected. If disconnected find its connected 
component. 

 

 
(a)Graph shown in (a) is not connected its connected components are 

{A, D, P, S, C} and {B, Q, R} 
 

(b)Graph shown in (b) is not connected its connected components are 
{A, B, Y, Z}, {C, X, Q}, {P, R} 
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Multigraph 

Directed graph having multiple edges between two vertices is 
called as multigraph. Undirected graph having more than one 
edge between two vertices is also called as Multigraph.  
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Labelled and weighted graph 

A graph G is called a labelled graph it its edges and /or vertices 
are assigned data of one kind or another. In particular, G is called 
a weighted graph if each edge 'e' of G is assigned a non–
negative number called the weight or length of V. 
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Subgraphs 
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Subgraph 

Let G = (V, E, ) is a graph. Choose a subset E1 of the edges in E and a subset V1 of the 
vertices in V. So that V1 contains all the end points of edges in E1. Then H = (V1, E1, 1) 
is also a graph, where 1 is  restricted to edges in E1. Such a graph H is called a 
subgraph of G. 

 

(a) 

 

(b) 
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Spanning Subgraph 

A subgraph is said to be spanning subgraph if it 
contains all the vertices of G.  
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Complement of Subgraph 

The complement of a subgraph G' = (V', E') with respect to the 
graph G = (V, E) is another subgraph  
G" = (V", E") such that E" is equal to E – E' and V" contains only 
the vertices with which the edges in E" are incident. 
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Complement of Subgraph 
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Find Sub graphs of G 

 





Compliment of Sub Graph  

u 

w 

u u 

w v v 

H1 
H2 G 

v 



Handshaking Lemma  

   Consider a Graph G with e nos of edges and n 
nos of vertices , the sum of the degrees of all 
vertices in G is twice the nos of edges in G 

n  

                       ∑     d( vi) = 2 e 

 i = 1 



Problems 

• Determine the number of edges in a graph with 6 nodes in 

which 2 of degree 4 and 4 of degree 2. Draw two such graphs 

• Is it possible to construct a graph with 12 nodes such that 2 of 

the nodes have degree 3 and the remaining nodes have 

degree 4 

• Is it possible to draw a simple graph with 4 vertices and 7 

edges . Justify ? 



• Path : A path is a sequence of vertices  where 

no edge is chosen more than once 

– A path is called simple if no vertex repeats more than once 

• Length of Path : Number of edges in a path is 

called as length of path 

• Circuit: A circuit is a path that begins and ends 

with the same vertex 



EULER PATH AND EULER CIRCUIT  

• EULER PATH  

– A path in a graph G is called an Euler path if it 

includes every edge exactly once 

• EULER CIRCUIT 

– A Euler path that is a circuit 

 

 



 



 



 



Theorem: EULER CIRCUIT 

A) If graph G has a vertex of odd degree , then there can be no 

Euler circuit in G 

B) If G is a connected graph and every vertex has an even degree 

then  there is a Euler circuit in G 

Theorem: EULER PATH 

A) If a graph G has more than two vertices of odd degree then 

there can be no Euler path in G 

B) If G is connected and has exactly two vertices of odd degree 

then there is a Euler path in G 

 

 

 

 

 

 



 

All vertices 
have even 

degree 

All vertices 
have odd 
degree 

Two vertices 
have odd 
degree 



HAMILTONIAN PATH AND CIRCUIT 

• A Hamiltonian path contains each vertex 

exactly once  

• A Hamiltonian circuit is a circuit that contains 

each  vertex exactly once except for the first 

vertex which is also the last 



 



 



 



Theorem: HAMILTONIAN CIRCUIT 

A) G has a Hamiltonian circuit if for any two vertices u and v of G 

that are not adjacent ,degree(u)+degree(v) ≥ nos of vertices 

B) G has a Hamiltonian circuit if each vertex has degree greater 

than or equal to n/2 

 

 

 

 

 

 



Problem 

Determine the Eulerian and Hamiltonian path, if 
exists, in the following graphs. 

Hamiltonian path : p, u, v, q, s, t, r 
Hamiltonian circuit : r, p, u, v, q, s, t, r 

Eulerian path : (p, u, v, q, s, v, u, r, t, s, r, p, q) 

Hamiltonian path : c, d, e, b, a 
Hamiltonian circuit : c, d, e , b, a, c 

Eulerian path : (e, d, b, a, d, c, a, e, b) 
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Identify Euler path, circuit, 
Hamiltonian path and circuit 

(a) two vertices b and d have odd degree. 
Hence there is an Euler path. 
: b, a, g, f, e, d, c, b, g, c, f, d 

(a) 

(b) 

(b)6 vertices have odd degree, 3 and 1 
vertex of even degree, 6.  
So Euler path does not exist in this graph. 
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Identify Euler path, circuit, 
Hamiltonian path and circuit 

Number of vertices is 6. Each vertex has 
degree greater than equal to 6/2. So there 
is an Hamiltonian circuit. 
   : 1, 4, 5, 6, 3, 2, 1 

There is no Hamiltonian circuit. 
But there is an Hamiltonian path  
: 3, 1, 2, 4, 6, 7, 5. 
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Identify Euler path, circuit, 
Hamiltonian path and circuit 

(i) Eulerian Path : : a, b, c, d, b, f, d, a, f, e, d 
G has 2 vertices of odd degree.  
Hamiltonian Circuit :   a, b, c, d, e, f, a. 
Hamiltonian Path :   a, b, c, d, e, f 

(ii) Eulerian Circuit :  - 
Eulerian Path :   g, d, b, a, e, f, g, c, b. 
Hamiltonian Path :  d, b, a, e, f, g, c 
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• Function f is called isomorphism 

• Same nos of vertices 

• Same nos of edges 

• Equal nos of vertices with a given degree 

• Adjacency of vertices  



Graph - Isomorphism 

 Representation example: G1 = (V1, E1) , G2 = (V2, E2)  

 f(u1) = v1, f(u2) = v4, f(u3) = v3, f(u4) = v2,  

u1 

u3 
u4 

u2 

v3 
v4 

v1 v2 



Isomorphism of Graphs 
•Example I: Are the following two graphs isomorphic? 

d 

a 

b 

c 

e 

d 

a 

b 

c 

e 

Solution: Yes, they are isomorphic, because they can be arranged to look identical. 
You can see this if in the right graph you move vertex b to the left of the edge {a, c}. 
Then the isomorphism f from the left to the right graph is: f(a) = e, f(b) = a,  
f(c) = b, f(d) = c, f(e) = d.  



Isomorphism of Graphs 

•Example II: How about these two graphs? 

d 

a 

b 

c 

e 

d 

a 

b 

c 

e 

Solution: No, they are not isomorphic, because they differ in the degrees of their 
vertices. 

Vertex d in right graph is of degree one, but there is no such vertex in the left 
graph. 



•                                                          A is adjacent                 
      to: B, C, D  

•        B is adjacent 
      to: A, C, E 

       C is adjacent 
      to: A, B  

       D is adjacent 
      to: A, E  

       E is adjacent 
      to: B, D 



Both graphs contain  

8 vertices and 10 edges 

Nos of vertices of degree 2   = 4 

Nos of vertices of degree 3   = 4 

Adjacency : There exists no 
vertex  of degree 3 whose 
adjacent vertices have  same 
degree in both graphs  

 So its not ISOMORPHIC 

 



Isomorphism of Graphs 
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Example IV: Are the following two graphs isomorphic? 

Solution: Both graphs have 5 vertices and 5 edges. All vertices 
have degree 2. 
 



Isomorphism of Graphs 
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Example V: Are the following two graphs isomorphic? 

Solution: Here G1 and G2 both have 4 vertices but G1 has 4 edges 
and G2 has 5 edges. Hence G1 is not isomorphic to G2. 

 



Isomorphism of Graphs 
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Example VI: Are the following two graphs isomorphic? 

Solution: G1 and G2 both have 5 vertices but G1 has 6 edges while 
G2 has 7 edges. Hence G1 ≇ G2. That is G1 is not isomorphic to G2. 



Planar Graphs 

• A graph (or multigraph) G is called planar if G can be drawn 

in the plane with its edges intersecting only at vertices of G, 

such a drawing of G is called an embedding of G in the plane.  

 

 Application Example: VLSI design (overlapping edges requires extra layers), 

Circuit design (cannot overlap wires on board) 

 Representation examples: K1,K2,K3,K4 are planar, Kn for n>4 are non-planar 
 

K4 



 



 



Planar Graphs 

• Representation examples: Q3 



 Theorem : Euler's planar graph theorem 

For a connected planar graph or multigraph:  

                                        v – e + r = 2 

number 

of vertices 
number 

of edges 

number 

of regions 

Planar Graphs 



Planar Graphs 

K4 

R1 

R2 

R3 

A planar graph divides the plane 

into several regions (faces), one  

of them is the infinite region. 

   v=4,e=6,r=4, v-e+r=2 

R4 



Examples 
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Planar Graphs Example 
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Q. 1) By drawing the graph, show that following graphs are planar graphs 
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Q. 2 : How many edges must a planar graph have if it has 7 regions and 5 nodes. 
Draw one such graph. 
Soln. : 

According to Euler's formula, in a planar graph  
 v – e + r  =  2 

where v, e, r are the number of vertices, edges and regions in a planar graph. 

 Here  v = 5, r =7, e = ? 

   v – e + r =2  

   5 – e + 7=2 

              e=10 
 Hence the given graph must have 10 edges.  
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Q. 3 : Determine the number of regions defined by a connected planar graph with  
6 vertices and 10 edges. Draw a simple and a multi-graph. 
Soln. :    

Given   v  =  6, e  =  10 
Hence by Euler's formula for a planar graph 

  v – e + r =2 

  6 – 10 + r=2 

  r=6 

 Hence the graph should have 6 regions. 

(a) Simple Graph  

 (a) Multi-Graph  
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Q. 4 : A connected planar graph has 9 vertices having degrees 2, 2, 2, 3, 3, 3, 
4, 4 and 5. How many edges are there ? 
Soln. :   
By handshaking lemma 
  Σd (vi) =2e 
 where  d  (vi) = degree of ith vertex 
  e = number of edges 
For given graph 
  2 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 5  =  2.e 
  28 = 2e 
  e = 14 
\    There are 14 edges. 
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Ex. 5 : Suppose that a connected planer graph has 20 vertices, each of degree 3 
into how many regions does a representation of this plan graph split the plane ? 
Soln. :    
  | V |=20  =  number of vertices 
  degree of each vertex = 3 
By hand shaking Lemma 
  Σ d(Vi) = 2 e   
  20  3 = 2 e   
   e  = 30 
 
By Euler's theorem, 
  | V | – | E | + | R |=2 
   20 – 30 + | R |=2 
  | R |=12 
 
Planar graph will split the plane in 12 regions. 



 


