
Data Structures

sushmakadge@somaiya.edu
swatimali@somaiya.edu

mailto:sushmakadge@somaiya.edu
mailto:swatimali@somaiya.edu

 Stack

• Last In First Out
• Elements can be added or removed only from one end
• Gives access only to element at the top of data structure

 What is this good for ?

• To store history in a Web browser
• Undo sequence in a any application software or text

editor
• Saving local variables during function calls
• Recursions
• Watchlists?

4

 Stack

• Definition:
• An ordered collection of homogenous data items
• Can be accessed at only one end (the top)

• Operations:
• Create an empty stack
• check if it is empty
• Push: add an element to the top
• Pop: remove the top element
• Peek: retrieve the top element(Not the deletion)
• Destroy : remove all the elements one by one and destroy the data

structure

The Stack ADT: Value definition
Abstract typedef StackType(ElementType ele)
Condition: none

 Stack ADT: Operator definition

1. Abstract StackType CreateEmptyStack()
Precondition: none
Postcondition: CreateEmptyStack is created

2. Abstract StackType PushStack(StackType Stack, ElementType Element)
Precondition: Stack not full or NotFull(Stack)= True
Postcondition: stack= stack + Element at the top
Or Stack= original stack with new Element at the top

 Stack ADT: Operator definition

3. Abstract ElementType PopStack(StackType stack)
Precondition: Stack not empty or NotEmpty(Stack)= True
Postcondition: PopStack= element at the top,
Stack = stack - Element at the top
Or Stack= original stack without top Element

4. Abstract DestroyStack(StackType Stack)
Precondition: Stack not empty or NotEmpty(Stack)= True
Postcondition: Element from the stack are removed one by one starting from top
to bottom.
 Empty(Stack)= True

 Stack ADT: Operator definition

5. Abstract Boolean NotFull(StackType stack)
Precondition: none
Postcondition: NotFull(Stack)= true if Stack is not full
 NotFull(Stack)= False if Stack is full.

6. Abstract Boolean NotEmpty(StackType stack)
Precondition: none
Postcondition: NotEmpty(Stack)= true if Stack is not empty
 ~Empty(Stack)= False if Stack is empty.

 Stack ADT: Operator definition

7. Abstract ElementType Peep(StackType stack)
Precondition: Stack not empty or NotEmpty(Stack)= True
Postcondition: PeepStack= element at the top,
Stack = original stack

Exercise: Stacks
–Push(8) 8

Top

–Push(3) 8 3 Top

–Pop()
8

Top

–Push(2) 8 2 Top

–Push(5) 8 2 5 Top

–Pop() 8 2 Top

–Pop() 8 Top

–Push(9) 8 9 Top

–Push(1) 8 9 1 Top

Implementing a Stack: Linked List

• Advantages:
• always constant time to push or pop an element
• can grow to an infinite size

• Disadvantages
• the common case is the slowest of all the implementations

• Basic implementation
• list is initially empty
• push() method adds a new item to the head of the list
• pop() method removes the head of the list

 Stack ADT: Array Implementation

1. Algorithm StackType CreateStack()
//This Algorithm returns an empty stack- stack
{ integer StackTop =-1;
Return stack;
}

2. Algorithm StackType PushStack(StackType Stack, ElementType Element)
// This algorithm accepts a StackType stack and ElementType Element as input and adds ‘Element’ at the
top of ‘stack’. StackTop is an integer index that holds current value of StackTop position.
{
 if NotFull(Stack)= True
 stack[++StackTop]= Element
 Else “Error Message”
}

 Stack ADT: Array Implementation
3. Algorithm ElementType PopStack(StackType stack)
// This algorithm accepts a stack as input and returns ‘Element’ at the top of ‘stack’.
{ if NotEmpty(Stack)= True
Return Stack[StackTop--]
Else print “Error Message”
}

4. Abstract DestroyStack(StackType Stack)
//This algorithm returns all the elements from Stack in LIFO order and destroys the data structure
{ if NotEmpty(Stack) = true
 while(NotEmpty(Stack))
 print PopStack(Stack)
 else print “Error Message”
}

 Stack ADT: Array Implementation

5. Abstract Boolean NotFull(StackType stack)

// This algorithm returns true if the stack is not full, false otherwise.

{ if NotFull(Stack)

 retrun True

 else

 return False

}

6. Abstract Boolean NotEmpty(StackType stack)

// This algorithm returns true if the stack is not empty, false otherwise.

{ if NotEmpty(Stack)

 retrun True

 else

 return False

}

 Stack ADT: Array Implementation

7. Abstract ElementType Peek(StackType stack)

//// This algorithm accepts a stack as input and returns ‘Element’ at the
top of ‘stack’.
{ if NotEmpty(Stack)= True
Return Stack[StackTop]

Else print “Error Message”
}

LINKED REPRESENTATION OF STACKs

• Technique of creating a stack is easy, but the drawback is
that the array must be declared to have some fixed size.

• If the array size cannot be determined in advance, then the
other alternative, i.e., linked representation, is used.

• The storage requirement of linked representation of the
stack with n elements is O(n).

OPERATIONS ON A LINKED STACK
• A linked stack supports all the three stack operations, that is,

push, pop, and peek.
• Push Operation

OPERATIONS ON A LINKED STACK

• Algorithm to insert an element in a linked stack

OPERATIONS ON A LINKED STACK

• Pop Operation

OPERATIONS ON A LINKED STACK

• Algorithm to delete an element from a linked stack

MULTIPLE STACKs

• While implementing a stack using an array, the size of the array
must be known in advance.

• If the stack is allocated less space, then frequent OVERFLOW
conditions will be encountered.

• Problem : The code will have to be modified to reallocate more
space for the array.

• Allocate a large amount of space for the stack, sheer wastage of
memory.

• Trade-off between the frequency of overflows and the space
allocated.

MULTIPLE STACKs

• So, a better solution to deal with this problem is to have multiple
stacks or to have more than one stack in the same array of sufficient
size.

• Figure illustrates this concept.

• An array STACK[n] is used to represent two stacks, Stack A and B.

• The value of n is such that the combined size of both the stacks will
never exceed n.

• While operating on these stacks, it is important to note one thing—
Stack A will grow from left to right, whereas Stack B will grow from
right to left at the same time.

APPLICATIONS OF STACKS

• Conversion of an infix expression into a postfix expression

• Evaluation of a postfix expression

• Conversion of an infix expression into a prefix expression

• Evaluation of a prefix expression

• Recursion

• Reversing a list

• Parentheses checker
• Tower of Hanoi

 Stack Applications

• Stacks are a very common data structure
• Compilers(parsing data between delimiters/ brackets)
• operating systems (program stack)
• virtual machines

• manipulating numbers
• pop 2 numbers off stack, do work (such as add)
• push result back on stack and repeat

• Algorithms
• backtracking

• artificial intelligence
• finding a path

APPLICATIONS OF STACKS

 Evaluation of Arithmetic Expressions

- Polish Notations

Infix, postfix, and prefix notations are three different but

equivalent notations of writing algebraic expressions.

INFIX :
The operator is placed in between the operands.

For ex, A+B;
Plus operator is placed between the two operands A and B.

Evaluation of Arithmetic Expressions- Polish Notations

Postfix notation :

• The operator is placed after the For ex, AB+

• The order of evaluation of a postfix expression is always from

left to right

• Even brackets cannot alter the order of evaluation.

• The expression (A + B) * C can be written as:

• [AB+]*C

• AB+C* in the postfix notation

• Evaluation, addition will be performed prior to multiplication

Evaluation of Arithmetic Expressions- Polish Notations

Prefix notation :

The operator is placed before the operands. For example, +AB.

While evaluating a prefix expression, the operators are applied

to the operands that are present immediately on the right of the

operator.

Conversion of an Infix Expression into a Postfix Expression

The precedence of these operators can be given as follows:

Higher priority *, /, %

Lower priority +, –

Conversion of an Infix Expression into a Postfix Expression

Example 1 Convert the following infix expressions into postfix

expressions.

(a) (A–B) * (C+D)

(b) (A + B) / (C + D) – (D * E)

Evaluation of Arithmetic Expressions- Polish Notations

(a) (A–B) * (C+D)

[AB–] * [CD+]

AB–CD+*

(b) (A + B) / (C + D) – (D * E)

[AB+] / [CD+] – [DE*]

[AB+CD+/] – [DE*]

AB+CD+/DE*–

Conversion of an Infix Expression into a Postfix Expression

(((a+b)*(c/d))^e)

((ab+ * cd/) ^ e)

((ab+cd/ *) ^ e)

ab+cd/*e^

(((A + B) * C) – ((D - E) * (F + G)))

((A B + * C) – (D E - * F G +))

(A B + C *) – (DE – FG + *)

 A B + C * DE – FG + * -

Evaluation of Arithmetic Expressions- Polish Notations

Convert the following infix expressions into prefix expressions.

 (a) (A + B) * C

(b) (A–B) * (C+D)

(c) (A + B) / (C + D) – (D * E)

Evaluation of Arithmetic Expressions- Polish Notations

Convert the following infix expressions into prefix expressions.
 (a) (A + B) * C
(+AB)*C
*+ABC
(b) (A–B) * (C+D)
[–AB] * [+CD]
*–AB+CD
(c) (A + B) / (C + D) – (D * E)
[+AB] / [+CD] – [*DE]
[/+AB+CD] – [*DE]
–/+AB+CD*DE

Algorithm to convert an infix notation to postfix notation

Convert the following infix expression into postfix expression

A – (B / C + (D % E * F) / G)* H

A + B * C - D - E * F + G
Input char Opstack Output
A A
+ + A
B + AB
* +* AB
C +* ABC
- - ABC*+
D - ABC*+D
- - ABC*+D-
E - ABC*+D-E
* -* ABC*+D-E
F -* ABC*+D-EF
+ + ABC*+D-EF*-
G + ABC*+D-EF*-G
NULL EMPTYSTACK ABC*+D-EF*-G+

Evaluation of a Postfix Expression

• The ease of evaluation acts as the driving force for computers
to translate an infix notation into a postfix notation.

• The computer first converts the expression into the equivalent
postfix notation and then evaluates the postfix expression.

• Both these tasks—converting and evaluating make extensive
use of stacks as the primary tool

• Using stacks, any postfix expression can be evaluated very
easily.

• Every character of the postfix expression is scanned from left
to right.

Evaluation of a Postfix Expression

• If the character encountered is an operand, it is pushed
• on to the stack.
• However, if an operator is encountered, then the top two

values are popped from the stack and the operator is applied
on these values.

• The result is then pushed on to the stack.
• Let us look at the algorithm to evaluate a postfix expression.

Algorithm to evaluate a postfix expression

Algorithm to evaluate a postfix expression

Consider the infix expression given as 9 – ((3 * 4) + 8) / 4. Evaluate

the expression.

The infix expression 9 – ((3 * 4) + 8) / 4 can be written as 9 3 4 * 8

+ 4 / – using postfix notation. Look at Table, which shows the
procedure.

Algorithm to evaluate a postfix expression

Input: input expression: AB+C*DE-FG+*-
e.g. A=2, B=3,C=1,D=4,E=5, F=7, G=8

Input char stack

2 2
3 2, 3
+ (2+3)=5
1 5, 1
* (5*1)= 5
4 5,4
5 5,4,5
- 5,-1
7 5,-1,7
8 5,-1,7,8
+ 5,-1,15
* 5,-15
- 20

Convert the following infix expression into prefix expression
Ex: Given an infix expression (A – B/ C) * (A / K – L)

Step1: Reverse the infix string. Interchange Left & R parentheses.

(L – K / A) * (C / B – A)

Step 2: Obtain the corresponding postfix expression of the infix

expression obtained as a result of Step 1.

Therefore, [L – (K A /)] * [(C B /) – A]

= [LKA/–] * [CB/A–]

= L K A / – C B / A – *

Step 3: Reverse the postfix expression to get the prefix expression

Therefore, the prefix expression is * – A / B C – /A K L

Convert the following infix expression into prefix expression

The algorithm is given

Ex : Given an infix expression

(A – B/ C) * (A / K – L)

Evaluation of a Prefix Expression

There are a number of techniques for evaluating a prefix
expression.
The simplest way of evaluation of a prefix expression is given in
Fig.
For example, consider the prefix expression + – 2 7 * 8 / 4 12. Let
us now apply the algorithm to evaluate this expression.

Algorithm to evaluate a prefix expression

Algorithm to evaluate a prefix expression

Reverse a string using Stack

1)Create an empty stack.
2)One by one push all characters of string to stack.
3)One by one pop all characters from stack and put them back to
string.

 Check if a string is palindrome

 1)Push the input string onto the stack

2)POP characters ONE by one from stack and compare with string
characters from left to right
3)If all comparisons are true, the string is palindrome

 Recursion

 Definition:

• A recursive function is defined as a function that calls itself to
solve a smaller version of its task until a final call is made
which does not require a call to itself calling the same
function again directly or indirectly.

• Since a recursive function repeatedly calls itself, it makes use
of the system stack to temporarily store the return address
and local variables of the calling function.

 Recursion

 • Every recursive solution has two major cases. They are

• Base case, in which the problem is simple enough to be solved
directly without making any further calls to the same function.

 Ex factorial function
 when n = 1, because if n = 1, the result will be 1 as 1! = 1.
• Recursive case, in which first the problem at hand is divided

into simpler sub-parts. Second the function calls itself but
with sub-parts of the problem obtained in the first step. Third,
the result is obtained by combining the solutions of simpler
subparts. factorial(n) = n × factorial (n–1)

Recursion function call

•In each recursive call, there is need to save the
 –current values of parameters,
 –local variables and
 –the return address (the address where the control has to
 return from the call).

•Also, as a function calls to another function, first its arguments,
then the return address and finally space for local variables is
pushed onto the stack.

Parentheses Matching Algorithm

• Stacks can be used to check the validity of parentheses in any
algebraic expression.

• For example, an algebraic expression is valid if for every open
bracket there is a corresponding closing bracket.

• For example, the expression (A+B} is invalid but an expression
{A + (B – C)} is valid.

Parentheses Matching Algorithm

Parentheses Matching Algorithm

Tower of Hanoi

The tower of Hanoi is one of the main applications of recursion.

It says, ‘if you can solve n–1 cases, then you can easily solve

the nth case’.

Fig. which shows three rings mounted on pole A.

The problem is to move all these rings from pole A to pole C while

maintaining the same order. The main issue is that the smaller disk
must always come above the larger disk.

 Tower of Hanoi

Tower of Hanoi

To summarize, the solution to our problem of moving n

rings

from A to C using B as spare can be given as:

Base case: if n=1

Move the ring from A to C using B as spare

Recursive case:

 Move n – 1 rings from A to B using C as spare

 Move the one ring left on A to C using B as spare

 Move n – 1 rings from B to C using A as spare

Backtracking

• Backtracking is an algorithmic-technique for solving
problems recursively by trying to build a solution
incrementally, one piece at a time, removing those solutions
that fail to satisfy the constraints of the problem at any
point of time.

• Uses stack for storing solution path

• S = (3, 4, 5, 6) and X =9.

Sum of subsets Backtracking

Queries???

Thank you!!

