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Trees  

 • Learning Objective 

• Discussed linear data structures such as arrays, strings, stacks, and queues.  

• Learn about a non-linear data structure called tree.  

• A tree is a structure which is mainly used to store data. 

• It has no loop and no circuit. It has no self-loop.  

• Its hierarchical model. 

• First discuss general trees and then binary trees. These binary trees are 
used to form binary search trees and heaps.  

• They are widely used to manipulate arithmetic expressions, construct 
symbol tables, and for syntax analysis. 

 



Trees  
 • A tree is a nonlinear hierarchical data structure that consists of nodes 

connected by edges. 

• A tree is non-linear and a hierarchical data structure consisting of a 
collection of nodes such that each node of the tree stores a value and 
a list of references to other nodes (the “children”). 

• This data structure is a specialized method to organize and store data 
in the computer to be used more effectively. It consists of a central 
node, structural nodes, and sub-nodes, which are connected via 
edges. We can also say that tree data structure has roots, branches, 
and leaves connected with one another.  



Trees  
 • Represents Hierarchy 

• For eg- The organization structure of an Corporation 

 



 
 

Why Tree is considered a non-linear data structure? 
  
 • The data in a tree are not stored in a sequential manner i.e, they are 

not stored linearly. Instead, they are arranged on multiple levels or we 
can say it is a hierarchical structure. For this reason, the tree is 
considered to be a non-linear data structure. 

 



Why Tree Data Structure? 
 

• Other data structures such as arrays, linked list, stack, and queue are 
linear data structures that store data sequentially. In order to perform 
any operation in a linear data structure, the time complexity increases 
with the increase in the data size. But, it is not acceptable in today's 
computational world. 

• Different tree data structures allow quicker and easier access to the 
data as it is a non-linear data structure. 

 
 



Tree  
 



A tree is a connected graph without any 
circuits. 



Types of Tree  
 • General tree 

• Binary tree 

• Binary search tree 

• Threaded binary tree 

• AVL Tree 

• B tree 

• B+ Tree 

• Trie  

• Heap  

• Red black tree 

• Splay tree 



 
 Properties 

  
 The important properties of tree data structure are- 

• There is one and only one path between every pair of vertices in a 
tree. 

• A tree with n vertices has exactly (n-1) edges. 

• A graph is a tree if and only if it is minimally connected. 

• Any connected graph with n vertices and (n-1) edges is a tree. 



 
Tree terminology  

 



Root  
 • The first node from where the tree originates is called as a root node. 

• In any tree, there must be only one root node. 

• We can never have multiple root nodes in a tree data structure. 

 

Here, node A is the only root node. 
  
 



Edge  
 

• The connecting link between any two nodes is called as an edge. 

• In a tree with n number of nodes, there are exactly (n-1) number of 
edges. 

  

 



 
Parent 

 • The node which has a branch from it to any other node is called as 
a parent node. 

• The node which has one or more children is called as a parent node. 

• In a tree, a parent node can have any number of child nodes. 

Node A is the parent of nodes B and C 
Node B is the parent of nodes D, E and F 
Node C is the parent of nodes G and H 
Node E is the parent of nodes I and J 
Node G is the parent of node K 
 



 
Child  

 • The node which is a descendant of some node is called as a child node. 

• All the nodes except root node are child nodes. 



 
Siblings  

 • Nodes which belong to the same parent are called as siblings. 

• In other words, nodes with the same parent are sibling nodes. 

 

Nodes B and C are siblings 
Nodes D, E and F are siblings 
Nodes G and H are siblings 
Nodes I and J are siblings 



 
Degree  

 • Degree of a node is the total number of children of that node. 

• Degree of a tree is the highest degree of a node among all the nodes 
in the tree. 



 
Internal node  

 • The node which has at least one child is called as an internal node. 

• Internal nodes are also called as non-terminal nodes. 

• Every non-leaf node is an internal node. 

 

Here, nodes A, B, C, E and G are internal nodes. 



 
Leaf node  

 • The node which does not have any child is called as a leaf node. 

• Leaf nodes are also called as external nodes or terminal nodes. 

Here, nodes D, I, J, F, K and H are leaf nodes. 



 
Level  

 • In a tree, each step from top to bottom is called as level of a tree. 

• The level count starts with 0 and increments by 1 at each level or 
step. 



 
Height  

 • Total number of edges that lies on the longest path from any leaf 
node to a particular node is called as height of that node. 

• Height of a tree is the height of root node. 

• Height of all leaf nodes = 0 

 

•   



 
Depth  

 • Total number of edges from root node to a particular node is called 
as depth of that node. 

• Depth of a tree is the total number of edges from root node to a leaf 
node in the longest path. 

• Depth of the root node = 0 

• The terms “level” and “depth” are used interchangeably. 

 



 
Subtree  

 • In a tree, each child from a node forms a subtree recursively. 

• Every child node forms a subtree on its parent node. 



 
Forest  

 • A forest is a set of disjoint trees. 



 
Path  

 • The sequence of consecutive edges from source node to 
destination node. 

 



 
Key  

 • Key represents a value of a node based on which a search 
operation is to be carried out for a node. 

 



 
Binary Tree 

 • Binary tree is a special tree data structure in which each node can 
have at most 2 children. 

• Thus, in a binary tree, Each node has either 0 child or 1 child or 2 
children. 



 
Binary Tree 

 



 
Unlabeled Binary Tree  

 • A binary tree is unlabeled if its nodes are not assigned any label. 

 

Number of binary trees possible with 3 unlabeled nodes 
= 2 x 3C3 / (3 + 1) 
= 6C3 / 4 
= 5 



 
Labeled Binary Tree  

 • A binary tree is labeled if all its nodes are assigned a label. 

Number of binary trees possible with 3 labeled nodes 
= { 2 x 3C3 / (3 + 1) } x 3! 
= { 6C3 / 4 } x 6 
= 5 x 6 
= 30 
 



 
Types of Binary Tree 

 

 

 



 
Rooted Binary Tree 

 

• A rooted binary tree is a binary tree that satisfies the following 2 
properties- 

• It has a root node. 

• Each node has at most 2 children. 

 

 



 
Full/Strictly Binary Tree 

  

 
• Every node has either 0 or 2 children 
• Full binary tree is also called as Strictly binary tree. 

 



 
Complete/ Prefect Binary Tree 

  

 

• In a complete binary tree, every level, except possibly the last, is 
completely filled.  

• Second, all nodes appear as far left as possible. 
• Complete binary tree is also called as Perfect binary tree. 



 
Almost complete Types of Binary Tree 

 

 

 

• An almost complete binary tree is a binary tree that satisfies 
the following 2 properties- 

• All the levels are completely filled except possibly the last level. 
• The last level must be strictly filled from left to right. 



 
Skewed Binary Tree 

 • All the nodes except one node has one and only one child. 

• The remaining node has no child. 

OR 

• A skewed binary tree is a binary tree of n nodes such that its depth is (n-1). 

 

 



 
Binary Tree representation   

 
 • Array Representation  

• Linked List Representation 

 



 
 
 

Array Representation of a Binary Tree  
  

 
 

• Using 1-D Array 

• Nodes are numbered sequentially level by level left to right. 

• Even empty nodes are numbered 

• When data of the tree is stored in an array then the number appearing 
against the node will work as indices of the node in the array 



 
 
 

Array Representation of a Binary Tree  
  

 
 

A 

B 

D 

H I 

E 

C 

F G 

[0] [1] [2] [3] [4] [5] [6] [7] [8] 

A B C D E F G H I 

Level 0 
 
 
Level 1 
 
Level 2 
 
 
Level 3 



 
 
 

Array Representation of a Binary Tree  
  

 
 

A 

B C 

D 

F G 

E 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 

A B C D E F G 



 
 
 

Array Representation of a Binary Tree  
  

 
 

A 

B 

D 

H I 

E 

C 

F G 

[0] [1] [2] [3] [4] [5] [6] [7] [8] 

A B C D E F G H I 

Node in position p  
Left child=2p+1 
Right child=2p+2 
 
For C= 2,  
LC = 2*2+1  = 5 
RC = 2*2+2  = 6 
For D= 3,  
LC = 2*3+1  = 7 
RC = 2*3+2  = 8 
 
 

 



 
 
 

Array Representation of a Binary Tree  
  

 
 

A 

B 

D 

H I 

E 

C 

F G 

[0] [1] [2] [3] [4] [5] [6] [7] [8] 

A B C D E F G H I 

Node in position p = sibling  
Given a Left child at position p then 

Right Sibling = p+1 
Given a Right child at position p then 

Left  Sibling = p-1 
 
For C= I,  
LS = 8-1  = 7   i.e. H 
 
For D=, P= 3,  
RS = 3+1  = 4  i.e. E 
 
 

 



 
 

Linked representation of Binary Tree  
 
 

• A node of a binary tree is represented by a structure containing a data 
part and two pointers to other structures of the same type. 

 

struct node  

{ int data;  

struct node *left;  

struct node *right; 

 }; 

Tree has 3 fields in a node- 
Data field 
Address of left child 
Address of right child 

 



 
 
 
 

Linked representation of Binary Tree  
 

  
 
 

• Every binary tree has a pointer ROOT, which points to the root element 
(topmost element) of the tree.  

• If ROOT = NULL, then the tree is empty.  

 

 



 
 
 

Linked representation of Binary Tree  
 
 
 

• Consider the binary tree given  and the schematic diagram of the linked 
representation of the binary tree  shown in Fig.  



 
 
 
 

Linked representation of Binary Tree  
 

  
 
 

Linked representation of 
binary tree T 



 
Tree Traversal  

 • Tree Traversal refers to the process of visiting each node in a tree data 
structure exactly once. 



 
 

Depth First Traversal 
  
 

Following three traversal techniques fall under Depth First Traversal- 

• Preorder Traversal 

• Inorder Traversal 

• Postorder Traversal 



 
 

Preorder Traversal 
  
 

• Visit root node 

• Visit all the nodes in the left subtree 

• Visit all the nodes in the right subtree 

• Root → Left → Right 

• display(root->data)  

• preorder(root->left)  

• preorder(root->right) 



 
 

Preorder Traversal 
  
 Algorithm for pre-order traversal 

Pre-order traversal is also called as depth-first traversal.  
Pre-order algorithm is also known as the NLR traversal algorithm (Node-Left-Right). 
 



 
 

Preorder Traversal 
  
 

void preorder(struct node *tree) 

{ 

 if(tree!=NULL) 

   { 

  printf("%d\n",tree->num); 

  preorder(tree->left); 

  preorder(tree->right); 

   } 

} 

 



 
 

Preorder Traversal 
  
 

• In Figs (a) and (b), find the sequence of nodes that will be visited using 
pre-order traversal algorithm. 

 

Solution 
(a)TRAVERSAL ORDER:  
A, B, D, G, H, L, E, C, F, I, J, and K 
 
(b) TRAVERSAL ORDER: 
 A, B, D, C, E, F, G, H, and I 



 
 

Preorder Traversal 
  
 

Pre-order traversal algorithms are used to   extract a prefix notation from an 
expression  tree.  
For example, consider the expressions given  
This expression can be represented using a binary tree as  
When we traverse the elements of a tree using the pre-order traversal 
algorithm, the expression that we get is a prefix expression. 

 Exp = (a – b) + (c * d) 
 



 
 

Preorder Traversal 
  
 

 

 

Given an expression, Exp = ((a + b) – (c * d)) % ((f ^g) / (h – i)), construct 
the corresponding binary tree. 
This expression can be represented using a binary tree as  
 
 
 
 
 
When we traverse the elements of a tree using the pre-order traversal 
algorithm, the expression that we get is a prefix expression. 
% – + a b * c d / ^ f g –  h i  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Preorder Traversal 
  
 

 

 

Given the binary tree, write down the expression that it represents. 
 
 
 
 
 
 
Expression for the above binary tree is  [{(a/b) + (c*d)} ^ {(f % g)/(h – i)}] 
When we traverse the elements of a tree using the pre-order traversal 
algorithm, the expression that we get is a prefix expression^ + / a b * c d 
/ % f g – h i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Postorder Traversal 
  
 

• Visit all the nodes in the left subtree 

• Visit all the nodes in the right subtree 

• Visit the root node  

• Left → Right → Root 

• postorder(root->left)  

• postorder(root->right)  

• display(root->data) 



 
 

Post-order Traversal 
  
 

• Algorithm for post-order traversal 

Post-order algorithm is also known as the LRN traversal algorithm (Left-Right-
Node).  
Post-order traversals are used to extract postfix notation from an expression 
tree. 



 
 

Post-order Traversal 
  
 

void postorder(struct node *tree) 

{ 

 if(tree!=NULL) 

   { 

  postorder(tree->left); 

  postorder(tree->right); 

  printf("%d\n",tree->num); 

   } 

  

} 

 



 
 

Post-order Traversal 
  
 

• For the trees given, write the sequence of nodes that will be visited 
using post-order traversal algorithm. 

 

 

 

 

 

 

 

TRAVERSAL ORDER:  
G, L, H, D, E, B, I, K, J, F, C, and A 
TRAVERSAL ORDER: 
 D, B, H, I, G, F, E, C, and A 
 



 
 

Inorder Traversal 
  
 

• Inorder traversal 

• First, visit all the nodes in the left subtree 

• Then the root node 

• Visit all the nodes in the right subtree 

• Left → Root → Right 

• inorder(root->left)  

• display(root->data)  

• inorder(root->right) 



 
 

Inorder Traversal  
  
 

Keep a plane mirror horizontally at 
the bottom of the tree and take the 
projection of all the nodes. 



 
 

Inorder Traversal 
  
 

• Algorithm for Inorder Traversal 

 

In-order traversal is also called  as symmetric traversal. 
In-order algorithm is also known as the LNR traversal algorithm (Left-Node-Right). 
 



 
 

Inorder Traversal 
  
 

void inorder(struct node *tree) 

{ 

 if(tree!=NULL) 

     { 

  inorder(tree->left); 

  printf("%d\n",tree->num); 

  inorder(tree->right); 

     } 

} 

 



 
 

Inorder Traversal 
  
 

• In-order traversal algorithm is usually used to display the elements of a 
binary search tree.  

• Here, all the elements with a value lower than a given value are accessed 
before the elements with a higher value. 

• We will discuss binary search trees in detail 



 
 

Inorder Traversal 
  
 

• For the trees given find the sequence of nodes that will be visited using 
in-order traversal algorithm. 

 

 

 

 

 

 

• TRAVERSAL ORDER: G, D, H, L, B, E, A, C, I, F, K, and J 

• TRAVERSAL ORDER: B, D, A, E, H, G, I, F, and C 



 
Applications 

 • Preorder traversal is used to get prefix expression of an expression tree. 

• Preorder traversal is used to create a copy of the tree. 

• Inorder traversal is used to get infix expression of an expression tree. 

• Postorder traversal is used to get postfix expression of an expression tree. 

• Postorder traversal is used to delete the tree. This is because it deletes the 
children first and then it deletes the parent. 

 

 



 
Applications 

 • Preorder traversal is used to get prefix expression of an expression tree. 

• Inorder traversal is used to get infix expression of an expression tree. 

• Postorder traversal is used to get postfix expression of an expression tree. 

 

 

 



 
Breadth First Traversal 

 • Breadth First Traversal of a tree prints all the nodes of a tree level by 
level. 

• Breadth First Traversal is also called as Level Order Traversal. 

• All the nodes at a level are accessed before going to the next level. 

 



 
Breadth First Traversal 

 



 
PRACTICE PROBLEMS BASED ON TREE TRAVERSAL  

 • If the binary tree in figure is traversed in inorder, then the order in 
which the nodes will be visited is ____? 



 
PRACTICE PROBLEMS BASED ON TREE TRAVERSAL  

 • Which of the following sequences denotes the postorder traversal 
sequence of the tree shown in figure? 

FEGCBDBA 
GCBDAFE 
GCDBFEA 
FDEGCBA 

Postorder Traversal : G , C , D , B , F , E , A 
  
Thus, Option (C) is correct. 



 
PRACTICE PROBLEMS BASED ON TREE TRAVERSAL  

 • Let LASTPOST, LASTIN, LASTPRE denote the last vertex visited in a postorder, inorder and 
preorder traversal respectively of a complete binary tree. Which of the following is 
always true? 

A) LASTIN = LASTPOST 

B) LASTIN = LASTPRE 

C) LASTPRE = LASTPOST 

D) None of these 

• Consider the following complete binary tree- 

•  Preorder Traversal :  A , B, E 

• Inorder Traversal : B , A , E 

• Postorder Traversal : B , E , A 

•   

• Clearly, LASTIN = LASTPRE. Thus, Option (B) is correct. 

 

 



 
PRACTICE PROBLEMS BASED ON TREE TRAVERSAL  

 • Which of the following binary trees has its inorder and preorder 
traversals as BCAD and ABCD respectively 

 

• Solution D 

 



 
Binary Tree 

 • Expression Trees 

• Binary trees are widely used to store algebraic expressions.  

• For example, consider the algebraic expression given as: 

• Exp = (a – b) + (c * d) 

• This expression can be represented using a binary tree as shown in Fig 



 
Binary Tree 

 • Given an expression, Exp = ((a + b) – (c * d)) % ((e ^f) / (g – h)), construct 
the corresponding binary tree. 



 
Binary Tree 

 • Given the binary tree, write down the expression that it represents. 

Expression for the above binary tree is 
[{(a/b) + (c*d)} ^ {(f % g)/(h – i)}] 



 
Binary Tree 

 • Given the expression, Exp = a + b / c * d – e, construct the corresponding 
binary tree. 

• Use the operator precedence  to find the sequence in which operations will 
be performed. The given expression can be written as 

• Exp = ((a + ((b/c) * d)) – e) 

 



 
Binary Search Tree(BST) 

 • Binary Search Tree is a special kind of binary tree in which nodes are 
arranged in a specific order. 

• In a binary search tree (BST), each node contains- 

• Only smaller values in its left sub tree 

• Only larger values in its right sub tree 

 



 
Number of Binary Search Trees 

 
  

 

 

• No. of distinct binary search trees possible with 3 distinct keys 

= 2×3C3 / 3+1 

= 6C3 / 4 

= 5 

 

 



 
Number of Binary Search Trees 

 
 • If three distinct keys are A, B and C, then 5 distinct binary search trees 

are- 

 



 
Binary Search Tree(BST) 

  • For example, in the given tree, if 
we have to search for 29. 

• Then we know that we have to 
scan only the left sub-tree. If the 
value is present in the tree, it will 
only be in the left sub-tree, as 29 is 
smaller than 39 (the root node’s 
value). 

• The left sub-tree has a root node 
with the value 27. Since 29 is 
greater than 27, we will move to 
the right sub-tree, where we will 
find the element. 

 



 
Binary Search Tree(BST) 

 
State whether the binary trees in Fig.  are binary search trees or not. 



 
Tournament Trees 

 • Chess tournament 

• n number of players participate 

• To declare the winner among all these players, a couple of matches are 
played and usually three rounds are played in the game. 

• For ex. 8 players participate, then 4 matches will be played in round 1.  

• Then in round 2, the winners of round 1 will play against each other.  

• Similarly, in round 3, the winners of round 2 will play against each other  

• The person who wins round 3 is declared the winner.  

• Tournament trees are used to represent this concept. 



 
Tournament Trees 

 

Tournament trees are also called winner trees( a selection tree)  



 
 Constructing a Binary Tree from Traversal Results 

 • We can construct a binary tree if we are given at least two traversal results.  

• The first traversal must be the in-order traversal and the second can be 
either pre-order or post-order traversal. 

• In-order traversal result can used to determine the left and the right child 
nodes, & the pre-order/post-order can be used to determine the root node.  



 
  

Steps to Construct a Tree from Traversal Results 
 
 

• Step 1 Use the pre-order sequence to determine the root node of the tree. 
The first element would be the root node. 

• Step 2 Elements on the left side of the root node in the in-order traversal 
sequence form the left sub-tree of the root node. Similarly, elements on the 
right side of the root node in the in-order traversal sequence form the right 
sub-tree of the root node. 

• Step 3 Recursively select each element from pre-order traversal sequence 
and create its left and right sub-trees from the in-order traversal sequence. 



 
 Constructing a Binary Tree from Traversal Results 

 Consider the traversal results given below: 
In–order Traversal: D B E A F C G 
Pre–order Traversal: A B D E C F G 
  



 
 Constructing a Binary Tree from Traversal Results 

 • Consider the traversal results given below: 

  In–order Traversal: D B H E I A F J C G  

  Post order Traversal: D H I E B J F G C A  

 



 
Tree Applications  

 • Trees are used to store simple as well as complex data. Here simple means an integer 
value, character value and complex data means a structure or a record. 

• Trees are often used for implementing other types of data structures like hash tables, 
sets, and maps. 

•  A self-balancing tree, Red-black tree is used in kernel scheduling, to preempt massively 
multiprocessor computer operating system use.  

•  Another variation of tree, B-trees are prominently used to store tree structures on disc. 
They are used to index a large number of records.  

•  B-trees are also used for secondary indexes in databases, where the index facilitates a 
select  operation to answer some range criteria. 

• Trees are an important data structure used for compiler construction. 

• Trees are also used in database design. 

• Trees are used in file system directories. 

• Trees are also widely used for information storage and retrieval in symbol tables. 



 
Tree Applications  

 • Binary Search Trees(BSTs) are used to quickly check whether an 
element is present in a set or not. 

• Heap is a kind of tree that is used for heap sort. 

• A modified version of a tree called Tries is used in modern routers to 
store routing information. 

• Most popular databases use B-Trees and T-Trees, which are variants 
of the tree structure we learned above to store their data 

• Compilers use a syntax tree to validate the syntax of every program 
you write. 



 
Applications 

 • Spanning trees: It is the shortest path tree used in the routers to direct the packets to the destination.   

• Binary Search Tree: It is a type of tree data structure that helps in maintaining a sorted stream of data.   

• Full Binary tree 

• Complete Binary tree 

• Skewed Binary tree 

• Strictly Binary tree 

• Extended Binary tree 

•  Storing hierarchical data: Tree data structures are used to store the hierarchical data, which means data is 
arranged in the form of order.   

• Syntax tree: The syntax tree represents the structure of the program’s source code, which is used in 
compilers.   

• Trie: It is a fast and efficient way for dynamic spell checking. It is also used for locating specific keys from 
within a set.   

• Heap: It is also a tree data structure that can be represented in a form of an array. It is used to implement 
priority queues.   



 
Tree Applications  

 • Directory structure of a file storage 

• Structure of an arithmetic expressions 

• Used in almost every 3D video game to determine what objects need 
to be rendered. 

• Used in almost every high-bandwidth router for storing router-tables. 

• used in compression algorithms, such as those used by the .jpeg and 
.mp3 file formats 

• Game trees 

 



Directory structure of a file storage 

Image courtesy: 
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter11/11_10_TwoLevelStructure.jpg  



 Structure of an arithmetic expressions 

Image courtesy: https://media.geeksforgeeks.org/wp-content/uploads/expression-tree.png 



Object rendering in 3-D game 

Image Courtesy: https://www.bogotobogo.com/Games/images/BVH.png 



DNS Server entries 

Image Courtesy: https://res.cloudinary.com/practicaldev/image/fetch/s--b9G6DenD--
/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https://i.imgur.com/xOdVIPZ.png 



Compression Algorithm 

https://brilliant-staff-media.s3-us-west-2.amazonaws.com/tiffany-wang/VEIWKBhSSc.png 



Game Tree 

Image Courtesy: https://www.ocf.berkeley.edu/~yosenl/extras/alphabeta/alphabeta.jpg 



 
Binary Search Tree   

 
 • Create a binary search tree using the following data elements: 

     45, 39, 56, 12, 34, 78, 32, 10, 89, 54, 67, 81 

 



 
Binary Search Tree   

 
 • Create a binary search tree using the following data elements: 

     45, 39, 56, 12, 34, 78, 32, 10, 89, 54, 67, 81 

 



 
Binary Search Tree   

 
 • Create a binary search tree using the following data elements: 

     45, 39, 56, 12, 34, 78, 32, 10, 89, 54, 67, 81 

 



 
Binary Search implementation 

 Struct tree{ 

                      int data; 

  struct tree *left; 

  struct tree *right; 

  } 

Struct tree *t; 

 



 
 
Operations on BST : Searching for a Node 
 
 
• The search function is used to find whether a given value is present in the tree 

or not.  
• The searching process begins at the root node.  
• The function first checks if the binary search tree is empty. If it is empty, then 

the value we are searching for is not present in the tree.  
• So, the search algorithm terminates by displaying an appropriate message. 
•  However, if there are nodes in the tree, then the search function checks to see 

if the key value of the current node is equal to the value to be searched.  
• If not, it checks if the value to be searched for is less than the value of the 

current node, in which case it should be recursively called on the left child 
node.  

• In case the value is greater than the value of the current node, it should be 
recursively called on the right child node. 



 
 
Operations on Binary Search Trees   
 
 
• Searching for a Node in a Binary Search Tree 

 



 
 
Operations on Binary Search Trees   
 
 
 

• Inserting a New Node in a Binary Search Tree 

• The insert function is used to add a new node with a given value at the 
correct position in the binary search tree. 

• Adding the node at the correct position means that the new node should 
not violate the properties of the binary search tree. 

• The initial code for the insert function is similar to the search function. 
This is because we first find the correct position where the insertion has 
to be done and then add the node at that position. 

• The insertion function changes the structure of the tree. Therefore, when 
the insert function is called recursively, the function should return the 
new tree pointer. 



 
 
Operations on Binary Search Trees   
 
 
 

• Inserting a New Node in a Binary Search Tree 

 



 
 
Operations on Binary Search Trees   
 
 
 

• We will take up the case of inserting 12 and 55. 

 



 
 
Operations on Binary Search Trees   
 
 
 

• Deleting a Node from a Binary Search Tree 

• The delete function deletes a node from the binary search tree. However, 
utmost care should be taken that the properties of the binary search tree 
are not violated and nodes are not lost in the process.  

• We will take up three cases and discuss how a node is deleted from a 
binary search tree. 

• Case 1: Deleting a Node that has No Children 

• Case 2: Deleting a Node with One Child 

• Case 3: Deleting a Node with Two Children 



 
 
Operations on Binary Search Trees   
 
 
 

• Case 1: Deleting a Node that has No Children 

• Look at the binary search tree given. If we have to delete node 78, we can 
simply remove this node without any issue. This is the simplest case of 
deletion. 
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• Case 2: Deleting a Node with One Child 

• The node’s child is set as the child of the node’s parent. In other words, 
replace the node with its child. Now, if the node is the left child of its 
parent, the node’s child becomes the left child of the node’s parent. 
Correspondingly, if the node is the right child of its parent,  the node’s 
child becomes the right child of the node’s parent.  
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• Case 3: Deleting a Node with Two Children 

• Replace the node’s value with its in-order predecessor (largest value in the 
left sub-tree) or in-order successor (smallest value in the right sub-tree). 
The in-order predecessor or the successor can then be deleted using any 
of the above cases. Let us see how deletion of node with value 56 is 
handled.  
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• Case 3: Deleting a Node with Two Children 

• This deletion could also be handled by replacing node 56 with its in-order 
successor 
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• In Step 1 of the algorithm, we first check if TREE=NULL, because if it is 
true, then the node to be deleted is not present in the tree. 

• However, if that is not the case, then we check if the value to be deleted is 
less than the current node’s data. In case the value is less, we call the 
algorithm recursively on the node’s left sub-tree, otherwise the algorithm 
is called recursively on the node’s right sub-tree. 

• Note that if we have found the node whose value is equal to VAL, then we 
check which case of deletion it is. 
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• If the node to be deleted does not have any child, then we simply set the 
node to NULL.  

• If the node to be deleted has either a left or a right child but not both, 
then the current node is replaced by its child node and the initial child 
node is deleted from the tree. 

• If the node to be deleted has both left and right children, then we find the 
in-order predecessor of the node or in-order successor . 
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• If the node to be deleted has both left and right children, then we find the 
in-order predecessor of the node by calling  

• findLargestNode(TREE ->LEFT) and  

• replace the current node’s value with that of its in-order predecessor.  

• Then, we call Delete(TREE -> LEFT, TEMP -> DATA) to delete the initial  
node of the in-order predecessor.  

• Thus, we reduce the case 3 of deletion into either case 1 or case 2 of 
deletion. 
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• To calculate the total number of elements/nodes the tree, we count the 
number of nodes in the left sub-tree and the right sub-tree. 

• Number of nodes = totalNodes(left sub–tree)+ totalNodes(right sub–tree) + 
1 

• The total number of nodes in the tree can be calculated as: 

• Total nodes of left sub–tree = 1 

• Total nodes of left sub–tree = 5 

• Total nodes of tree = (1 + 5) + 1 

• Total nodes of tree = 7 
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THREADED BINARY TREEs 
 

• A threaded binary tree is the same as that of a binary tree but with a 
difference in storing the NULL pointers.  

• Consider the linked representation of a binary tree as given in Fig.  

 



 
THREADED BINARY TREEs 
 • In the linked representation, a number of nodes contain a NULL pointer, 

either in their left or right fields or in both.  

• The space is wasted  in storing a NULL pointer can be efficiently used to 
store some other useful  piece of information.  

• For example, the NULL entries can be replaced to store a pointer to the in-
order predecessor or the in-order successor of the node. These special 
pointers are called threads and binary trees containing threads are called 
threaded trees.  

• In the linked representation of a threaded binary tree, threads will be 
denoted using arrows.  

• A threaded binary tree may correspond to one-way threading or a two way 
threading. 



 
THREADED BINARY TREEs 
 • In one-way threading, a thread will appear either in the right field or the 

left field of the node. A one-way threaded tree is also called a single-
threaded tree.  

• If the thread appears in the left field, then the left field will be made to 
point to the in-order predecessor of the node. Such a one-way threaded 
tree is called a left-threaded binary tree.  

• On the contrary, if the thread appears in the right field, then it will point to 
the in-order successor of the node. Such a one-way threaded tree is called 
a right threaded binary tree. 



 
THREADED BINARY TREEs 
 • In a two-way threaded tree, also called a double-threaded tree, threads will 

appear in both the left and the right field of the node. While the left field 
will point to the in-order predecessor of the node, the right field will point 
to its successor. A two-way threaded binary tree is also called a fully 
threaded binary tree.  

• Figure shows a binary tree without threading and its corresponding linked 
representation.(previous slide) 

• The in-order traversal of the tree is given as 8, 4, 9, 2, 5, 1, 10, 6, 11, 3, 7, 12 



One-way Threading 
• Node 5 contains a NULL pointer in its RIGHT field, so it will be replaced to 

point to node 1, which is its in-order successor. (8, 4, 9, 2, 5, 1, 10, 6, 11, 3, 7, 12) 

• Similarly, the RIGHT field of node 8 will point to node 4, the RIGHT field of 
node 9 will point to node 2, the RIGHT field of node 10 will point to node 6, 
the RIGHT field of node 11 will point to node 3, and the RIGHT field of node 
12 will contain NULL because it has no in-order successor. 



 
Two-way Threading(8, 4, 9, 2, 5, 1, 10, 6, 11, 3, 7, 12) 

 • Node 5 contains a NULL pointer in its LEFT field, so it will be replaced to 
point to node 2, which is its in-order predecessor. Similarly, the LEFT field of 
node 8 will contain NULL because it has no in-order predecessor, the LEFT 
field of node 7 will point to node 3, the LEFT field of node 9 will point to 
node 4, the LEFT field of node 10 will point to node 1, the LEFT field of node 
11 will contain 6, and the LEFT field of node 12 will point to node 7. 



 
Traversing a Threaded Binary Tree 
 • Node 1 has a left child i.e., 2 which has not been visited. So, add 2 in the list of visited nodes, 

make it as the current node. 

• Node 2 has a left child i.e., 4 which has not been visited. So, add 4 in the list of visited nodes, 
make it as the current node. 

•  Node 4 does not have any left or right child, so print 4 and check for  its threaded link. It has a 
threaded link to node 2, so make node 2 the current node. 

• Node 2 has a left child which has already been visited.  Does not have a right child. Now, print 2 
and follow its threaded link to node 1. Make node 1 the current node. 

• Node 1 has a left child that has been already visited. So print 1. Node 1 has a right child 3 which 
has not yet been visited, so make it the current node. 

• Node 3 has a left child (node 5) which has not been visited, so make it the current node. 

• Node 5 does not have any left or right child. So print 5. However, it does have a threaded link 
which points to node 3. Make node 3 the current node. 

• Node 3 has a left child which has already been visited. So print 3.Now there are no nodes left, so                              
   we end here. The sequence of nodes printed is—4 2 1 5 3. 



 
Traversing a Threaded Binary Tree 
 



 
Advantages of Threaded Binary Tree 
 
• It enables linear traversal of elements in the tree. 

• Linear traversal eliminates the use of stacks which in turn consume a lot of 
memory space and computer time. 

• It enables to find the parent of a given element without explicit use of parent 
pointers. 

• Since nodes contain pointers to in-order predecessor and successor, the threaded 
tree enables forward and backward traversal of the nodes as given by in-order 
fashion. 

• Thus, we see the basic difference between a binary tree and a threaded binary 
tree is that in binary trees a node stores a NULL pointer if it has no child and so 
there is no way to traverse back. 


