
Sets, Maps and Dictionary

1

Ms. Swati Mali

swatimali@somaiya.edu

Ref: Data Structures and Algorithms in C++

2e By Michael Goodrich, Roberto Tamassia

and David Mount

mailto:swatimali@somaiya.edu

Sets

2

• A set is defined as a collection that

contains no duplicates

• Basic Operations we perform with

sets are
• Set Union(S1 U S2)

• Set Intersection(S1 ∩ S2)

• Set Difference(S1 - S2)

Sets

3

Sets ADT
Set ADT provides number of methods.

4

basic functions associated with Set:

Set in C++ Standard Template Library (STL)

• begin() – Returns an iterator to the first

element in the set.

• end() – Returns an iterator to the theoretical

element that follows last element in the set.

• size() – Returns the number of elements in

the set.

• max_size() – Returns the maximum number

of elements that the set can hold.

• empty() – Returns whether the set is empty.

https://www.geeksforgeeks.org/setbegin-setend-c-stl/
https://www.geeksforgeeks.org/setbegin-setend-c-stl/
https://www.geeksforgeeks.org/setbegin-setend-c-stl/
https://www.geeksforgeeks.org/setbegin-setend-c-stl/
https://www.geeksforgeeks.org/setsize-c-stl/
https://www.geeksforgeeks.org/set-max_size-function-in-c-stl/
https://www.geeksforgeeks.org/set-max_size-function-in-c-stl/
https://www.geeksforgeeks.org/setempty-c-stl/

Reading assignment: Set in C++ Standard

Template Library (STL)

• rbegin()– Returns a reverse iterator pointing

to the last element in the container.

• rend()– Returns a reverse iterator pointing to

the theoretical element right before the first

element in the set container.

• crbegin()– Returns a constant iterator pointing

to the last element in the container.

• crend() – Returns a constant iterator pointing

to the position just before the first element in

the container.

https://www.geeksforgeeks.org/setrbegin-and-setrend-in-c-stl/
https://www.geeksforgeeks.org/setrbegin-and-setrend-in-c-stl/
https://www.geeksforgeeks.org/setrbegin-and-setrend-in-c-stl/
https://www.geeksforgeeks.org/set-crbegin-and-crend-function-in-c-stl/
https://www.geeksforgeeks.org/set-crbegin-and-crend-function-in-c-stl/
https://www.geeksforgeeks.org/set-crbegin-and-crend-function-in-c-stl/
https://www.geeksforgeeks.org/set-crbegin-and-crend-function-in-c-stl/
https://www.geeksforgeeks.org/set-crbegin-and-crend-function-in-c-stl/

• cbegin()– Returns a constant iterator pointing

to the first element in the container.

• cend() – Returns a constant iterator pointing

to the position past the last element in the

container.

• size() – Returns the number of elements in

the set.

• max_size() – Returns the maximum number

of elements that the set can hold.

• empty() – Returns whether the set is empty.

Reading assignment: Set in C++ Standard

Template Library (STL)

https://www.geeksforgeeks.org/set-cbegin-and-cend-function-in-c-stl/
https://www.geeksforgeeks.org/set-cbegin-and-cend-function-in-c-stl/
https://www.geeksforgeeks.org/set-cbegin-and-cend-function-in-c-stl/
https://www.geeksforgeeks.org/set-cbegin-and-cend-function-in-c-stl/
https://www.geeksforgeeks.org/set-cbegin-and-cend-function-in-c-stl/
https://www.geeksforgeeks.org/setsize-c-stl/
https://www.geeksforgeeks.org/set-max_size-function-in-c-stl/
https://www.geeksforgeeks.org/set-max_size-function-in-c-stl/
https://www.geeksforgeeks.org/setempty-c-stl/

• insert(const g) – Adds a new element ‘g’ to

the set.

• iterator insert (iterator position, const g) –

Adds a new element ‘g’ at the position

pointed by iterator.

• erase(iterator position) – Removes the

element at the position pointed by the iterator.

• erase(const g)– Removes the value ‘g’ from

the set.

• clear() – Removes all the elements from the

set.

Reading assignment: Set in C++ Standard

Template Library (STL)

https://www.geeksforgeeks.org/set-insert-function-in-c-stl/
https://www.geeksforgeeks.org/set-insert-function-in-c-stl/
https://www.geeksforgeeks.org/set-insert-function-in-c-stl/
https://www.geeksforgeeks.org/set-insert-function-in-c-stl/
https://www.geeksforgeeks.org/set-insert-function-in-c-stl/
https://www.geeksforgeeks.org/set-insert-function-in-c-stl/
https://www.geeksforgeeks.org/set-insert-function-in-c-stl/
https://www.geeksforgeeks.org/set-insert-function-in-c-stl/
https://www.geeksforgeeks.org/seterase-c-stl/
https://www.geeksforgeeks.org/seterase-c-stl/
https://www.geeksforgeeks.org/seterase-c-stl/
https://www.geeksforgeeks.org/seterase-c-stl/
https://www.geeksforgeeks.org/seterase-c-stl/
https://www.geeksforgeeks.org/setclear-c-stl/

• key_comp() / value_comp() – Returns the object

that determines how the elements in the set are

ordered (‘<‘ by default).

• find(const g) – Returns an iterator to the element

‘g’ in the set if found, else returns the iterator to

end.

• count(const g) – Returns 1 or 0 based on the

element ‘g’ is present in the set or not.

• lower_bound(const g) – Returns an iterator to

the first element that is equivalent to ‘g’ in the

set.

Reading assignment: Set in C++ Standard

Template Library (STL)

https://www.geeksforgeeks.org/setkey_comp-in-c-stl/
https://www.geeksforgeeks.org/setkey_comp-in-c-stl/
https://www.geeksforgeeks.org/set-value_comp-function-in-c-stl/
https://www.geeksforgeeks.org/set-value_comp-function-in-c-stl/
https://www.geeksforgeeks.org/set-find-function-in-c-stl/
https://www.geeksforgeeks.org/set-find-function-in-c-stl/
https://www.geeksforgeeks.org/set-find-function-in-c-stl/
https://www.geeksforgeeks.org/set-find-function-in-c-stl/
https://www.geeksforgeeks.org/set-count-function-in-c-stl/
https://www.geeksforgeeks.org/set-count-function-in-c-stl/
https://www.geeksforgeeks.org/set-count-function-in-c-stl/
https://www.geeksforgeeks.org/set-count-function-in-c-stl/
https://www.geeksforgeeks.org/set-lower_bound-function-in-c-stl/
https://www.geeksforgeeks.org/set-lower_bound-function-in-c-stl/
https://www.geeksforgeeks.org/set-lower_bound-function-in-c-stl/
https://www.geeksforgeeks.org/set-lower_bound-function-in-c-stl/
https://www.geeksforgeeks.org/set-lower_bound-function-in-c-stl/

• Input: 10 20 30 40 50

Output: lower_bound for element 30 at index 2

• Input: 10 20 30 40 50

Output: lower_bound for element 35 at index 3

• Input: 10 20 30 40 50

• Output: lower_bound for element 55 at index 5

(Basically, 55 is not present, so it returns end()

iterator)

Reading assignment: Set in C++ Standard

Template Library (STL)

• upper_bound(const g) – Returns an iterator to the

first element that will go after the element ‘g’ in

the set.

• equal_range()– The function returns an iterator of

pairs. (key_comp). The pair refers to the range

that includes all the elements in the container

which have a key equivalent to k.

• emplace()– This function is used to insert a new

element into the set container, only if the element

to be inserted is unique and does not already

exists in the set.

Reading assignment: Set in C++ Standard

Template Library (STL)

https://www.geeksforgeeks.org/set-upper_bound-function-in-c-stl/
https://www.geeksforgeeks.org/set-upper_bound-function-in-c-stl/
https://www.geeksforgeeks.org/set-upper_bound-function-in-c-stl/
https://www.geeksforgeeks.org/set-upper_bound-function-in-c-stl/
https://www.geeksforgeeks.org/set-upper_bound-function-in-c-stl/
https://www.geeksforgeeks.org/set-equal_range-function-in-c-stl/
https://www.geeksforgeeks.org/set-equal_range-function-in-c-stl/
https://www.geeksforgeeks.org/setemplace-c-stl/

• emplace_hint()– Returns an iterator pointing to the

position where the insertion is done. If the element

passed in the parameter already exists, then it returns an

iterator pointing to the position where the existing

element is.

• swap()– This function is used to exchange the contents

of two sets but the sets must be of same type, although

sizes may differ.

• operator= – The ‘=’ is an operator in C++ STL which

copies (or moves) a set to another set and set::operator=

is the corresponding operator function.

• get_allocator()– Returns the copy of the allocator object

associated with the set.

Reading assignment: Set in C++ Standard

Template Library (STL)

https://www.geeksforgeeks.org/set-emplace_hint-function-in-c-stl/
https://www.geeksforgeeks.org/set-emplace_hint-function-in-c-stl/
https://www.geeksforgeeks.org/setswap-c-stl/
https://www.geeksforgeeks.org/set-operator-in-c-stl/
https://www.geeksforgeeks.org/set-operator-in-c-stl/
https://www.geeksforgeeks.org/set-get_allocator-in-c-stl/
https://www.geeksforgeeks.org/set-get_allocator-in-c-stl/

Reading assignment

Refer: https://www.geeksforgeeks.org/set-in-

cpp-stl/

Disjoint sets and partitions

A1 and A2 are called disjoint partitions of A iff

• A1 U A2 = A
• A1 ∩ A2 = Φ

• E.g. A1={1,2,3,4,5} and A2= {2,4,6}, A3= {6,7}

and A= {1,2,3,4,5,6,7}

• A1 and A2 are not disjoint partitions of A

• A1 and A3 are disjoint partitions of A

Set partition using union- find operation

• Union: creates disjoint subsets

• Find: checks connectivity

Example
Example:

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

N = 10

Initially there are 10 subsets and each subset

has single element in it.

When each subset contains only single element, the

array Arr is:

Ref: https://www.hackerearth.com/practice/notes/disjoint-set-union-union-find/

Example

Perform the following operations on the set:

1) Union(2, 1)

2) Union(4, 3)

3) Union(8, 4)

4) Union(9, 3)

5) Union(6, 5)

6) Union(5, 2)

Find(6,1), find(8,9) find(7,1)

1) Union(2, 1)

Ref: https://www.hackerearth.com/practice/notes/disjoint-set-union-union-find/

2) Union(4, 3)

3) Union(8, 4)

4) Union(9, 3)

Ref: https://www.hackerearth.com/practice/notes/disjoint-set-union-union-find/

5) Union(6, 5)

5 subsets.
A1= {3, 4, 8, 9},
A2= {1, 2},
A3= {5, 6}
A4= {0}
A5 = {7}.
All these subsets are said to be Connected Components.

• Find (0, 7) = False as 0 and 7 are

disconnected

• Find (8, 9) = True as 8 and 9 are connected

directly or indirectly

Ref: https://www.hackerearth.com/practice/notes/disjoint-set-union-union-find/

6) Union(5, 2)

Ref: https://www.hackerearth.com/practice/notes/disjoint-set-union-union-find/

Applications of set partitioning

• Elections

• Divide and conquer

• Classification

• Pattern matching

• Mutually exclusive processes in OS

• Combinatorial explosion problem where

repetition is not allowed

Maps

24

Also known as:
table, search table, associative array, or associative

container

A data structure optimized for a very specific kind

of search / access
with a bag we access by asking "is X present"

with a list we access by asking "give me item number X"

with a queue we access by asking "give me the item

that has been in the collection the longest."

In a Map we access by asking "give me the value

associated with this key."

• A Map models a searchable collection of key-value
entries

• The main operations of a map are for searching,
inserting, and deleting items

• Multiple entries with the same key are not allowed
• Applications:

• address book
• student-record database

Maps

25

Maps
• A map allows to store elements so they can be

located quickly using keys.

• key as a unique identifier

• A map stores key-value pairs (k,v), called entries,

• each key is unique, so the association of keys to

values defines a mapping.

• E.g. In a map storing student records (such as the

student’s name, address, and course grades), the

key might be the student’s ID number.

• Sometimes referred to as associative stores or

associative containers, as the key associated with

an object determines its “location” in the data

structure

Maps

• Used where each key is to be viewed as a

kind of unique index address for its value,

that is,

• E.g. if we wish to store student records, we

would probably want to use student ID

objects as keys (and disallow two students

having the same student ID).

• In other words, the key associated with an

object can be viewed as an “address” for that

object.

Map ADT
• Value definition: Map is a collection of key value entries,

with each value associated with a distinct key.

• Assumption: map provides a special pointer object,

which permits us to reference entries of the map, called

position.

• Iterator references entries and navigate around the

map.

• Given a map iterator p, the associated entry may be

accessed by dereferencing the iterator, *p.

• The individual key and value can be accessed using p-

>key() and p->value(), respectively.

• Can be implemented using associative arrays

Map ADT

29

Example

30

Reading Assignment

https://www.geeksforgeeks.org/map-associative-

containers-the-c-standard-template-library-stl/

Some basic functions associated with Map:

begin() – Returns an iterator to the first element

in the map

end() – Returns an iterator to the theoretical

element that follows last element in the map

size() – Returns the number of elements in the

map

max_size() – Returns the maximum number of

elements that the map can hold

empty() – Returns whether the map is empty

https://www.geeksforgeeks.org/mapbegin-end-c-stl/
https://www.geeksforgeeks.org/mapbegin-end-c-stl/
https://www.geeksforgeeks.org/mapsize-c-stl/
https://www.geeksforgeeks.org/map-max_size-in-c-stl/
https://www.geeksforgeeks.org/map-max_size-in-c-stl/
https://www.geeksforgeeks.org/mapempty-c-stl/

pair insert(keyvalue, mapvalue) – Adds a new

element to the map

erase(iterator position) – Removes the element

at the position pointed by the iterator

erase(const g)– Removes the key value ‘g’ from

the map

clear() – Removes all the elements from the map

https://www.geeksforgeeks.org/map-insert-in-c-stl/
https://www.geeksforgeeks.org/map-insert-in-c-stl/
https://www.geeksforgeeks.org/map-insert-in-c-stl/
https://www.geeksforgeeks.org/map-insert-in-c-stl/
https://www.geeksforgeeks.org/map-insert-in-c-stl/
https://www.geeksforgeeks.org/map-erase-function-in-c-stl/
https://www.geeksforgeeks.org/map-erase-function-in-c-stl/
https://www.geeksforgeeks.org/map-erase-function-in-c-stl/
https://www.geeksforgeeks.org/map-erase-function-in-c-stl/
https://www.geeksforgeeks.org/map-erase-function-in-c-stl/
https://www.geeksforgeeks.org/mapclear-c-stl/

Map implementation

• Arrays

• A simple linked list of pairs

• Slow (O(n)),
• insufficient for general use.

• A hash table.

• This is generally very fast (roughly O(1)),
• Requires a good hash function for the key type.

• A binary search tree.

• Fast (O(lg n)).
• Unlike in a hash table, the keys will be ordered.

• A skip list.

A Simple List-Based Map

We can efficiently implement a map using an

unsorted list
We store the items of the map in a list S (based on

a doubly-linked list), in arbitrary order

header

entries

trailer nodes/positions

9 c 6 c 5 c 8 c

35

Hash-Based Map

implementation

36

• Hash Map uses a hash table as its internal

storage container.

• Keys stored based on hash codes and size of

hash tables internal array

Tree-Based Map

implementation

37

• Uses Height Balanced Binary Search Trees

• In java a Red - Black tree is used to implement

a Map

• Somewhat slower than the HashMap

Dictionary

38

• A dictionary allows for keys and values to be of any

object type.

• Unlike Map, a dictionary allows for multiple entries to

have the same key

• For example
• an English dictionary, which allows for multiple

definitions for the same word.

• we might want to store records for computer science
authors indexed by their first and last names.

• a multi-user computer game involving players visiting

various rooms in a large castle might need a

mapping from rooms to players. It is natural in this

application to allow users to be in the same room

simultaneously, however, to engage in battles.

Reading assignment:

Similarities and differences in set, map and

dictionary

The Dictionary ADT

40

Example

41

Dictionary Implementations

42

• Unordered list: In an unordered list, L, implementing a

dictionary, we can maintain the location variable of each

entry e to point to e’s position in the underlying linked list

for L.

• Hash table with separate chaining: Consider a hash

table, with bucket array A and hash function h, that uses

separate chaining for handling collisions. We use the

location variable of each entry e to point to e’s position in

the list L implementing the list A[h(k)].

• Ordered search table: In an ordered table, T,

implementing a dictionary, we should maintain the

location variable of each entry e to be e’s index in T.

Example

Problem statement:

Given names and phone numbers, assemble a

phone book that maps friends' names to their

respective phone numbers. You will then be given

an unknown number of names to query your phone

book for. For each query, print the associated entry

from your phone book on a new line in the

form name=phoneNumber; if an entry for is not

found, print Not found instead.

Example.. contd

Input Format

The first line contains an integer, , denoting the number of entries

in the phone book.

Each of the subsequent lines describes an entry in the form

of space-separated values on a single line. The first value is a

friend's name, and the second value is an -digit phone number.

After the lines of phone book entries, there are an unknown

number of lines of queries. Each line (query) contains a name to

look up, and you must continue reading lines until there is no more

input.

Output Format

On a new line for each query, print Not found if the name has no

corresponding entry in the phone book; otherwise, print the

full and in the format name=phoneNumber.

Solution?

• Sample dictionary entries?

• Sample queries?

• Output?

Example 2

You have a weather forecast data having temperature details of few
cities for few days for the year 2018

Build data structure to answer the following queries
•What is Temperature in Delhi on 9-11-2018

•What is max temperature recorded in Chennai in 2018

•Displaying the number of entries of 2018

•Deleting the entry of Mumbai on 9-11-2018

•Deleting all entries of Mumbai

City Date Temperature

Delhi 9-11-2018 45

Bangalore 9-11-2018 24

Ranchi 9-12-2018 28

Chennai 9-01-2018 38

