

Experiment / Assignment / Tutorial No. 4

Grade: AA / AB / BB / BC / CC / CD /DD

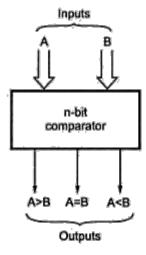
Signature of the Staff In-charge with date

Batch: A3 Roll No.: 16010121045 Experiment / assignment / tutorial No.: 4

Title: 4 bit Magnitude Comparator

Objective: Design a 2-bit comparator using logic gates and verify 4-bit magnitude comparator using IC 7485

Expected Outcome of Experiment:


CO2: Use different minimization technique and solve combinational circuits, synchronous & asynchronous sequential circuits.

Books/ Journals/ Websites referred:

- VLab Link: http://vlabs.iitb.ac.in/vlabs-dev/labs/dldesignlab/experimentlist.html
- R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill
- M. Morris Mano, "Digital Logic & computer Design", PHI
- http://elnsite.teilam.gr/ebooks/digital design/lab/dataSheets page/7485.pdf

Pre Lab/ Prior Concepts:

The comparison of two numbers is an operator that determines one number is greater than, less than (or) equal to the other number. A magnitude comparator is a combinational circuit that compares two numbers A and B and determines their relative magnitude. The outcome of the comparator is specified by three binary variables that indicate whether A>B, A=B (or) A<B.

Two Bit Magnitude Comparator Implementation Details:

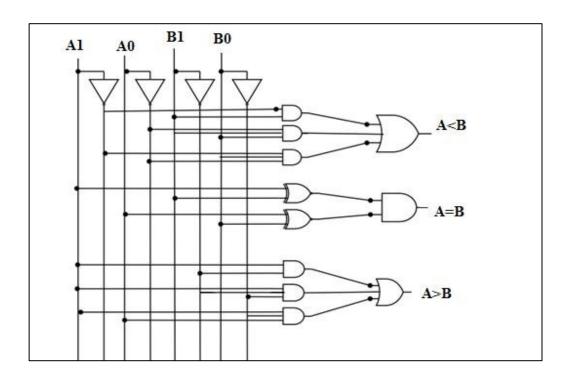
Truth Table

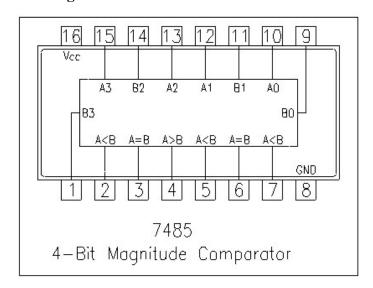
A1	Α0	B1	В0	A > B	A = B	A < B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

From the Truth Table:

$$(A < B) = A1'B1 + A_0'B_1B_0 + A_1'A_0'B_0$$

$$(A=B) = (A_1XORB_1). (A_0XORB_0)$$


$$(A>B) = A_1B_1' + A_0B_1'B_0' + A_1A_0B_0'$$



Logic Diagram of 2 bit Comparator

Four Bit Magnitude Comparator Implementation Details

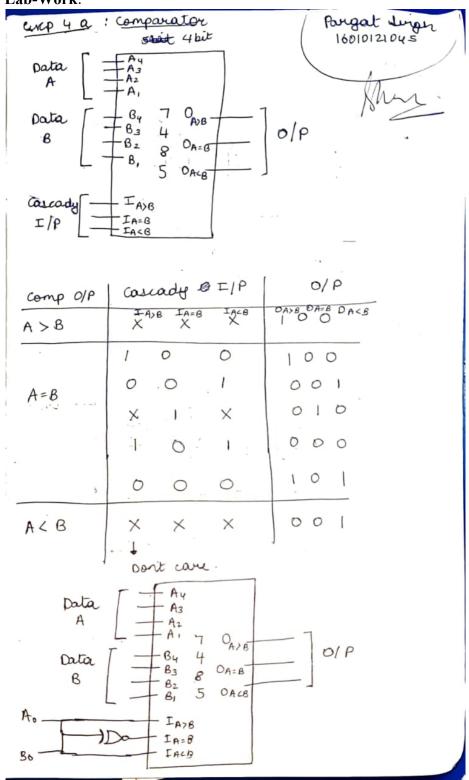
Pin Diagram of IC 7485


50 Department of Computer Engineering

Logic Diagram of IC 7485

Comparing Table

INPUTS of 4 bit Comparator				OUTPUT		
A3, B3	A2, B2	A3, B3	A2, B2	A3, B3	A2, B2	A3, B3
A3 > B3	X	X	X	Н	L	L
A3 < B3	X	X	X	L	Н	L
A3 = B3	A2 > B2	X	X	Н	L	L
A3 = B3	A2 < B2	X	X	L	Н	L
A3 = B3	A2 = B2	A1 > B1	X	Н	L	L
A3 = B3	A2 = B2	A1 < B1	X	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 >B0	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н

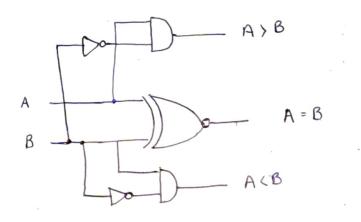

Where H = High Output, L = Low Output, X = Don't Care

Lab-Work:

Conclusion: Through this experiment we learnt the concept of comparators -1 bit, 2 bit and 4 bits. We also learnt to implement them through logic diagrams and truth tables.

Post Lab Descriptive Questions

1. Design a 1- bit magnitude comparator using logic gates.


A	В	f (A>B)	f (A=B)	f (A <b)< th=""></b)<>
0	0	0	1	0
1	0	1	0	0
0	1	0	0	1
1	1	0	1	0

From the truth table:

Equation of A > B = A.B'

Equation of A < B = A'.B

Equation of (A = B) = A'.B' + A.B = A XNOR B = (A.B' + A'.B)' = (f(A>B)+f(A<B))'

53 Department of Computer Engineering