
Searching and Sorting

sushmakadge@somaiya.edu

Searching
 • Searching is a very common operation in most computer

applications.

• If we browse the Internet there is virtually no page where we
will not find a search button!

• The Google search -search facility helps Internet users.

• Windows operating systems also have search facility to find
files and folders.

Searching
 • Searching refers to finding the position of a value in a collection of values

• Two popular methods for searching the array elements:

 Linear search
Binary search

Linear Search
 • Linear search, also called as sequential search

• Very simple method

• Linear search is mostly used to search an unordered list of
elements (array in which data elements are not sorted).

• For example, if an array A[] is declared and initialized as,

• int A[] = {10, 8, 2, 7, 3, 4, 9, 1, 6, 5};

• Value to be searched is VAL = 7,

• Returns the position of its occurrence i.e. POS = 3

Algorithm for linear search

Linear Search
 • In Steps 1 and 2 of the algorithm, initialize the value of POS and I.

• In Step 3, a while loop is executed that would be executed till I is
less than N (total number of elements in the array).

• In Step 4, a check is made to see if a match is found between the
current array element and VAL.

• If a match is found, then the position of the array element is
printed, else the value of I is incremented to match the next
element with VAL. However, if all the array elements have been
compared with VAL and no match is found, then it means that VAL
present in the array.

Binary Search

 • Binary search is a searching algorithm that works efficiently with a
sorted list.

• Binary search can be better understood by an analogy of a
telephone directory.

• Take another analogy. How do we find words in a dictionary?

• The same mechanism is applied in the binary search.

• Divide and conquer

Binary Search

 • A[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; value to be searched is VAL = 9. The algorithm will
proceed in the following manner.

• BEG = 0, END = 10, MID = (0 + 10)/2 = 5

• Now, VAL = 9 and A[MID] = A[5] = 5, A[5] < VAL

• Search for the value in the 2nd half of the array. Change the values of BEG and MID.

• Now, BEG = MID + 1 = 6, END = 10, MID = (6 + 10)/2 =16/2 = 8

• VAL = 9 and A[MID] = A[8] = 8

• A[8] <VAL, therefore, we now search for the value in the second half of the segment.

• So, again we change the values of BEG and MID.

• Now, BEG = MID + 1 = 9, END = 10, MID = (9 + 10)/2 = 9

• Now, VAL = 9 and A[MID] = 9.

Binary Search

 • MID is calculated as (BEG + END)/2.

• Initially, BEG = lower_bound and END = upper_bound.

• The algorithm will terminate when A[MID] = VAL.

• When the algorithm ends, we will set POS = MID.

• POS is the position at which the value is present in the array.

• However, if VAL is not equal to A[MID], then the values of BEG,
END, and MID will be changed depending on whether VAL is
smaller or greater than A[MID].

Binary Search

 • If VAL < A[MID], then VAL will be present in the left segment of
the array. So, the value of END will be changed as END = MID – 1.

• If VAL > A[MID], then VAL will be present in the right segment of
the array. So, the value of BEG will be changed as BEG = MID + 1.

Binary Search

Sorting

 • Sorting means arranging the elements of an array so that they are placed in
some relevant order which may be either ascending or descending.

• If A is an array, then the elements of A are arranged in a sorted order
(ascending order) in such a way that A[0] < A[1] < A[2] < < A[N].

• For example, if we have an array that is declared and initialized as

• int A[] = {21, 34, 11, 9, 1, 0, 22};

• Then the sorted array (ascending order) can be given as:

• A[] = {0, 1, 9, 11, 21, 22, 34};

Sorting
• A sorting algorithm is defined as an algorithm that puts the elements of a

list in a certain order, which can be either numerical order, lexicographical
order, or any user-defined order.

• Efficient sorting algorithms are widely used to optimize the use of other
algorithms like search and merge algorithms which require sorted lists to
work correctly.

Sorting on Multiple Keys
• In real-world applications, to sort arrays of records multiple keys.

• Ex, big organization

• Telephone directories

• Library

• Customers’ address

Sorting
• Data records can be sorted based on a property. Such a component or

property is called a sort key.

• A sort key can be defined using two or more sort keys.

-The first key is called the primary sort key,

-The second is known as the secondary sort key, etc.

Sorting

Practical Considerations for Internal Sorting
• Records can be sorted either in ascending or descending order based on a

field often called as the sort key.

• The list of records can be either stored in a contiguous and randomly
accessible data structure (array) or may be stored in a dispersed and only
sequentially accessible data structure like a linked list.

• The logic to sort the records will be same and only the implementation
details will differ.

• When analysing the performance of different sorting algorithms, the
practical considerations would be the following:

• Number of sort key comparisons that will be performed

• Number of times the records in the list will be moved

• Best case performance

• Worst case performance

• Average case performance

• Stability of the sorting algorithm where stability means that equivalent
elements or records retain their relative positions even after sorting is done

Practical Considerations for Internal Sorting

• Bubble sort is a very simple method that sorts the array elements by
repeatedly moving the largest element to the highest index position of the
array segment (in case of arranging elements in ascending order).

• In bubble sorting, consecutive adjacent pairs of elements in the array are
compared with each other. If the element at the lower index is greater than
the element at the higher index, the two elements are interchanged so that
the element is placed before the bigger one. This process will continue till
the list of unsorted elements exhausts.

• This procedure of sorting is called bubble sorting because elements
‘bubble’ to the top of the list. Note that at the end of the first pass, the
largest element in the list will be placed at its proper position (i.e., at the
end of the list).

BUBBLE SORT

• The basic methodology of the working of bubble sort is given as follows:
• (a) In Pass 1, A[0] and A[1] are compared, then A[1] is compared with A[2], A[2]

is compared with A[3], and so on. Finally, A[N–2] is compared with A[N–1]. Pass 1
involves n–1 comparisons and places the biggest element at the highest index of
the array.

• (b) In Pass 2, A[0] and A[1] are compared, then A[1] is compared with A[2], A[2] is
compared with A[3], and so on. Finally, A[N–3] is compared with A[N–2]. Pass 2
involves n–2 comparisons and places the second biggest element at the second
highest index of the array.

• (c) In Pass 3, A[0] and A[1] are compared, then A[1] is compared with A[2], A[2] is
compared with A[3], and so on. Finally, A[N–4] is compared with A[N–3]. Pass 3
involves n–3 comparisons and places the third biggest element at the third
highest index of the array.

• (d) In Pass n–1, A[0] and A[1] are compared so that A[0]<A[1]. After this step, all
the elements of the array are arranged in ascending order.

Technique BUBBLE SORT

• To discuss bubble sort in detail, let us consider an array A[] that has the
following elements: A[] = {30, 52, 29, 87, 63, 27, 19, 54}

• Pass 1:

• 30, 29, 52, 87, 63, 27, 19, 54

• 30, 29, 52, 63, 87, 27, 19, 54

• 30, 29, 52, 63, 27, 87, 19, 54

• 30, 29, 52, 63, 27, 19, 87, 54

• 30, 29, 52, 63, 27, 19, 54, 87

• Observe that after the end of the first pass, the largest element is placed at
the highest index of the array. All the other elements are still unsorted.

Technique BUBBLE SORT

Compare 30 and 52; No swap
Compare 52 and 29 ; Swap
Compare 52 and 87; No swap
Compare 87 and 63 swap
Compare 87 and 27 swap
Compare 87 and 19 swap
Compare 87 and 54 swap

• To discuss bubble sort in detail, let us consider an array A[] that has the
following elements: A[] = {30, 52, 29, 87, 63, 27, 19, 54}

• Pass 1: 30, 29, 52, 63, 27, 19, 54, 87

• Pass 2:

• 29, 30, 52, 63, 27, 19, 54, 87

• 29, 30, 52, 27, 63, 19, 54, 87

• 29, 30, 52, 27, 19, 63, 54, 87

• 29, 30, 52, 27, 19, 54, 63, 87

• Observe that after the end of the second pass, the second largest element
is placed at the second highest index of the array. All the other elements
are still unsorted.

Technique BUBBLE SORT

Compare 30 and 29.
Compare 30 and 52
Compare 52 and 63
Compare 63 and 27.
Compare 63 and 19
Compare 63 and 54

• To discuss bubble sort in detail, let us consider an array A[] that has the
following elements: A[] = {30, 52, 29, 87, 63, 27, 19, 54}

• Pass 1: 30, 29, 52, 63, 27, 19, 54, 87

• Pass 2: 29, 30, 52, 27, 19, 54, 63, 87

• Pass 3: 29, 30, 27, 19, 52, 54, 63, 87

• Pass 4: 29, 27, 19, 30, 52, 54, 63, 87

• Pass 5: 27, 19, 29, 30, 52, 54, 63, 87

• Pass 6: 19, 27, 29, 30, 52, 54, 63, 87

Technique BUBBLE SORT

Algorithm for bubble sort

• Complexity of Bubble Sort

• The complexity of any sorting algorithm depends upon the number of
comparisons.

• In bubble sort, we have seen that there are N–1 passes in total.

• Therefore, the complexity of bubble sort algorithm is O(n2). It means the
time required to execute bubble sort is proportional to n2, where n is the
total number of elements in the array.

Bubble sort

• Insertion sort is a very simple sorting algorithm in which the sorted array
(or list) is built one element at a time.

• use it for ordering a deck of cards while playing bridge.

• The main idea behind insertion sort is that it inserts each item into its
proper place in the final list.

• To save memory, most implementations of the insertion sort algorithm
work by moving the current data element past the already sorted values
and repeatedly interchanging it with the preceding value until it is in its
correct place.

INSERTION SORT

• Insertion sort works as follows:

• The array of values to be sorted is divided into two sets. One that stores
sorted values and another that contains unsorted values.

• The sorting algorithm will proceed until there are elements in the unsorted
set.

• Suppose there are n elements in the array. Initially, the element with index
0 (assuming LB = 0) is in the sorted set. Rest of the elements are in the
unsorted set.

• The first element of the unsorted partition has array index 1 (if LB = 0).

• During each iteration of the algorithm, the first element in the unsorted set
is picked up and inserted into the correct position in the sorted set.

Technique INSERTION SORT

• Consider an array of integers given below. We will sort the values in the array using
insertion sort.

INSERTION SORT

Algorithm for insertion sort

• For insertion sort, the best case occurs when the array is already sorted

• In this case, the running time of the algorithm has a linear running time
(i.e., O(n)).

• Similarly, the worst case of the insertion sort algorithm occurs when the
array is sorted in the reverse order. In the worst case, the first element of
the unsorted set has to be compared with almost every element in sorted
set. Furthermore, every iteration of the inner loop will have to shift the
elements of the sorted set of the array before inserting the next element.

• Therefore, in the worst case, insertion sort has a quadratic running time
(i.e., O(n2)).

Complexity of Insertion Sort

• It is easy to implement and efficient to use on small sets of data.

• It can be efficiently implemented on data sets that are already substantially
sorted.

• It performs better than algorithms like selection sort and bubble sort.
Insertion sort algorithm is simpler than shell sort, with only a small trade-
off in efficiency.

• It is over twice as fast as the bubble sort and almost 40 per cent faster than
the selection sort.

• It requires less memory space (only O(1) of additional memory space).

• It is said to be online, as it can sort a list as and when it receives new
elements.

Advantages of Insertion Sort

 Counting sort

• Sorting is based on keys between a specific range.

• It works by counting the number of objects having distinct key values

• Followed by computation of position of each object in the output
sequence.

Counting sort

• Initialize count array of the size of input range

• Update the count array to store the count of each unique key.

• Further update the count array with cumulative additions of previous
counts

• Shift the count array to right by one position; no circular shift

• Initialize sort array of the size of input sequence.

Counting sort example
• i/p : 2 3 1 2 4 5 2 1 5 4

• N= 10, range: 1:5

Initialize count array of the size of input range
count array 0 1 2 3 4 5

0 0 0 0 0 0
Update the count array to store the count of each unique key.
count array 0 1 2 3 4 5

0 2 3 1 2 2

Further update the count array with cumulative additions of previous counts

count array 0 1 2 3 4 5
0 2 5 6 8 10

Shift the count array to right by one position; no circular shift

count array 0 1 2 3 4 5
0 0 2 5 6 8

Initialize sort array of the size of input sequence

Sort Array 0 1 2 3 4 5 6 7 8 9

i/p 2 3 1 2 4 5 2 1 5 4

count array 0 1 2 3 4 5
0 2 3 1 2 2

count array 0 1 2 3 4 5
0 0 2 5 6 8

Output Sorted
Array

0 1 2 3 4 5 6 7 8 9
1 1 2 2 2 3 4 4 5 5

• we discussed two search algorithms: linear search and binary search. Linear
search has a running time proportional to O(n), while binary search takes
time proportional to O(log n),where n is the number of elements in the
array.

• Binary search and binary search trees are efficient algorithms to search for
an element.

• But what if we want to perform the search operation in time proportional
to O(1)? In other words, is there a way to search an array in constant time,
irrespective of its size?

Hashing

• we can directly access the record of any employee, once we know his
Emp_ID, because the array index is the same as the Emp_ID number.

Hashing

Hashing

Let us assume that the same company uses a five-digit Emp_ID as the primary
key. Key values will range from 00000 to 99999. If we want to use the same
technique as above, we need an array of size 100,000, of which only 100

elements will be used. Waste so much storage space.

• 100 employees in the company.

• Good option is to use just the last two digits of the key to identify each
employee.

• For ex, the employee with Emp_ID 79439 will be stored in the element of
the array with index 39. Similarly, the employee with Emp_ID 12345 will
have his record stored in the array at the 45th location.

• In this case, we need a way to convert a five-digit key number to a two-digit
array index. We need a function which will do the transformation.

• In this case, we will use the term hash table for an array and the function
that will carry out the transformation will be called a hash function.

Hashing

• Hash table is a data structure in which keys are mapped to array positions
by a hash function.

• In the example discussed , we will use a hash function that extracts the last
two digits of the key.

• Therefore, we map the keys to array locations or array indices. A value
stored in a hash table can be searched in O(1) time by using a hash function

• In a hash table, an element with key k is stored at index h(k) and not k.

HASH TABLEs

• hash function which generates an address from the key (by producing the
index of the array where the value is stored).

• hash function h is used to calculate the index at which the element with key
k will be stored. This process of mapping the keys to appropriate locations
(or indices) in a hash table is called hashing.

• The main goal of using a hash function is to reduce the range of array
indices that have to be handled.

HASH Function

• Figure shows a direct correspondence between the keys and the indices of
the array. This concept is useful when the total universe of keys is small and
when most of the keys are actually used from the whole set of keys. This is
equivalent to our first example, where there are 100 keys for 100
employees.

Direct relationship between key and index in the array

• Figure shows a hash table in which each key from the set K is mapped to
locations generated by using a hash function.

• Note that keys k2 and k6 point to the same memory location. This is known
as collision. That is, when two or more keys map to the same memory
location, a collision is said to occur. Similarly, keys k5 and k7 also collide.

• The main goal of using a hash function is to reduce the range of array
indices that have to be handled. Thus, instead of having U values, we just
need K values, thereby reducing the amount of storage space required.

HASH Function

Relationship between keys and hash table index

• Hash is an important Data Structure which is designed to use a special
function called the Hash function which is used to map a given value with a
particular key for faster access of elements.

• The efficiency of mapping depends of the efficiency of the hash function
used.

• It is a technique whereby items are placed into a structure based on a key
to-address transformation.

Hashing

• A hash function is a mathematical formula which, when applied to a key,
produces an integer which can be used as an index for the key in the hash
table.

• The main aim of a hash function is that elements should be relatively,
randomly, and uniformly distributed.

• It produces a unique set of integers within some suitable range in order to
reduce the number of collisions.

• In practice, there is no hash function that eliminates collisions completely.

• A good hash function can only minimize the number of collisions by
spreading the elements uniformly throughout the array.

HASH Function

• Low cost The cost of executing a hash function must be small, so that using the
hashing technique becomes preferable over other approaches. For example, if
binary search algorithm can search an element from a sorted table of n items
with log2 n key comparisons, then the hash function must cost less than
performing log2 n key comparisons.

• Determinism A hash procedure must be deterministic. This means that the same
hash value must be generated for a given input value. However, this criteria
excludes hash functions that depend on external variable parameters (such as the
time of day) and on the memory address of the object being hashed (because
address of the object may change during processing).

• Uniformity A good hash function must map the keys as evenly as possible over its
output range. This means that the probability of generating every hash value in
the output range should roughly be the same. The property of uniformity also
minimizes the number of collisions.

Properties of a Good Hash Function

• Efficiently computable.

• Uniformity : Should uniformly distribute the keys (Each table position
equally likely for each key)

• Should generate unique addresses or addresses with minimum collision

• Low cost

• Determinism: the same hash value must be generated for a given input
value

Properties of a Good Hash Function

For storing record

 Key

 Generate array index

 Store the record on that array index

Hashing

For accessing record

 Key

 Generate array index

 Get the record from that array index

Hashing

Hash Table :-

• A hash table is a data structure that uses a random access data structure,
such as an array, and a mapping function, called a hash function, to allow
average constant time O(1) searches.

Hash Function :-

• A hash function is a mapping between a set of input values and a set of
integers, known as hash values.

• Denoted by H.

 H(K)->A

Hashing

1) Choosing a hash function which ensures minimum collision

2) Resolving collision

Hashing

• Easiest method

• A part of the key as address

• Can be rightmost or leftmost digit

Eg-

82394561, 87139465, 83567271, 85943228

Suppose table size is 100 then take the 2 rightmost digits for getting the
addresses.

Address will be 61, 65, 71 and 28

Truncation Method

• The mid-square method is a good hash function which works in two steps:

• Step 1: Square the value of the key. That is, find k2.

• Step 2: Extract the middle r digits of the result obtained in Step 1.

• In the mid-square method, the same r digits must be chosen from all the
keys.

• Therefore, the hash function can be given as:

• h(k) = s

• where s is obtained by selecting r digits from k2.

Mid Square Method

• Calculate the hash value for keys 1234 and 5642 using the mid-square
method. The hash table has 100 memory locations.

• Solution

• The hash table has 100 memory locations whose indices vary from 0 to 99.

• Only two digits are needed to map the key to a location in the hash table,
so r = 2.

• When k = 1234, k2 = 1522756, h (1234) = 27

• When k = 5642, k2 = 31832164, h (5642) = 21

• Observe that the 3rd and 4th digits starting from the right are chosen.

Mid Square Method

Eg- 1337 , 1273, 1391, 1026

Square=1787569, 1620529, 1934881, 1052676

Lets take 3rd, 4th digit from each number as address

Let the table size be 100

Address=75, 05,48, 26

Mid Square Method

• The folding method works in the following two steps:

• Step 1: Divide the key value into a number of parts. That is, divide k into
parts k1, k2, ..., kn, where each part has the same number of digits except
the last part which may have lesser digits than the other parts.

• Step 2: Add the individual parts. That is, obtain the sum of k1 + k2 + ... + kn.
The hash value is produced by ignoring the last carry, if any.

Folding Method

• Given a hash table of 100 locations, calculate the hash value using folding
method for keys 5678, 321, and 34567.

• Solution

• Since there are 100 memory locations to address, we will break the key into
parts where each part (except the last) will contain two digits. The hash
values can be obtained as shown below:

Folding Method

• Break the key into pieces, add them and get the hash address

• Truncate the higher digits of the number

Eg-Lets take some 8 bit address

82394561, 87139465, 83567271, 85943228

Chop them in pieces 3,2 and 3 digits and them

Address will be->

82394561 = 823+94+561 =1478

87139465= 871+39+465 =1375

83567271= 835+67+271 = 1173

85943228 =859+43+228=1130

Folding Method

Address will be->
H(82394561) = 478
H(87139465) = 375
H(83567271) = 173
H(85943228) = 130

• Perform Modulus operation, Remainder is address of hash table

• Ensure address will be in range of hash table

• Take table size as a prime number

• Let us take some keys: 82394561, 87139465, 83567271, 85943228

• Table size=97

Address=

82394561%97=45

87139465%%97=0

83567271%97=25

859432285%97=64

Modular Method

• Collisions occur when the hash function maps two different keys
to the same location. Obviously, two records cannot be stored in
the same location.

• Therefore, a method used to solve the problem of collision, also
called collision resolution technique, is applied.

• The two most popular methods of resolving collisions are:

• 1. Open addressing

• 2. Chaining

Hashing

• Once a collision takes place, open addressing or closed hashing computes new
positions using a probe sequence and the next record is stored in that position. In
this technique, all the values are stored in the hash table.

• Hash table contains two types of values: sentinel values (e.g., –1) & data values.

• The presence of a sentinel value indicates that the location contains no data
value at present but can be used to hold a value.

• When a key is mapped to a particular memory location, then the value it holds is
checked. If it contains a sentinel value, then the location is free and the data
value can be stored in it. However, if the location already has some data value
stored in it, then other slots are examined systematically in the forward direction
to find a free slot. If even a single free location is not found, then we have an
OVERFLOW condition.

• The process of examining memory locations in the hash table is called probing..

Open Addressing/ Closed Hashing

Open addressing technique can be implemented

• linear probing,

• quadratic probing,

• double hashing, and

• rehashing.

Open Addressing/ Closed Hashing

• The simplest approach to resolve a collision is linear probing.

• In this technique, if a value is already stored at a location
generated by h(k), then the following hash function is used to
resolve the collision:

• h(k, i) = [h’(k) + i] mod m

• Where m is the size of the hash table, h’(k) = (k mod m),

• i is the probe number that varies from 0 to m–1.

Linear probing

• First the location generated by [h’(k) mod m] is probed for the first time i=0.

• If the location is free, the value is stored in it, else the second probe
generates the address of the location given by [h’(k) + 1]mod m.

• Similarly, if the location is occupied, then subsequent probes generate the
address as

• [h’(k) + 2]mod m,

• [h’(k) + 3]mod m,

• [h’(k) + 4]mod m,

• [h’(k)+ 5]mod m, and so on, until a free location is found.

Linear probing

• Consider a hash table of size 10. Using linear probing, insert the keys 72,
27,36, 24, 63, 81, 92, and 101 into the table. m = 10

• Solution

• Initially, the hash table can be given as:

Linear probing

Linear probing

Linear probing

Linear probing

Linear probing

Linear probing

Linear probing

Linear probing

Linear probing

I = 2

I = 3

• Step 8 Key = 101

• h(101, 0) = (101 mod 10 + 0) mod 10

 = (1) mod 10

 = 1

• we cannot store the key 101 in T[1].

• The procedure will be repeated until the hash function generates the
address of location 8 which is vacant and can be used to store the value in
it.

Linear probing

• In this technique, if a value is already stored at a location
generated by h(k), then the following hash function is used to
resolve the collision:

• h(k, i) = [h’(k) + c1i + c2i2] mod m

• where m is the size of the hash table

• h’(k) = (k mod m), i is the probe number that varies from 0 to m–
1, and c1 and c2 are constants such that c1 and c2 ≠ 0.

Quadratic Probing

• Quadratic probing eliminates the primary clustering phenomenon of linear
probing because instead of doing a linear search, it does a quadratic search.

• For a given key k, first the location generated by h’(k) mod m is probed.

• If the location is free, the value is stored in it, else subsequent locations
probed are offset by factors that depend in a quadratic manner on the
probe number i.

• Although quadratic probing performs better than linear probing, in order to
maximize the utilization of the hash table, the values of c1, c2, and m need
to be constrained.

Quadratic Probing

• Consider a hash table of size 10. Using quadratic probing, insert the keys
72, 27, 36, 24, 63, 81, and 101 into the table. Take c1 = 1 and c2 = 3.

Quadratic Probing

Quadratic Probing

Quadratic Probing

Quadratic Probing

Quadratic Probing

Quadratic Probing

Double Hashing

• Double hashing uses one hash value and then repeatedly steps
forward an interval until an empty location is reached.

• The interval is decided using a second, independent hash function,
hence the name double hashing.

• In double hashing, we use two hash functions rather than a single
function. The hash function in the case of double hashing can be
given as:

• h(k, i) = [h1(k) + ih2(k)] mod m

• where m is the size of the hash table,

Double Hashing

• h1(k) and h2(k) are two hash functions given as

• h1(k) = k mod m

• h2(k) = k mod m',

• i is the probe number that varies from 0 to m–1

• m' is chosen to be less than m. We can choose m' = m–1 or m–2.

Double Hashing
• Consider a hash table of size = 10. Using double hashing, insert the

keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table.

• Take h1 = (k mod 10) and h2 = (k mod 8).

Double Hashing

Double Hashing

Double Hashing

Double Hashing

Double Hashing
• I = 2

Double Hashing

Double Hashing

• Therefore, try again for the next location with probe i = 2. Repeat
the entire process until a vacant location is found. You will see
that we have to probe many times to insert the key 101 in the
hash table.

• Although double hashing is a very efficient algorithm, it always
requires m to be a prime number. In our case m=10, which is not
a prime number, hence, the degradation in performance.

• Had m been equal to 11, the algorithm would have worked very
efficiently. Thus, we can say that the performance of the
technique is sensitive to the value of m.

Rehashing
• When the hash table becomes nearly full, the number of collisions

increases, thereby degrading the performance of insertion and
search operations. In such cases, a better option is to create a
new hash table with size double of the original hash table.

• All the entries in the original hash table will then have to be
moved to the new hash table. This is done by taking each entry,
computing its new hash value, and then inserting it in the new
hash table.

• Though rehashing seems to be a simple process, it is quite
expensive and must therefore not be done frequently.

Rehashing
• Consider the hash table of size 5 given below. The hash function used is h(x)

= x % 5. Rehash the entries into to a new hash table.

Collision Resolution by Chaining
• In chaining, each location in a hash table stores a pointer to a

linked list that contains all the key values that were hashed to that
location.

• Location l in the hash table points to the head of the linked list of
all the key values that hashed to l.

• If no key value hashes to l, then location l in the hash table
contains NULL.

Collision Resolution by Chaining
• Figure shows how the key values are mapped to a location in the hash

table and stored in a linked list that corresponds to that location.

Collision Resolution by Chaining
• Insert the keys 7, 24, 18, 52, 36, 54, 11, and 23 in a chained hash table of 9

memory locations. Use h(k) = k mod m.

• In this case, m=9.

• Initially, the hash table can be given as:

Collision Resolution by Chaining
•

Collision Resolution by Chaining

Collision Resolution by Chaining

Collision Resolution by Chaining

Collision Resolution by Chaining
 Let us consider a simple hash function as “key mod 7” and sequence of keys
as 50, 700, 76, 85, 92, 73, 101.

Collision Resolution by Chaining
 Let us consider a simple hash function as “key mod 7” and sequence of keys
as 50, 700, 76, 85, 92, 73, 101

Pros and Cons of Chaining
• The main advantage of using a chained hash table is that it remains

effective even when the number of key values to be stored is much higher
than the number of locations in the hash table.

• However, with the increase in the number of keys to be stored, the
performance of a chained hash table does degrade gradually (linearly).

• Example, a chained hash table with 1000 memory locations and 10,000
stored keys will give 5 to 10 times less performance as compared to a
chained hash table with 10,000 locations. But a chained hash table is still
1000 times faster than a simple hash table.

• The other advantage of using chaining for collision resolution is that its
performance, unlike quadratic probing, does not degrade when the table is
more than half full. This technique is absolutely free from clustering
problems and thus provides an efficient mechanism to handle collisions.

Collision Resolution by Chaining
 Pros and Cons

• However, chained hash tables inherit the disadvantages of linked lists. First,
to store a key value, the space overhead of the next pointer in each entry
can be significant. Second, traversing a linked list has poor cache
performance, making the processor cache ineffective.

Collision Resolution by Chaining

Advantage of Separate Chaining

1) Simple to implement.

2) Hash table never fills up, we can always add more elements to the
chain.

3) Less sensitive to the hash function or load factors.

4) It is mostly used when it is unknown how many and how frequently
keys may be inserted or deleted.

Collision Resolution by Chaining

Disadvantages of Separate Chaining

1) Cache performance of chaining is not good as keys are stored
using a linked list. Open addressing provides better cache
performance as everything is stored in the same table.

2) Wastage of Space (Some Parts of hash table are never used)

3) If the chain becomes long, then search time can become O(n) in
the worst case.

4) Uses extra space for links.

Collision Resolution by Chaining

Thank you

