Relations

Section 8.1, 8.3—8.5 of Rosen CSCE 235 Introduction to Discrete Structures Course web-page: cse.unl.edu/~cse235

Relations, Digraphs (07)

- 3.1 Relations, Paths and Digraphs
- 3.2 Properties and types of binary relations
- 3.3 Manipulation of relations, Closures, Warshall"s algorithm
- 3.4 Equivalence relations

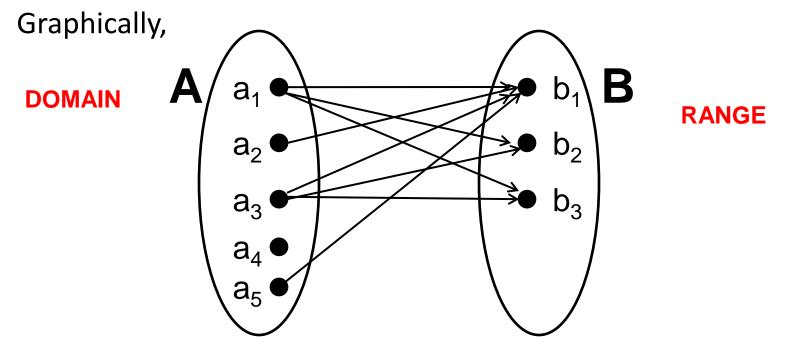
Introduction

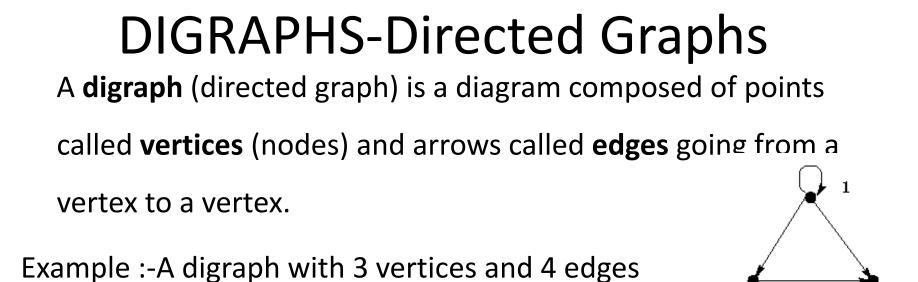
- A relation between elements of two sets is a subset of their
 Cartesian products (set of all ordered pairs)
- Definition: A binary <u>relation</u> from a set A to a set B is a subset
 R ⊆ A×B ={ (a,b) | a∈A, b∈B}
- When (a,b)∈R, we say that a is <u>related</u> to b.
- Notation: a*R*b, a*R*b

Relations: Representation

- To represent a relation, we can enumerate every element of R
- Example
 - Let $A = \{a_1, a_2, a_3, a_4, a_5\}$ and $B = \{b_1, b_2, b_3\}$
 - Let R be a relation from A to B defined as follows

 $R = \{(a_1, b_1), (a_1, b_2), (a_1, b_3), (a_2, b_1), (a_3, b_1), (a_3, b_2), (a_3, b_3), (a_5, b_1)\}$



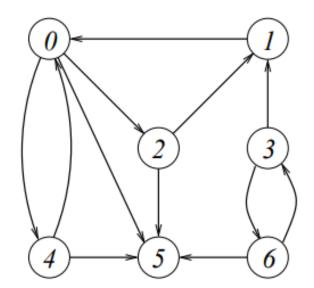


Example: $-V = \{0, 1, 2, 3, 4, 5, 6\}, E = \{(0, 2), (0, 4), (0, 5), (1, 0), \}$

(2, 1), (2, 5), (3, 1), (3, 6), (4, 0), (4, 5), (6, 3),

(6, 5) }

Matrix Representation ?



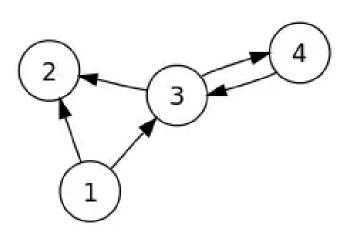
Degree of Vertex in a Directed Graph

A directed graph, each vertex has an **in-degree** and an **out-degree**.

In-degree of a Graph-Number of edges which are coming into the vertex V.

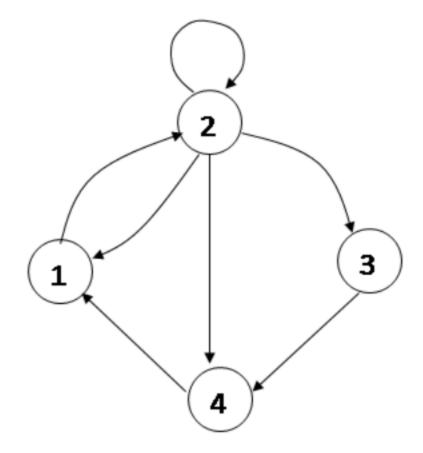
Out-degree of a Graph-Number of edges which are going out from

the vertex V



VERTEX	1	2	3	4
In Degree	0	2	2	1
Out- degree	2	0	2	1

Find out in degree and out degree

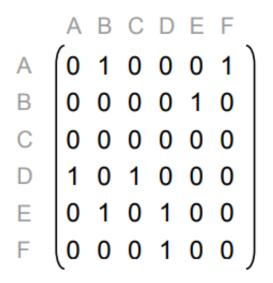


VERTEX	1	2	3	4
In Degree	2	2	1	2
Out- degree	1	4	1	1

Problems

For the digraph shown let R be given by digraph shown. Find M_R and R





Example

Let A = $\{1, 2, 3, 4, 6\}$ and let R be the relation on A defined by 'x divides y'. Find R and draw the digraph of R. Find Matrix of R.

Assume the rows and columns of M are each labelled 1, 2, 3, 4, 6, since R is relation from A to A, the matrix M_R is square, i.e. M_R has the same number of row as column

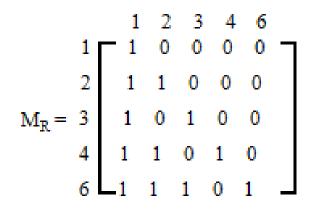
$$M_{R} = \begin{bmatrix} 1 & 2 & 3 & 4 & 6 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 0 & 1 & 0 & 1 & 1 \\ 3 & 0 & 0 & 1 & 0 & 1 \\ 4 & 0 & 0 & 0 & 1 & 0 \\ 6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Example

Let $A = \{1, 2, 3, 4, 6\} = B$, a R b if and only if a is a multiple of b. Find R and draw the digraph of R. Find Matrix of R.

Solution:

 $\mathsf{R}{=}\{(1, 1), (2, 1), (2, 2), (3, 1), (3, 3), (4, 1), (4, 2), (4, 4), (6, 1), (6, 2), (6, 3), (6, 6)\}$



Problems

1. Draw the graphical representation of relation 'less than 'on {1,2,3,4}

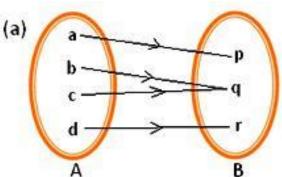
 $\mathsf{R} = \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}$

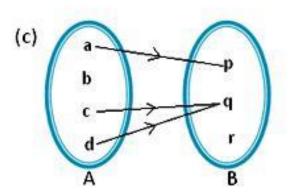
2. $A = \{2, 3, 4, 5\}$,

 $R = \{(2,3), (3,2), (3,4), (3,5), (4,3), (4,4), (4,5)\}$ Draw Digraph

 \rightarrow Domain, Range of Relation R

```
Ex : A={ a , b , c , d } , B = { 1, 2 ,3 }
R= { (a ,1 ), ( a , 2 ), ( b , 1), ( c ,2 ), (d, 1)}
Dom( R )={a , b , c , d }
Ran (R )={ 1 , 2 }
```





Problems

Find the relation R, draw digraph and also write M_R

2. Let
$$A = \{ 1, 2, 3, 4, 8 \} = B$$

a R b iff a is a multiple of b

a R b iff **a + b < = 9**

Find the relation R ,draw digraph and also write M_R

3. Let A = { 1,3 ,5 ,7 ,9 }, B = { 2, 4, 6, 8 } ; aRb iff **b < a**

PATHS

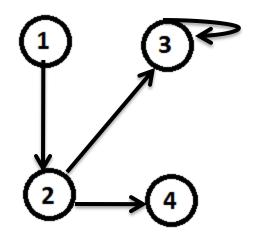
 $R = \{ (1, 2), (2, 3), (2, 4), (3, 3) \} is a relation on A = \{1, 2, 3, 4\}$

 $R^{1} = R = \{(1,2), (2,3), (2,4), (3,3)\}$

$$R^{2} = \{(1,3), (1,4), (2,3), (3,3)\}$$

1 R² 3 Since 1 R 2 and 2 R 3 1 R² 4 Since 1 R 2 and 2 R 4 ...

 $R^{3} = \{ (1,3), (2,3), (3,3) \}$ $R^{4} = \{ (1,3), (2,3), (3,3) \}$



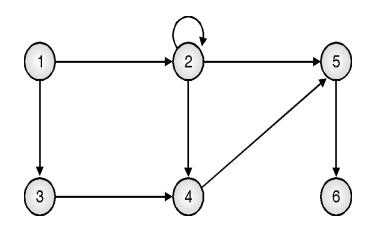
Paths in Relations and Digraphs

Let A = {1, 2, 3, 4, 5, 6}. Let R be

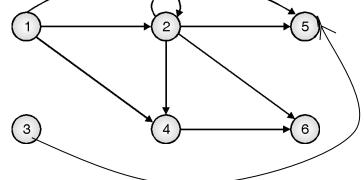
the relation whose digraph is

shown in Fig.

Find R^2 and draw digraph of the relation R^2 .



$1 \text{ R}^2 2$	Since	1 R 2	and	2 R 2
1 R ² 4	Since	1 R 2	and	2 R 4
1 R ² 5	Since	1 R 2	and	2 R 5
$2 \mathbb{R}^2 \mathbb{2}$	Since	2 R 2	and	2 R 2
$2 \mathbb{R}^2 \mathbb{4}$	Since	2 R 2	and	2 R 4
$2 \mathbb{R}^2 \mathbb{5}$	Since	2 R 2	and	2 R 5
$2 \mathbb{R}^2 \mathbb{6}$	Since	2 R 5	and	5 R 6
3 R ² 5	Since	3 R 4	and	5 R 5
$4 R^2 6$	Since	4 R 5	and	5 R 6
		\bigcirc		
				5



Paths in Relations and Digraphs

Let
$$A = \{a, b, c, d, e\}$$

and $R = \{(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)\}$

Compute (i) R^2 (ii) $R\infty$



a R ² a	Since	a R a	and	a R a
a R ² b	Since	a R a	and	a R b
a R ² c	Since	a R b	and	b R c
$b \ R^2 e$	Since	b R c	and	c R e
b R ² d	Since	b R c	and	c R d
c R ² e	Since	c R d	and	d R e

PROBLEMS

1. Let $A = \{1, 2, 3, 4, 5\}$ and R be relation defined by a R b iff a < b compute R , R 2 , R 3 Draw digraph of R , R² and R³ R = (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5),(3,4),(3,5),(4,5) $R^{2} = \{ (1,3), (1,4), (1,5), (2,4), (2,5), (3,5) \}$ $R^3 = \{ (1, 4), (1, 5), (2, 5) \}$ 2. Consider $R = \{(1, 1), (2, 1), (3, 2), (4, 3)\}$ Compute $R^2 R^3 R^4$ 3. Let $A = \{a, b, c, d, e\}, R = \{(a, a), (a, b), (b, c), (c, e), (c,$ (c,d),(d,e)}

Draw digraph of R , M_R , Compute R $^{\infty}$

Properties/Types of Relations

- Reflexive
- Symmetric
- Transitive
- Antisymmetric
- Asymmetric

Properties: Reflexivity

- In a relation on a set, if all ordered pairs (a,a) for every a∈A appears in the relation, R is called reflexive
- **Definition**: A relation *R* on a set A is called <u>reflexive</u> iff

 $\forall a \in A (a, a) \in R$

$$\mathsf{R} = \{ (1, 1), (2, 2), (3, 3) \}$$

– Irreflexive ?

Assume the relation R on A= { 1, 2, 3, 4 } Is R1/R2 irreflexive? R1 = { (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3) } R2= { (1, 2), (2, 2), (3, 3) }

Properties: Symmetry

• Definitions:

A relation R on a set A is called <u>symmetric</u> if
 whenever **a R b and b R a** i.e

 $\forall a, b \in A ((b, a) \in R \Leftrightarrow (a, b) \in R)$

Eg 1 : $A = \{ 1, 2, 3 \}$, Is R symmetric ?

 $\mathsf{R} = \{ (1, 2), (2, 1), (2, 3), (3, 2), (1, 1) \} \}$

Eg 2 : A = { 1 , 2 , 3 , 4 } , Is R symmetric ?

 $R = \{ (1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3) \}$

Asymmetric relation: Asymmetric relation is opposite of symmetric relation.

A relation R on a set A is called asymmetric if no (b,a) € R when (a,b) € R
AntiSymmetric Relation: A relation R on a set A is called antisymmetric if
(a,b) € R and (b,a) € R if a = b is called antisymmetric.i.e.

UNLESS there exists $(a, b) \in R$ and $(b, a) \in R$, AND $a \neq b$

Eg : A = $\{1, 2, 3, 4\}$ and R = $\{(1, 2), (2, 2), (3, 3)\}$

Is R anti-symmetric?

Answer: Yes. It is anti-symmetric as 2,1 is not there

Symmetry versus Antisymmetry

- In a <u>symmetric</u> relation aRb ⇔ bRa
- In an <u>antisymmetric</u> relation, if we have aRb and bRa hold only when a=b
- An antisymmetric relation is not necessarily a reflexive relation
- A relation that is not symmetric is not necessarily asymmetric
- An anti-symmetric relation is a binary relation where the following two conditions are met:
- 1) If A is related to B, then B cannot be related to A.
 2) If A is not related to B, then B cannot be related to A.
- In Maths, we can conclude that a binary relation on a set is called as antisymmetric if there is no pair of distinct elements.

Properties: Transitivity

Definition: A relation R on a set A is called <u>transitive</u> if whenever (a,b)∈R and (b,c)∈R then (a,c)∈R for all a,b,c ∈ A

 $\forall a , b , c \in A ((a R b) \land (b R c)) \Rightarrow a R c$

Example

R={(1,2),(2,3),(1,3)} on set

 $A = \{ 1, 2, 3 \}$ is transitive.

Special cases

```
1) Let A = { 1 , 2 , 3 , 4 }
R= { ( 1 , 2 ) , ( 1 , 3 ) , ( 4 , 2 ) }
Is R transitive?
YES
```

2) R = { }

3)A relation that is symmetric and anti-symmetric

 $R = \{(1,1), (2,2)\}$ on the set $A = \{1,2,3\}$

Properties of Relations

State whether R satisfies property of reflexive , irreflexive , symmetry, asymmetry , antisymmetry , transitivity for A={1,2,3,4}

- 1. $R=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,3),(3,4),(4,4)\}$ R,S,T,
- 2. $R = \{(1,3), (1,1), (3,1), (1,2), (3,3), (4,4)\}$
- 3. $R=\{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4)\}$
- 4. $R=\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$
- 5. $R=\{(1,1),(2,2),(3,3),(4,4)\}$

EQUIVALENCE RELATION

A relation is an **Equivalence Relation** if it is **REFLEXIVE, SYMMETRIC, AND TRANSITIVE**. Let A = { a , b , c } and R= { (a , a), (b , b), (b , c), (c , b),(c , c) } is an equivalence relation since it is **REFLEXIVE, SYMMETRIC, & TRANSITIVE.** Determine whether R is an Equivalence relation

Equivalence Class and Partitions

• Let A = { 1, 2, 3, 4 } and consider the partition

$$P = \{ \{ 1, 2, 3 \}, \{ 4 \} \} \text{ of } A.$$

- Find the equivalence relation R on A determined by P
- " Each element in a block is related to every other element in the same block and only to those elements "
- $\mathsf{R} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,4)\}$

Problems

Find the equivalence relation on A by P and construct its digraph

- 1) Let A ={ a , b , c , d } and P = {{a , b } , { c }, { d } }
- 2) Let A={1,2,3,4,5} and P={{ 1,2 },{ 3 },{ 4, 5}}
- $\mathsf{R}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4),(4,5),(5,4),(5,5)\}$
- 3) If {{1,3,5},{2,4}} is a partition on the set A={1,2,3,4,5},determine the corresponding equivalence relation
- $R = \{(1,1), (3,3), (5,5), (1,3), (1,5), (3,5), (3,1), (5,1), (5,3), (2,2), (4,4), (2,4), (4,2)\}$

EQUIVALENCE CLASS

Let A ={1,2,3,4,5,6} and let R be the equivalence relation

on A defined by

 $R = \{(1,1), (1,5), (2,2), (2,3), (2,6), (3,2), (3,3), (3,6), (4,4), (5,1), (5,5), (6,2), (6,3), (6,6)\}$

Find the equivalence classes of R and find the partition of

A induced by R

 $R=\{(1,1),(1,5),(2,2),(2,3),(2,6),(3,2),(3,3),(3,6),(3,6),(4,4),(5,1),(5,5),(6,2),(6,3),(6,6)\}$

Equivalence Classes:

- R(1)= $\{1,5\}$ R(3)= $\{2,3,6\}$ R(4)= $\{4\}$
- $R(5)=\{1,5\}$ $R(6)=\{2,3,6\}$
- Therefore, the partition of A induced by R i.e $A|R=\{\{1,5\},\{2,3,6\},\{4\}\}$

Rank R (Number of distinct equivalence classes)

Problems

- Let A={1,2,3} and let R={(1,1),(2,2),(1,3),(3,1),(3,3)}.
 Find A|R.
- 2. Let A ={1,2,3,4},and let

R={(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)} Determine A|R.

3. Let A ={1,2,3,4},and let

R={(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),(2,3),(3,2),(3,3),(4,4)} Show that R is an equivalence relation and determine the equivalence classes and hence find A|R and rank of R

Combining Relations

- Relations are simply... sets (of ordered pairs); subsets of the Cartesian product of two sets
- Therefore, in order to <u>combine</u> relations to create new relations, it makes sense to use the usual set operations
 - Compliment R
 - Intersection ($R_1 \cap R_2$)
 - Union ($R_1 \cup R_2$)
 - Set difference $(R_1 \setminus R_2)$
 - Inverse R⁻¹

Example: Let $A = \{1, 2, 3\}$ and $B = \{u, v\}$ and $R1 = \{(1, u), (2, u), (2, v), (3, u)\}$ and $R2 = \{ (1, v), (3, u), (3, v) \}$ R1 U R2 = $\{(1, u), (1, v), (2, u), (2, v), (3, u), (3, v)\}$ $R 1 \cap R2 =$ {(3,u)} R 1 - R 2 = $\{(1, u), (2, u), (2, v)\}$ $R_2 - R_1 =$ $\{(1, v), (3, v)\}$

A = $\{a, b, c, d\}$ and R= $\{(a, b), (b, c), (a, c), (c, d)\}$ then R⁻¹= $\{(b, a), (c, b), (c, a), (d, c)\}$

Let A={ 1 , 2 , 3 , 4 } and B={ a , b , c } and let R ={(1,a),(1,b),(2,b),(2,c),(3,b),(4,a)} and S={(1,b),(2,c),(3,b),(4,b)} Compute R \cap S , R U S , R ⁻¹

Combining Relations: Example

- Let
 - A={1,2,3,4}
 - B={1,2,3,4}
 - $R_1 = \{(1,2), (1,3), (1,4), (2,2), (3,4), (4,1), (4,2)\} \\- R_2 = \{(1,1), (1,2), (1,3), (2,3)\}$
- Let
 - $-R_1 \cup R_2 =$
 - $R_1 \cap R_2 =$
 - $-R_{1-}R_{2}=$
 - $-R_{2}-R_{1}=$

Composite of Relations

• **Definition**: Let R_1 be a relation from the set A to B and R_2 be a relation from B to C, i.e.

 $R_1 \subseteq A \times B \text{ and } R_2 \subseteq B \times C$

the <u>composite of</u> R_1 and R_2 is the relation consisting of ordered pairs (a,c) where $a \in A$, $c \in C$ and for which there exists an element $b \in B$ such that $(a,b) \in R_1$ and $(b,c) \in R_2$. We denote the composite of R_1 and R_2 by $R_2 \circ R_1$

Ex: Let $A = \{1, 2, 3\}, B = \{0, 1, 2\}$ and $C = \{a, b\}$ $R = \{ (1,0), (1,2), (3,1), (3,2) \}$ $S = \{(0, b), (1, a), (2, b)\}$ $S \circ R = ?$ $\{(1,b),(3,a),(3,b)\}$ Since $(1,0) \in \mathbb{R}$ and $(0,b) \in S$, \therefore $(1,b) \in S \circ \mathbb{R}$ Since $(1,2) \in \mathbb{R}$ and $(2,b) \in S$, \therefore $(1,b) \in S \circ \mathbb{R}$ Since $(3,1) \in \mathbb{R}$ and $(1,a) \in S$, \therefore $(3,a) \in S \circ \mathbb{R}$ Since $(3,2) \in \mathbb{R}$ and $(2,b) \in S$, \therefore $(3,b) \in S \circ \mathbb{R}$

Problems

1. Let A={1,2,3} and let $R=\{(1,1),(1,3),(2,1),(2,2),(2,3),(3,2)\}$ and $S=\{(1,1),(2,2),(2,3),(3,1),(3,3)\}.$ Find M SOR $SoR=\{(1,1),(1,3),(2,1),(2,2),(2,3),(3,2),(3,3)\}$ 2. Let A={1,2,3,4} $\mathsf{R}=\{(1,1),(1,2),(2,3),(2,4),(3,4),(4,1),(4,2)\}$ $S=\{(3,1),(4,4),(2,3),(2,4),(1,1),(1,4)\}$ Compute SoR,RoS,RoR,SoS $SoR=\{(1,1),(1,3),(2,1),(2,4),(3,4),(4,1),(4,4),(1,4)\}$ $RoS = \{(3,1), (3,2), (4,1), (4,2), (2,4), (2,1), (2,2), (1,1), (1,2)\}$ RoR SoS

Warshall's algorithm

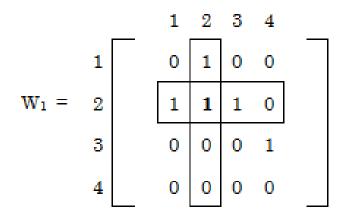
Ex. 1: Let $A = \{1, 2, 3, 4\}$ and let $R = \{(1, 2), (2, 3), (3, 4), (2, 1)\}$. Find transitive closure of R using Warshall's algorithm.

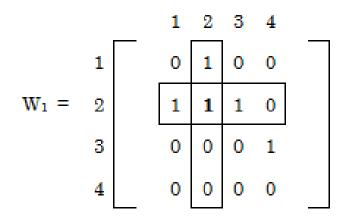
Solution:

First we find W_1 , so that k = 1. W_0 has 1's in location 2 of column 1 i.e. (2, 1) and location 2 of row 1 i.e. (1, 2)

i j p₁:(2, 1) i j q₁:(1, 2) add (p_i, q_j) i.e. (2, 2) in W_k

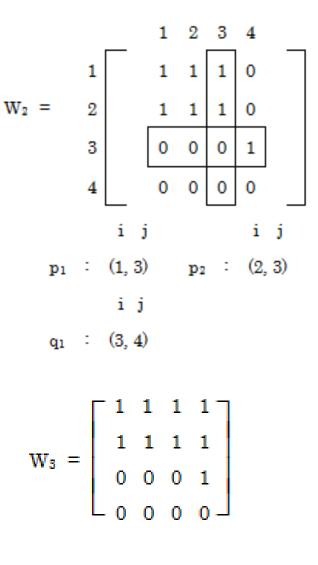
Thus W_1 is just W_0 with a new 1 in position (2, 2)





Matrix W_1 has 1's at row 1 and 2 of column 2 and columns 1, 2, and 3 of row 2. i.e.

i j i j p_1 : (1, 2) p_2 : (2, 2) i j i j i 1 q_1 : (2, 1) q_2 : (2, 2) q_3 : (2, 3) i.e. (1, 1), (1, 2), (1, 3), (2, 1), (2, 2) and (2, 3) of matrix W_1 (if 1's are not already there).



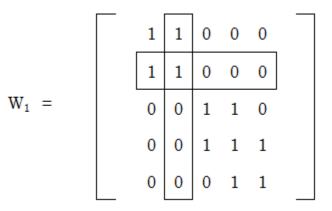
Finally, W_3 has 1's in locations 1, 2, 3 of column 4 and no 1's in row 4, so no new 1's are added and $MR_{\infty} = W_4$ = W_3 .

 $M_{\rm R} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{M}_{\mathrm{S}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$ So $M_{R \cup S} = M_R V M_S = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

We now compute $M_{(R \cup S)^{\infty}}$ by Warshall's algorithm. First, $W_o = M_{R \cup}$ _S. We next compute W_1 so k = 1. Since W_o has 1's in locations 1 and 2 of column 1 and in locations 1 and 2 of row 1, we find that no new 1's must be adjoined to W_1 . Thus

		1	1	0	0	0	
		1	1	0	0	0	
$W_0 =$		0	0	1	1	0	
		0	0	1	1	1	
		0	0	0	0 1 1 1	1	
K=1		i	j				i j
	p 1 :	(1,	1)		\mathbf{p}_2	:	(2, 1)
		i	j				i j
	q 1 :	(1,	1)		\mathbf{q}_2	:	(1, 2)

To obtain W_1 , we must put is in positions (1, 1), (1, 2), (2, 1) and (2, 2). We see that



Thus $W_1 = W_0$ We now compute W2, so k = 2. Since W_1 has 1's in locations 1 and 2 : of column 2 and in locations 1 and 2 of row 2, we find that no new 1's must be added to W_1 . That is,

		i j		i j
\mathbf{p}_1	:	(1, 2)	\mathbf{p}_2 :	(2, 2)
		i j		i j
\mathbf{q}_1	:	(2, 1)	\mathbf{q}_2 :	(2, 2)

To obtain W_2 , we must put is in positions (1, 1), (1, 2), (2, 1), (2, 2). We see that

 $W_2 =$

,	、 ,	∠),	(ک,	''	, (~	-, ~		•••
			1			0		_
			1	1	0	0	0	
			0	0	1	1	0	
			0	0	1	1	1	
			0	0	0	1	1	

Thus $W_2=W_1$ We next compute W_3 , so k = 3. Since W_2 has 1's in locations 3 and 4 of column 3 and in locations 3 and 4 of row 3, we find that no new 1's must be added to W_2 . That is i j i j p_1 : (3, 3) p_2 : (4, 3)

ij ij
$$q_1$$
: (3,3) q_2 : (3,4)

To obtain W_3 , we must put 1's in position (3, 3), (3, 4), (4, 3), (4, 4). We see that

г					1	
				0	0	
	1	1	0	0	0	
=	0	0	1	1	0	
	0	0	1	1	1	
	0	0	0	1	1	

W₃

Thus $W_3=W_2$ Things change when we now compute W4. Since W3 has I's in locations 3, 4, and 5 of column 4 and in locations 3, 4 and 5 of column 4, and in locations 3, 4 and 5 of row 4 we must add new 1's to W3 in positions 3, 5, and 5, 3, i.e.

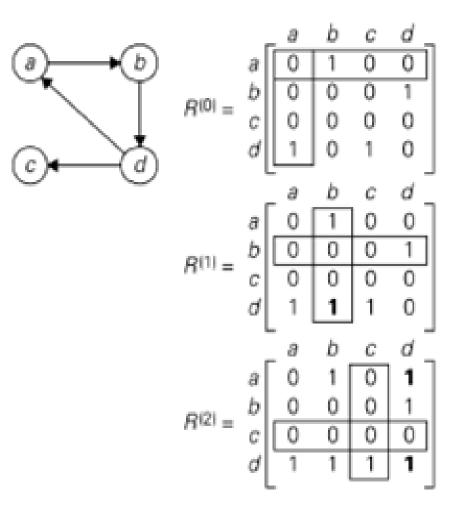
	i j	i j	i j
\mathbf{p}_1	: (3, 4)	p ₂ : (4, 4)	p ₃ : (5, 4)
	i j	i j	i j
\mathbf{q}_1	: (4, 3)	\mathbf{q}_2 : (4, 4)	q ₃ : (4, 5)

To obtain W4, we must put 1's in positions (3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (5, 5). We see that,

$$W_4 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

You may verify that $W_5 = W_4$ and thus $(R \cup S)^{\infty} = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (5, 5)\}$

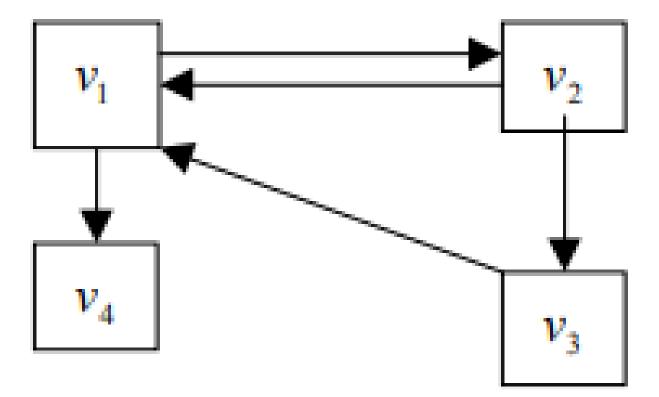
Transitive Closure and Warshall's Algorithm



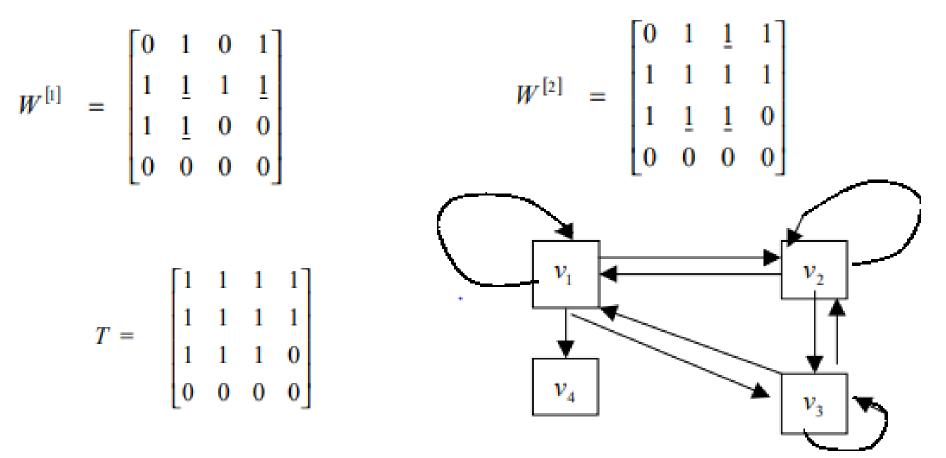
Ones reflect the existence of paths with no intermediate vertices (R⁽⁰⁾ is just the adjacency matrix); boxed row and column are used for getting R⁽¹⁾.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 1, i.e., just vertex a (note a new path from d to b); boxed row and column are used for getting R⁽²⁾.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 2, i.e., *a* and *b* (note two new paths); boxed row and column are used for getting *R*⁽³⁾.



$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$



- Compute the Warshall's Algorithm transitive closure of
- R={(a,b),(b,c),(c,d),(b,a)} on set A={a,b,c,d}

 $R_t = \{(a, a), (a, b), (a, c), (a, d), (2, a), (2, b), (2, c), (2, d), (3, d)\}.$

R = {(1,1),(1,2),(1,4),(2,2),(2,3),(3,1),(3,4),(4,1),(4,4)}
 on the set A={1,2,3,4}

 $R_t = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$

Computer transitive closure using Warshall's algorithm where A={a₁,a₂,a₃,a₄,a₅} and R be a relation on A whose matrix is

 $M_{R}=W_{0}= \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$ Answer: 10010