
Queue

sushmakadge@somaiya.edu

swatimali@somaiya.edu

mailto:sushmakadge@somaiya.edu
mailto:swatimali@somaiya.edu

Queue

• People moving on an escalator. The people who got on
the escalator first will be the first one to step out of it.

• People waiting for a bus. The first person standing in the
line will be the first one to get into the bus.

• People standing outside the ticketing window of a
cinema hall. The first person in the line will get the ticket
first and thus will be the first one to move out of it.

• Luggage kept on conveyor belts. The bag which was
placed first will be the first to come out at the other end.

• Cars lined at a toll bridge. The first car to reach the
bridge will be the first to leave.

Queue

• First In First Out

• Elements are added at one end called

REAR and removed only from the other

end called FRONT

• Gives access only to two elements- one at

the front and one at the rear end

4

A Queue

• Definition:
– An ordered collection of homogenous data items
– Where elements are added at rear and removed from

the front end

• Operations:
– Create an empty queue
– check if it is empty and/or full
– Enqueue: add an element at the rear
– Dequeue: remove the element in front
– Destroy : remove all the elements one by one and

destroy the data structure

Exercise: Queue
–Enqueue(8) Front

8
Rear

–Enqueue(3) Front
8

3 Rear

–Dequeue() Front
3

Rear

–Enqueue (2) Front
3

2 Rear

–Enqueue(5) Front
3

2 5 Rear

–Dequeue() Front
2

5 Rear

–Dequeue() Front
5

Rear

–Enqueue(9) Front
5

9 Rear

–Enqueue(1) Front
5

9 1 Rear

Types of queues

• Simple queue- additions at rear and deletions from
front

• Circular queue- last node is connected to first
node, deletions at front end while insertions are
done at rear end

• Doubly ended queue- deletions and insertions can
be done at both the ends, has two pairs of fronts
and rears, both

• Priority queue- every element has predefined
priority
– Max priority : element with max priority is removed

first
– min priority: element with min priority is removed first

Simple Queue

Image courtesy: GeeksforGeeks.org

Circular Queue

Image courtesy: GeeksforGeeks.org

Doubly ended Queue

Image courtesy: GeeksforGeeks.org

Priority Queue

Index Front Rear

Data 10 5 3 98 12

Priority 5 4 3 2 1

Max Priority queue

ARRAY REPRESENTATION OF

QUEUEs

• Queues can be easily represented using linear arrays.
• point to the position from where deletions and

insertions can be done, resp.
• The array representation of a queue is

• FRONT = 0 and REAR = 5.

ARRAY REPRESENTATION
• Add another element with value 45

• REAR would be incremented by 1 and the value

 would be stored at the position pointed by REAR.

• The queue after addition would be as

• Here, FRONT = 0 and REAR = 6.

• Every time a new element has to be added, we
repeat the same procedure.

ARRAY REPRESENTATION
• Delete an element from the queue,

• The value of FRONT will be incremented.

• Deletions are done fromthis end of the queue.

• The queue after deletion will be

• Here, FRONT = 1 and REAR = 6.

Implementing Queues: Simple queue with Array

Queue

indices:
Front

Rear

Array

Index:
0 1 2 3 4 5 6 7 8 9

Data: 8

• Initally, front=rear=-1 (Empty queue)

• Enqueue(8), Enqueue(3), Dequeue(), Enqueue (2),

Enqueue(5), Dequeue(), Dequeue(), Enqueue(9),

Enqueue(1)

Implementing Queues: Simple queue with Array

Queue

indices:
Front Rear

Array

Index:
0 1 2 3 4 5 6 7 8 9

Data: 8 3

• Enqueue(8), Enqueue(3), Dequeue(), Enqueue (2),

Enqueue(5), Dequeue(), Dequeue(), Enqueue(9),

Enqueue(1)

Implementing Queues: Simple queue with Array

Queue

indices:
Front

Rear

Array

Index:
0 1 2 3 4 5 6 7 8 9

Data: 3

• Enqueue(8), Enqueue(3), Dequeue(), Enqueue (2),
Enqueue(5), Dequeue(), Dequeue(), Enqueue(9),

Enqueue(1)

Implementing Queues: Simple queue with Array

Queue

indices:
Front Rear

Array

Index:
0 1 2 3 4 5 6 7 8 9

Data: 3 2

• Enqueue(8), Enqueue(3), Dequeue(), Enqueue(2),
Enqueue(5), Dequeue(), Dequeue(), Enqueue(9),

Enqueue(1)

Implementing Queues: Simple queue with Array

Queue

indices:
Front Rear

Array

Index:
0 1 2 3 4 5 6 7 8 9

Data: 3 2 5

• Enqueue(8), Enqueue(3), Dequeue(), Enqueue(2),
Enqueue(5), Dequeue(), Dequeue(), Enqueue(9),

Enqueue(1)

Implementing Queues: Simple queue with Array

Queue

indices:
Front Rear

Array

Index:
0 1 2 3 4 5 6 7 8 9

Data: 2 5

• Enqueue(8), Enqueue(3), Dequeue(), Enqueue(2),

Enqueue(5), Dequeue(), Pop(), Enqueue(9),

Enqueue(1)

Implementing Queues: Simple queue with Array

Queue

indices:
Front

Rear

Array

Index:
0 1 2 3 4 5 6 7 8 9

Data: 5

• Enqueue(8), Enqueue(3), Dequeue(), Enqueue(2),

Enqueue(5), Dequeue(), Dequeue(), Enqueue(9),

Enqueue(1)

Implementing Queues: Simple queue with Array

Queue

indices:
Front Rear

Array

Index:
0 1 2 3 4 5 6 7 8 9

Data: 5 9

• Enqueue(8), Enqueue(3), Dequeue(), Enqueue(2),

Enqueue(5), Dequeue(), Dequeue(), Enqueue(9),

Enqueue(1)

Implementing Queues: Simple queue with Array

Queue

indices:
Front Rear

Array

Index:
0 1 2 3 4 5 6 7 8 9

Data: 5 9 1

• Enqueue(8), Enqueue(3), Dequeue(), Enqueue(2),

Enqueue(5), Dequeue(), Dequeue(), Enqueue(9),

Enqueue(1),

Implementing Queues: Simple queue with Array

Queue

indices:
Front

Rear

Array

Index:
0 1 2 3 4 5 6 7 8 9

Data: 1

• Enqueue(8), Enqueue(3), Dequeue(), Enqueue(2),

Enqueue(5), Dequeue(), Dequeue(), Enqueue(9),
Enqueue(1), Dequeue(), Dequeue(), Dequeue()

Implementing Queues: Simple queue with Array

Queue

indices:

Array

Index:
0 1 2 3 4 5 6 7 8 9

Data:

• Front=-1, Rear=-1

• Enqueue(8), Enqueue(3), Dequeue(), Enqueue(2),

Enqueue(5), Dequeue(), Dequeue(), Enqueue(9),

Enqueue(1), Dequeue(), Dequeue(), Dequeue()

Algorithm to insert an element

Queue : Array Implementation.
• #define MAX 10
• int queue[MAX];
• int front = -1, rear = -1;
• if(rear == MAX-1)
• printf(“\n OVERFLOW”);
• else if(front == -1 && rear == -1)
• front = rear = 0;
• else
• rear++;
• queue[rear] = num;

Algorithm to Delete an element

Queue : Array Implementation.
 if(front == -1 || front>rear)
{
printf(“\n UNDERFLOW”);
return -1;
}
else
{
val = queue[front];
front++;
}

LINKED REPRESENTATION OF QUEUEs

• The queue is a very small one or its maximum size is
known in advance, then the array implementation of
the queue gives an efficient implementation.

• But if the array size cannot be determined in
advance, the other alternative, i.e., the linked
representation is used.

• The storage requirement of linked representation of
a queue with n elements is O(n) and the typical time
requirement for operations is O(1).

LINKED REPRESENTATION OF QUEUEs

• In a linked queue, element has two parts, one that
stores the data and another that stores the address
of the next element.

• The START pointer of the linked list is used as FRONT.
Also use another pointer called REAR, which will
store the address of the last element in the queue.

• All insertions will be done at the rear end and all the
deletions will be done at the front end.

• If FRONT = REAR = NULL, then the queue is empty.

LINKED REPRESENTATION OF QUEUEs

Operations on Linked Queues

• Insert Operation

• Delete Operation

• Peek Operation

Algorithm to insert an element in a

linked queue

Implementation: linked queue

• struct queue *insert(struct queue *q,int val){

• struct node *ptr;

• ptr = (struct node*)malloc(sizeof(struct node));

• ptr -> data = val;

• if(q -> front == NULL){

• q -> front = ptr;

• q -> rear = ptr;

• q -> front -> next = q -> rear -> next = NULL;}

• else{

• q -> rear -> next = ptr;

• q -> rear = ptr;

• q -> rear -> next = NULL;}

• return q;

• }

Algorithm to delete an element in a

linked queue

Implementing Circular Queue

Implementing Queues: Simple queue with Array

Algorithm to insert an element in a

circular queue

Algorithm to delete an element in a

circular queue

 Circular Queue: Array Implementation

1. Enqueue
- Insertion in full queue

- Insertion in initially empty queue

- General case

2. Dequeue
-deletion from empty queue

-deleting the last remained value in the queue

- General case

 Circular Queue: Array Implementation

1. Algorithm QueueType CreateCQueue()

//This Algorithm returns an empty Queue

{ front =-1;

Rear=-1

Return queue;

}

 Circular Queue: Array Implementation
2. Algorithm QueueType CEnqueue(QueueType CQueue, ElementType
Element)

// This algorithm accepts a QueueType Queue and ElementType Element
as input and adds ‘Element’ at the rear of ‘Queue’. Front and rear are the
integer indices those point to the front and rear elements in the queue.
Array CQueue[0:Size-1] is an array that stores queue elements.

{

 if NotFull(CQueue)= True

 {if (rear == SIZE – 1 && front != 0)

 rear=0;

 else rear= rear+1;

 CQueue[rear]= Element // add the element at rear

 if (front==-1) then front =0; // insertion of first element

 }

 Else “Error Message”

}

 Circular Queue: Array Implementation

3. Algorithm ElementType Dequeue(QueueType CQueue)

// This algorithm accepts a queue as input and returns ‘Element’ at
the front of ‘queue’. Temp is a temporary variable used to hold the
value being deleted. Array CQueue[0:Size-1] is an array that stores
queue elements.

{ if NotEmpty(CQueue)= True

 {temp= CQueue[front];

 if (front==rear) then front=rear=-1; //deletion of last element

 else if (front==size-1) then front=0;//front was pointing last
 location

 Else front++; // general case

 return(temp)

 }

Else print “Error Message”

}

 Circular Queue: Array Implementation

4. Abstract DestroyQueue(QueueType CQueue)

//This algorithm returns all the elements from Queue in

FIFO order and destroys the data structure

{ if NotEmpty(CQueue) = true

 while(NotEmpty(CQueue))

 print Dequeue(CQueue)

 else print “Error Message”

}

 Circular Queue: Array Implementation
5. Abstract Boolean NotFull(QueueType CQueue)

// This algorithm returns true if the Queue is not full, false otherwise. Array
CQueue[0:Size-1] is an array that stores queue elements. Rear and front are the
indices those point to first and last element in circular queue, respectively.

{ if ((rear == SIZE-1 && front == 0) || (rear == front-1))
 return False

 else

 return True

}

6. Abstract Boolean NotEmpty(QueueType CQueue)

// This algorithm returns true if the Queue is not empty, false otherwise.

{ if (front != -1)

 return True

 else

 return False

}

Implementing Circular Queue: Linked List

Struct NodeType{

 ElementType Element;

 NodeType Next;

 }

1. Algorithm QueueType CreateQueue()

//This Algorithm creates and returns an empty Queue, pointed by two pointers-

front and rear

{ createNode(front);

createNode(rear);

Front=rear=NULL;

}

Front Rear

Implementing Queue: Linked List

2. QueueType Enqueue(QueueType CQueue, NodeType NewNode)
// This Algorithm adds a NewNode at the rear of ‘queue’. rear is a pointer that points to the last node in
the queue

{

 If(front==rear==NULL)
 Front=rear=newnode // insertion of first element

 rear->next=newnode //circular queue definition

 else //general case

 temp=front;
 while(temp!=rear) {

 temp=temp->next;

 temp->next = newnode;

 newnode->next = rear->next;

 rear=newnode;

 }//while

}//enqueue

Enqueue another algorithm

2. QueueType Enqueue(QueueType CQueue, NodeType
NewNode)
// This Algorithm adds a NewNode at the rear of ‘queue’. rear is a pointer that points
to the last node in the queue

{

 If(front==rear==NULL)
 Front=rear=newnode // insertion of first element

 rear->next=newnode //circular queue definition

 else //general case

 rear->next= newnode;

 rear=newnode;

 newnode->next=front;

}//enqueue

Implementing Queue: Linked List

3. Algorithm ElementType DeQueue(QueueType CQueue)

//This algorithm returns value of ElementType stored at the front of queue. Temp is
a temporary node used in the dequeuer process.

{ if (front==rear==NULL)

 Print “Underflow”

 exit;

 Else if (front==rear)

 { temp= front;

 front=rear=NULL;

 return(temp->data);

 }

Else {

 temp=front;

 front=front->next;

 rear->next= front;

 return(temp->data);

 }

}//Dequeue

Implementing Stacks: Linked List

4. Abstract DestroyQueue(QueueType CQueue)

//This algorithm returns values stored in data structure and free the memory used in data
structure implementation.

{ if front==NULL

 Print “Underflow”

 exit;

 Else { createNode(Temp);

 while(NotEmpty(CQueue))

 {

 return(Dequeue(CQueue));

 }

 }//else

}

Implementing Queue: Linked List
6. Abstract DisplayQueue(QueueType Queue)

//This algorithm Prints all the Elements stored
in stack. Temp purpose?

{ if front==NULL

 Print “Error Message”

 Else {

Student Assignment

}

 Priority Queues

• A priority queue is a data structure in which each element is
assigned a priority.

• The priority of the element will be used to determine the
order in which the elements will be processed.

• The general rules of processing the elements of a priority
queue are

 - An element with higher priority is processed before an
 element with a lower priority.

 -Two elements with the same priority are processed on a
 first-come-first-served (FCFS) basis.

 Priority Queues

• A priority queue can be thought of as a modified queue in which
when an element has to be removed from the queue, the one with
the highest-priority is retrieved first.

• The priority of the element can be set based on various factors.
• Widely used in operating systems to execute the highest priority

process first.
• The priority of the process may be set based on the CPU time it

requires to get executed completely.
• For eg, 3 processes, 1st process needs 5 ns to complete, the second

process needs 4 ns, and the third process needs 7 ns,
• Then the second process will have the highest priority and will thus

be the first to be executed.
• However, CPU time is not the only factor that determines the

priority, rather it is just one among several factors.

 Priority Queues

• Another factor is the importance of one
process over another. In case we have to run
two processes at the same time, where one
process is concerned with online order
booking and the second with printing of stock
details, then obviously the online booking is
more important and must be executed first.

 Implementation Priority Queues

• Two ways to implement a priority queue.
• We can either use a sorted list to store the elements so that when

an element has to be taken out, the queue will not have to be
searched for the element with the highest priority

• or we can use an unsorted list so that insertions are always done at
the end of the list. Every time when an element has to be removed
from the list, the element with the highest priority will be searched
and removed.

• While a sorted list takes O(n) time to insert an element in the list, it
takes only O(1) time to delete an element.

• On the contrary, an unsorted list will take O(1) time to insert an
element and O(n) time to delete an element from the list.

Representation of a Priority Queue

• In the computer memory, a priority queue can be
represented using arrays or linked lists.

• When a priority queue is implemented using a linked
list, then every node of the list will have three parts:

• (a) the information or data part,

• (b) the priority number of the element, and

• (c) the address of the next element.

• If we are using a sorted linked list, then the element
with the higher priority will precede the element with
the lower priority.

 Representation of a Priority Queue

Lower priority number means higher priority.
For example, if there are two elements A and B,
where A has a priority number 1 and B has a
priority number 5, then A will be processed
before B as it has higher priority than B.

Representation of a Priority Queue

• Insertion

• Priority queue after insertion of a new node

 Representation of a Priority Queue

• Deletion

 Deletion is a very simple process in this case. The first node

 of the list will be deleted and the data of that node will be

 processed first.

 Array Representation of a Priority Queue

• When arrays are used to implement a priority queue, then a
separate queue for each priority number is maintained.

• Each of these queues will be implemented using circular
arrays or circular queues.

• Every individual queue will have its own FRONT and REAR
pointers.

• We use a two-dimensional array for this purpose where each
queue will be allocated the same amount of space.

 Array Representation of a Priority Queue

 Array Representation of a Priority Queue

• Insertion To insert a new element with priority K in the
priority queue, add the element at the rear end of row K,
where K is the row number as well as the priority number of
that element.

• For example, if we have to insert an element R with priority
number 3, then the priority queue will be given

 Array Representation of a Priority Queue

• Deletion To delete an element, we find the first nonempty
queue and then process the front element of the first non-
empty queue. In our priority queue, the first non-empty
queue is the one with priority number 1 and the front
element is A, so A will be deleted and processed first.

• In technical terms, find the element with the smallest K, such
that FRONT[K] != NULL.

 Priority Queue: Array Implementation

1. Enqueue
- Insertion in full queue

- Insertion in initially empty queue

- General case

2. Dequeue
-deletion from empty queue

-deleting the last remained value in the queue

- General case

 Priority Queue: Array Implementation

Struct PriQueue{ int data;

 int priority

 };

Struct PriQueue PQ[MaxSize];

1. Algorithm QueueType CreatePQueue()

//This Algorithm returns an empty Queue

{ front =-1;

Rear=-1

}

 Priority Queue: Array Implementation
2. Algorithm QueueType PEnqueue(QueueType PQueue, ElementType Element, int p)

// This algorithm accepts a QueueType Pqueue, ElementType Element and its associated priority ‘p’ as input and adds ‘Element’
at the rear of ‘Queue’. Front and rear are the integer indices those point to the front and rear elements in the queue. Array
PQueue[0:MaxSize-1] is an array that stores queue elements.

{

 if(rear==MaxSize-1) then overflow; exit; //PQueue is full

else if (front==rear==-1) // inserting first element

 { front=rear=0;

 PQ[0].data= element;

 PQ[0].priority = p;

 }

}else if { rear++// increment rear to accommodate new element

 PQ[rear].data=element;

 PQ[rear].priority=p;

 //find a proper place for new element as per its priority using insertion sort logic

 key=PQ[rear]

 j=rear-1;

 while(j>=0 && PQ[j].priority < key.priority)

 { PQ[j+1]=PQ[j];

 j--;

 }

 PQ[j+1]= key; //assign both data value and priority
}

Priority Queue: Array Implementation

3. Algorithm ElementType Dequeue(QueueType PQueue)

// This algorithm accepts a queue as input and returns ‘Element’ at the
front of ‘queue’. Temp is a temporary variable used to hold the value being
deleted. Array CQueue[0:Size] is an array that stores queue elements.

{ if (front=-1) then underflow; exit; // deleting from empty data structure?

 if(front==rear) { // only element in PQueue

 temp=PQ[front] ;

 front=rear=-1;

 }//if

 else { // General case

 temp=PQque[front]

 front++;

 }//else

return(temp)

}

 Priority Queue: Array Implementation

4. Abstract DestroyQueue(QueueType PQueue)

//This algorithm returns all the elements from Queue in

FIFO order and destroys the data structure

{ if NotEmpty(PQueue) = true

 while(NotEmpty(PQueue))

 print Dequeue(PQueue)

 else print “Error Message”

}

Priority Queue: Array Implementation

5. Abstract Boolean NotFull(QueueType PQueue)

Student assignment

6. Abstract Boolean NotEmpty(QueueType PQueue)

Student assignment

Implementing Priority: Linked List

Struct NodeType{

 ElementType Element;

 integer priority;

 NodeType Next;

 }

1. Algorithm QueueType CreateQueue()

//This Algorithm creates and returns an empty Queue, pointed by two pointers-

front and rear

{ createNode(front);

createNode(rear);

Front=rear=NULL;

}

Front Rear

Implementing Priority Queue: Linked List

2. QueueType Enqueue(QueueType PQueue, NodeType NewNode, int p)
// This Algorithm adds a NewNode at the rear of ‘queue’. rear is a pointer that points to the last node in the queue

{ if(rear==Null) //if inserting first element?

 front=rear=NewNode;

 else if(front.priority > NewNode->priority) //insertion before the first node

 { NewNode->next= front;

 front= NewNode;

 }

 else { temp = front; current=NULL;

 while(temp->priority<=NewNode->priority && temp->next!=Null)

 current=temp; temp=temp->next;

 if(temp->priority > NewNode->Priority) //insertion in between

 Newnode->next= temp;

 current-> next= NewNode;

 if(temp->next==NULL) // insertion after rear

 temp->next=NewNode;

 rear=NewNode;

 }

}//enqueue

Implementing Priority Queue: Linked List
3. Algorithm ElementType DeQueue(QueueType PQueue)

//This algorithm returns value of ElementType stored at the front of queue. Temp is
a temporary node used in the dequeuer process.

{ if (front==NULL)

 Print “Underflow”

 exit;

 Else if (front==rear) // deleting the last remaining node in the PQueue

 { temp= front;

 front=rear=NULL;

 return(temp->data);

 }

Else // general case

 {

 temp=front;

 front=front->next;

 return(temp->data);

 }

}//Dequeue

Implementing Dqueue: Linked List

4. Abstract DestroyQueue(QueueType PQueue)

//This algorithm returns values stored in data structure and free the memory used in data
structure implementation.

{ if (front==NULL)

 Print “Underflow”

 exit;

 Else { createNode(Temp);

 while(NotEmpty(PQueue))

 {

 return(Dequeue(PQueue));

 }

 }//else

}

Implementing Queue: Linked List
6. Abstract DisplayQueue(QueueType DQueue)

//This algorithm Prints all the Elements stored
in stack. Temp purpose?

{ if front==NULL

 Print “Error Message”

 Else {

Student Assignment

}

Doubly ended queue(Deque)

 • A deque is pronounced as ‘deck’ or ‘dequeue’
is a list in which the elements can be inserted
or deleted at either end.

• Definition: queue has two pairs of fronts

and rears on either end.

Doubly ended queue(Deque)

• Also known as a head-tail linked list because elements can be
added to or removed from either the front (head) or the back
(tail) end.

• However, no element can be added and deleted from the
middle.

• In the computer’s memory, a deque is implemented using
either a circular array or a circular doubly linked list.

• In a deque, two pointers are maintained, LEFT and RIGHT,
which point to either end of the deque.

• The elements in a deque extend from the LEFT end to the
RIGHT end and since it is circular, Dequeue[N–1] is followed
by Dequeue[0].

Doubly ended queue(Deque)

• There are two variants of a double-ended queue. They include

• Input restricted deque

In this dequeue, insertions can be done only at one of the
ends, while deletions can be done from both ends.

• Output restricted deque

In this dequeue, deletions can be done only at one of the
ends, while insertions can be done on both ends.

 Input restricted deque

 • 1.Insert at right

• 2.Delete from left

• 3.Delete from right

 Input restricted deque

 • Insert at right
• void insert_right()
• {
• int val;
• printf("\n Enter the value to be added:");
• scanf("%d", &val);
• if((left == 0 && right == MAX–1) || (left == right+1))
• {
• printf("\n OVERFLOW");
• return;
• }
• if (left == –1) /* if queue is initially empty */
• {
• left = 0;
• right = 0;
• }
• else
• {
• if(right == MAX–1) /*right is at last position of queue */
• right = 0;
• else
• right = right+1;
• }
• deque[right] = val ;
• }

 Output restricted deque

 • 1.Insert at right

• 2.Insert at left

• 3.Delete from left

 DQue: Array Implementation

1. Algorithm QueueType CreateDQueue()

//This Algorithm returns an empty Queue

{ front1 =-1;

Rear1=-1;

Front2=-1;

Rear2=-1;

Return dqueue;

}

 DQue: Array Implementation
2. Algorithm QueueType DEnqueue(QueueType DQueue, ElementType Element, int end)

// This algorithm accepts a QueueType DQueue and ElementType Element as input and adds
‘Element’ at the rear of ‘Queue’. Front and rear are the integer indices those point to the front
and rear elements in the queue. Array DQueue[0:Size-1] is an array that stores queue
elements. The integer variable end defines where the element is to be added; 1=right end and
2=left end.

{

 if(end==2 && rear2==0) then LeftEnd=Full; exit;

 if(end==1 && rear1==maxsize-1) then RightEnd=Full; exit;

 if(rear1=-1) //insertion of first element

 { front1=front2=rear1=rear2=MaxSize/2; //set indices in such a way that queue has
scope to grow in both directions

 deque[rear1]=element;

 }

 else if(end==1) //insertion in right end using rear1, general case

 deque[rear1++]=element

 front2=rear2

 else if(end==2)) //insertion in left end using rear2, general case

 deque[rear2--]=element;

 front1=rear2

}

 Dque Queue: Array Implementation
3. Algorithm ElementType Dequeue(QueueType Dqueue, int end)

// This algorithm accepts a queue as input and returns ‘Element’ at the front of ‘queue’. Temp is a
temporary variable used to hold the value being deleted. Array CQueue[0:Size] is an array that
stores queue elements. The integer variable end defines from where the element is to be deleted;
1=left end and 2=right end

{ if (front1==-1) then underflow; exit; // deleting from empty data structure?

 if(front1==front2==rear1==rear2) { // only element in deque

 temp=Deque[front1]

 front1=front2=rear1=rear2=-1

 }//if

 else if(end==1) { // deletion in left end with front1?

 temp=Deque[front1]

 front1++; rear2++;

 }//else if

 else if(end==2) { // deletion in right end with front2?

 temp=temp=Deque[front2]

 front2--; rea1--;

 } //else if

 return(temp)

}

 Deque Queue: Array Implementation

4. Abstract DestroyQueue(QueueType DQueue)

//This algorithm returns all the elements from Queue in

FIFO order and destroys the data structure

{ if NotEmpty(DQueue) = true

 while(NotEmpty(DQueue))

 print Dequeue(DQueue)

 else print “Error Message”

}

 Deque Queue: Array Implementation

5. Abstract Boolean NotFull(QueueType CQueue)

Student assignment

6. Abstract Boolean NotEmpty(QueueType CQueue)

Student assignment

Implementing Deque: Linked List

Struct NodeType{

 ElementType Element;

 NodeType Next;

 }

1. Algorithm QueueType CreateQueue()

//This Algorithm creates and returns an empty Queue, pointed by two pointers-
front and rear

{ createNode(front1);

createNode(rear1);

 createNode(front2);

createNode(rear2);

Front1=rear1=front2=rear2=NULL;

}

Front Rear

Implementing DQue: Linked List
2. QueueType Enqueue(QueueType CQueue, NodeType NewNode, int end)
// This Algorithm adds a NewNode at the rear of ‘queue’. rear is a pointer that points to the last node in the
queue

{ if(rear1==Null) //if inserting first element?

 front1=rear1=front2=rear2=NewNode;

 else if(end==1)

 { rear1->next= NewNode;

 front2= NewNode;

 rear1= NewNode;

 }

 else if(end==2)

 { NewNode->next= rear2;

 rear2=NewNode;

 front1=NewNode;

 }

}//enqueue

Implementing DQue: Linked List
3. Algorithm ElementType DeQueue(QueueType Dqueue, int end)
//This algorithm returns value of ElementType stored at the front of queue. Temp is a temporary node used in the dequeuer
process.

{ if (front1==NULL)

 Print “Underflow”

 exit;

 Else if (front1==rear1) //last node in the data structure

 { temp= front1;

 front1=rear1=front2=rear2=NULL;

 return(temp->data);

 }

Else if (end==1) //deleting the left end element at front1

 {

 temp=front1;

 front1=front1->next;

 rear2= front1; or rear2= rear2->next;

 return(temp->data);

 }

Else if (end==2) //deleting the right end element at front2

 { temp=front2;

 temp2=front1;

 while(temp2->next!=front2)

 temp2=temp2->next; //While loop

 rear1= temp2;

 front2= temp2;

 rear1->next = NULL

 return(temp->data);

 }

}//Dequeue

Implementing Dqueue: Linked List

4. Abstract DestroyQueue(QueueType DQueue)

//This algorithm returns values stored in data structure and free the memory used in data
structure implementation.

{ if (front1==NULL)

 Print “Underflow”

 exit;

 Else { createNode(Temp);

 while(NotEmpty(Dqueue))

 {

 return(Dequeue(Dqueue,1));

 }

 }//else

}

Implementing Queue: Linked List
6. Abstract DisplayQueue(QueueType DQueue)

//This algorithm Prints all the Elements stored
in stack. Temp purpose?

{ if front==NULL

 Print “Error Message”

 Else {

Student Assignment

}

 APPLICATIONs OF QUEUES

 • As waiting lists for a single shared resource like printer, disk, CPU.

• To transfer data asynchronously between two processes.

• As buffers on MP3 players and portable CD players, iPod playlist.

• Playlist for jukebox to add songs to the end, play from the front of
the list.

• Operating system for handling interrupts. When programming a
real-time system that can be interrupted, for example, by a mouse
click, it is necessary to process the interrupts immediately, before
proceeding with the current job.

• If the interrupts have to be handled in the order of arrival, then a
FIFO queue is the appropriate data structure.

Joseph’s Problem

• Let us see how queues can be used for finding a
solution to the Josephus problem.

• In Josephus problem, n people stand in a circle waiting
to be executed.

• The counting starts at some point in the circle and
proceeds in a specific direction around the circle.

• In each step, a certain number of people are skipped
and the next person is executed (or eliminated).

• The elimination of people makes the circle smaller and
smaller. At the last step, only one person remains who
is declared the ‘winner’.

Joseph’s Problem

• If there are n number of people and a number k
which indicates that k–1 people are skipped and
kth person in the circle is eliminated. K=2

• Try the same process with n = 7 and k =3.

• The elimination goes in the sequence of 3, 6, 2, 7,
5 and 1.

Joseph’s Problem

• Given the people = {Arya, Jon, Robb, Catelyn,
Rose, Bran, Tyrion, Cersei, Sansa, Brienne}

 k=4, Figure out name of the surviving person
assuming that they are standing in the same
sequence as given in the set. Show the solution
step by step.

The Queue ADT: Value definition
Abstract typedef QueueType(ElementType

ele)

Condition: none

 Queue ADT: Operator definition

1. Abstract QueueType CreateQueue()

Precondition: none

Postcondition: Empty Queue is created

2. Abstract QueueType Enqueue(QueueType Queue,

ElementType Element)

Precondition: Queue not full or NotFull(Queue)= True

Postcondition: Queue = Queue’ + Element at the rear

Or Queue = original queue with new Element at the rear

 Queue ADT: Operator definition
3. Abstract ElementType dequeue(QueueType Queue)

Precondition: Queue not empty or NotEmpty(Queue)= True

Postcondition: Dequeue= element at the front

Queue= Queue - Element at the front

Or Queue = original queue with front element deleted

4. Abstract DestroyQueue(QueueType Queue)

Precondition: Queue not empty or NotEmpty(Queue)= True

Postcondition: Element from the Queue are removed one
by one starting from front to rear.

 NotEmpty(Queue)= False

 Queue ADT: Operator definition

5. Abstract Boolean NotFull(QueueType Queue)

Precondition: none

Postcondition: NotFull(Queue)= true if Queue is not full

 NotFull(Queue)= False if Queue is full.

6. Abstract Boolean NotEmpty(QueueType Queue)

Precondition: none

Postcondition: NotEmpty(Queue)= true if queue is not

empty

 NotEmpty(Queue)= False if Queue is empty.

Thank you!

