

Experiment / Assignment / Tutorial No. 2

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

Batch: A3 Roll No.: 16010121045 Experiment / assignment / tutorial No.: 2

Title: Binary Adders and Subtractors

Objective: To implement half and full adder-subtractor using gates and IC 7483

Expected Outcome of Experiment:

CO2: Use different minimization technique and solve combinational circuits, synchronous & asynchronous sequential circuits.

Books/ Journals/ Websites referred:

- VLab Link: <u>http://vlabs.iitb.ac.in/vlabs-dev/labs/dldesignlab/experimentlist.html</u>
- R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill
- M .Morris Mano, "Digital Logic & computer Design", PHI
- http://physics.niser.ac.in/labmanuals/sem5/elect/7_ADDER%20SUBTRACTO R%20CIRCUITS.pdf

Pre Lab/ Prior Concepts:

Adder: Addition of two binary digits is most basic operation performed by the digital computer. There are two types of adder:

- Half adder
- Full adder

Half Adder: Half adder is combinational logic circuit with two inputs and two outputs. It is the basic building block for addition of two single bit numbers.

Full adder: A half adder has a provision not to add a carry coming from the lower order bits when multi bit addition is performed. for this purpose a third input terminal is added and this circuits is to add A,B,C where A and B are the nth order bits of the number A and B respectively and C is the carry generated from the addition of (n-1) order bits. This circuit is referred to as full adder.

Subtractor: Subtraction of two binary digits is one of the most basic operations performed by digital computer .there are two types of subtractor:

- Half subtractor
- Full subtractor

Half subtractor: Logic circuit for the subtraction of B from A where A,B are 1 bit numbers is referred to as half subtract or .the subtract or process has two input and difference and borrow are the two outputs.

Full subtractor: As in the case of the addition using logic gates, a full subtractor is made by combining two half-sub tractors and an additional OR-gate. A full subtractor has the borrow in capability (denoted as BOR_{IN}) and so allows cascading which results in the possibility of multibit subtraction.

IC 7483

For subtraction of one binary number from another, we do so by adding 2's complement of the former to the latter number using a full adder circuit.

IC 7483 is a 16 pin, 4-bit full adder. This IC has a provision to add the carry output to transfer and end around carry output using Co and C4 respectively.

2's complement: 2's complement of any binary no. can be obtained by adding 1 in 1's complement of that no.

e.g. 2's complement of $+(10)_{10} = 1010$ is

1C of 1010	01	01
	+	1
-(10)10	01	10

In 2's complement subtraction using IC 7483, we are representing negative number in 2's complement form and then adding it with 1st number.

Implementation Details: Half Adder Block Diagram

Half Adder Circuit

Truth Table for Half Adder

Input	ts	Outputs		
A B		Α	B	
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	1	1	

From the truth table (with steps):

21 Department of Computer Engineering

Full Adder Circuit

Truth Table for Full Adder

	Inputs	Outputs		
Α	В	B C _{in}		Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

22 Department of Computer Engineering

K. J. Somaiya College of Engineering, Mumbai-77

From the truth table (with steps):

Half Subtractor Circuit

Half-Subtractor Circuit

23 Department of Computer Engineering

Truth Table for Half Subtractor

A	B	DIFFERENCE (D)	BORROW(Bo)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

From the truth table (with steps) :

K. J. Somaiya College of Engineering, Mumbai-77

Full Subtractor Circuit

Truth Table for Full subtractor

Α	В	BIN	D	BOROUT
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	. 1

From the truth table (with steps):

Differenc = A'B'Bin + A'BBin' + AB'Bin' + ABBinBorrow out= A'B + A'Bin + BBin

	Input									Output	
Α	В	Bin	$\mathbf{A} \oplus \mathbf{B} =$	$\sim A = E$	E.B = F	Bin ⊕ C	$\sim C = F$	F.Bin =	$\mathbf{F} + \mathbf{H} = \mathbf{I}$	D	Borr _{out}
			С			= G		н			
0	0	0	0	1	0	0	1	0	1	0	0
0	0	1	0	1	0	1	1	1	1	1	1
0	1	0	1	1	1	1	0	0	0	1	1
0	1	1	1	1	1	0	0	0	0	0	1
1	0	0	1	0	0	1	0	0	0	1	0
1	0	1	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	1	0	1	0	0
1	1	1	0	0	0	1	1	1	1	1	1

IC 7483

Procedure:

- 1) Locate the IC 7483 and 4-not gates block on trainer kit.
- Connect 1st input no. to A4-A1 input slot and 2nd (negative) no. to B4-B1 through 4not gates (1C of 2nd no.)
- 3) Connect high input to Co so that it will get added with 1C of 2^{nd} no. to get 2C.
- 4) Connect 4-bit output to the output indicators.
- 5) Switch ON the power supply and monitor the output for various input combinations.

Example:

1) $7_{10} - 2_{10} = 5_{10}$	
7	0111
2	0010
1'C of 2	1101 + 1
2'C of 2	1110
	$\frac{0111 + 1110}{10101}$

Pin Diagram IC7483

Adder

K. J. Somaiya College of Engineering, Mumbai-77

Subtractor

Conclusion: Thus the circuits of binary adder and sub tractors were studied on the IC kit using Connectors and tested using sample values.

Post Lab Descriptive Questions

- 1. What is difference between half and full adder, half and full subtractor?
- A) Difference between half and full adder

Half Adder	Full Adder		
Half adder accepts two binary digits on it's inputs and	The full adder accepts two input bits and		
produce two binary digits outputs, a sum bit and a	an input carry and generates a sum		
carry bit	output and an output carry		
Half adder is easier to implement.	It is more difficult as it needs two half adders to implement		
Half adder can add only two input bits (A and B) and	Full adder can add a 3 bit number		
has nothing to do with carry if there is only one	(A,B,Cin) A and B are the operands and		
input, that means the binary addition process is not	Cin is the carry from the previous less		
complete, thus it is called half adder.	significant stage.		

B) Difference between half and full subtractor

Half Subtractor				Full Subtractor					
1. It is a combinational circuit which is used to perform subtraction of two bits			. It is sub	It is a combinational circuit which is used to perform subtraction of three bits					
2. It has two inputs (A,B) and two output D(Difference) and B(Borrow).			It 1 from	It has input A(number) B(subtractor) and Bin (Borrow) from previous stage. And the outputs are D (Difference) and B (Borrow)					
3.			3.	3.					
T <u>ruth table :</u>			T <u>1</u>	ruth table	<u>:</u>				
А	В	D	В	Ιſ	А	В	Bin	D	Bout
0	0	0	0	Ī	0	0	0	0	0
0	1	1	1		0	0	1	1	1
1	0	1	0		0	1	0	1	1
1	1	0	0		0	1	1	0	1
					1	0	0	1	0
					1	0	1	0	0
					1	1	0	0	0
					1	1	1	1	1

- K. J. Somaiya College of Engineering, Mumbai-77
- 2. Perform the following Binary subtraction with the help of appropriate ICs:a) 7-5

b) 5-7

30 Department of Computer Engineering

31 Department of Computer Engineering

DD/JUL 21-22

Lab Work:

DD/JUL 21-22

