MultiwayTrees

sushmakadge@somaiya.edu

IIIIIIIIIIIIIIIIIII

@ SOMAIYA

Vg il K J Somaiya College of Engineering TRUST

#3% SOMAIYA .

[0 5 VIDYAVIHAR UNIVERSITY
2 S

,56/ @4\ s > s o
Ya \ioy K J Somaiya College of Engineering u I n e

* Tree — concept

« General tree

e Types of trees

« Binary tree: representation, operation

* Binary tree traversal

« Binary search tree

« BST- The data structure and implementation
 Threaded binary trees.

e Search Trees —
— AVL tree, Multiway Search Tree, B Tree, B+ Tree, and Trie,

* Applications/Case study of trees.
e Summary

ueries?

TRUST

7% SOMAIYA B

® 5 VIDYAVIHAR UNIVERSITY

3

%/J'/a \/\d\P;\\ K J Somaiya Coll f i i O tI °
ya College of Engineering u In e

* Multiway Trees — concept
* B trees

* B+ trees (Introduction)

» Applications of trees
 Summary

* Queries?

Sowasge

TRUST

Structure of a binary search tree node

* Every node in a binary search tree contains one value and two
pointers, left and right, which point to the node’s left and right sub-
trees, respectively.

Pointerto | Value or Key Pointer to
left sub-tree of the node | right sub-tree

* Binary search tree M = 2, so it has one value and two sub-trees.

* In other words, every internal node of an M-way search tree

consists of pointers to M sub-trees and contains M — 1 keys, where
M > 2.

r SOMAIYA Somase

& VIDYAVIHAR UNIVERSITY
S

(2}

C
£ S
“a \i % K J Somaiya College of Engineering T RU S T

Multiway Tree Definition

* A multiway tree of order m (or an m-way tree) is one in which a tree can
have m children.

* Nodes in an m-way tree will be made up of key fields, and pointers to
children. The structure of an M-way search tree node is shown in Fig.

Py Ko Py Ky P Ky [eevens Ph-1 Kn-1 Py

* PO, P1, P2, ..., Pn are pointers to the node’s sub-trees and KO, K1, K2, ...,
Kn—1are the key values of the node. i.e. Ki < Ki+1.

* All the key values are stored in ascending order.

&5 VIDYAVIHAR UNIVERSITY

@‘% SOMAIYA

2]
o]
A, (S

Yavel KJ Somaiya College of Engineering T RU S T

Multiway Tree

* In an M-way search tree, it is not compulsory that every node has exactly
M-1 values and M subtrees.

* The node can have anywhere from 1 to M-1 values, and the number of
sub-trees can vary from O (for a leaf node) to i + 1, where i is the number
of key values in the node.

* M is thus a fixed upper limit that defines how many key values can be
stored in the node

&5 VIDYAVIHAR UNIVERSITY

f“r% SOMAIYA

2]
o]
N §

Yavie® KJ Somaiya College of Engineering T RU S T

Multiway Tree

* Consider the M-way search tree shown in Fig. where, M = 3. So a node
can store a maximum of two key values and can contain pointers to three
sub-trees.

* In our example, we have taken a very small value of M so that the concept
becomes easier, but in practice, M is usually very large.

e Using a 3-way search tree, let us lay down some of the basic properties of
an M-way search tree.

o[18]e[45] e
ololel11]e] [e[27]e[6]e]| [e]54]@63]e
£SOMAIYA o[20[e[30]e]| [e]72[e][s1]e

Ya\vio¥? K J Somaiya College of Engineering TRUST

k: key

Keys < ki

é‘“ + SOMAIYA

&5 VIDYAVIHAR UNIVERSITY

Vd\l K J Somaiya College of Engineering

Multiway Tree

ko

AA

k1 Keys < ko

ko Keys < k3

Keys ki

Sowaspe

TRUST

4qway Tree

-1 50 |;] 100 | 150 |

I 35 45 I | 85 95 I J 125 135' 175

#3» SOMAIYA

&5 VIDYAVIHAR UNIVERSITY
§

3 \
“avie¥® K J Somaiya College of Engineering TRUST

Basic properties of an M-way search tree

* Note that the key values in the sub-tree pointed by PO are less than the key value KO.

e Similarly, all the key values in the sub-tree pointed by P1 are less than K1, so on and so
forth.

* Thus, the generalized rule is that all the key values in the sub-tree pointed by Pi are
less than Ki, where 0 <i< n-1.

* Note that the key values in the sub-tree pointed by P1 are greater than the key value
KO.

* Similarly, all the key values in the sub-tree pointed by P2 are greater than K1, so on
and so forth.

* Thus, the generalized rule is that all the key values in the sub-tree pointed by Pi are
greater than Ki—1, where 0 <i < n—1.

* In an M-way search tree, every sub-tree is also an M-way search tree and follows the
same rules.

.e\vsge o ll“’s,
s SOMAIYA 0,,;.,.1 6o
@ % VIDYAVIHAR UNIVERSITY
<

@ , D
YaveP KJ Somaiya College of Engineering TRUST

B Tree

* B tree is a specialized M-way tree.

* B tree of order m can have a maximum of m—1 keys and m pointers to its
sub-trees.

 Storing a large number of keys in a single node keeps the height of the
tree relatively small.

* B tree is designed to store sorted data and allows search, insertion, and
deletion operations to be performed.

* B tree of order m (the maximum number of children that each node can
have) is a tree with all the properties of an M-way search tree.

ote o Y,
75 SOMAIYA Qi
@ s VIDYAVIHAR UNIVERSITY M

Yavie® KJ Somaiya College of Engineering TRUST

B Tree properties

1. Every node in the B tree has at most (maximum) m children.

2. Every node in the B tree except the root node and leaf nodes has at least
(minimum) m/2 children. This condition helps to keep the tree bushy so
that the path from the root node to the leaf is very short, even in a tree
that stores a lot of data.

3. The root node has at least two children if it is not a terminal (leaf) node.

4. All leaf nodes are at the same level.

* An internal node in the B tree can have n number of children, where 0 < n
< m. It is not necessary that every node has the same number of children,
but the only restriction is that the node should have at least m/2 children.

g L7

@‘% SOMAIYA Caazyer
(0] &5 VIDYAVIHAR UNIVERSITY BI'JL I

%,

§
Yavel KJ Somaiya College of Engineering TRUST

B Tree of order 4

o am

o - W

e27|8||830 @310 J0|@||@d6| @ 47|10 | 04|00 0\610 | |067|0720

-
&
-

/ - \

35 65 130 180
é“‘i% SOMAIYA S G
Q éﬁ IIIIIIIIIIIIIIIIIIII
%’J’/a v KJ Somaiya College of Engineering TRUST

Searching for an Element in a B Tree

e Searching for an element in a B tree is similar to that in binary search trees.
Consider the B tree given in Fig. To search for 59, we begin at the root node.

* The root node has a value 45 which is less than 59. So, we traverse in the right
sub-tree. The right sub-tree of the root node has two key values, 49 and 63.
Since 49 < 59 <63, we traverse the right sub-tree of 49, that is, the left sub-
tree of 63. This sub-tree has three values, 54, 59, and 61. On finding the value
59, the search is successful.

* Take another example. If you want to search for 9, then we traverse the left
sub-tree of the root node. The left sub-tree has two key values, 29 and 32.
Again, we traverse the left sub-tree of 29. We find that it has two key values, 18
and 27. There is no left sub-tree of 18, hence the value 9 is not stored in the
tree.

Fi SoMA Spwai

o}
/))‘94/

Ve KJ Somaiya College of Engineering TRUST

Searching for an Element in a B Tree
e Search 120

/ o

e o e e e

Step 1: ﬂ\
35 65 First, search will 130 180
start with root
node.

52? SOMAIYA

IIIIIIIIIIIIIIIIIIII

“avie¥® K J Somaiya College of Engineering TRUST

Searching for an Element in a B Tree

. So, the control will
Step 2 100 jump to this node

/

Then, it will check in which range the
key is i.e os key 120 is >100 and <130
so it has to be in left branch of the
B-Tree.

Step 3: 100

e

So, the control will
jump to this node

SOMAIYA

VIDYAVIHAR UNIVERSITY

oS &

N

g
. &
“avie¥® K J Somaiya College of Engineering

Inserting a New Element in a B Tree

* In a B tree, all insertions are done at the leaf node level. A new value is inserted
in the B tree using the algorithm given below.

1. Searfjh the B tree to find the leaf node where the new key value should be
inserted.

2. If the leaf node is not full, that is, it contains less than m—1 key values, then
insert the new element in the node keeping the node’s elements ordered.

3F\ If the leaf node is full, that is, the leaf node already contains m—1 key values,
then

(a) insert the new value in order into the existing set of keys,

#bh)split(;che node at its median into two nodes (note that the split nodes are half
ull), an

(c) push the median element up to its parent’s node. If the parent’s node is
already full, then split the parent node by following the same steps.

*i%;% SOMAIYA SMGI

® &5 VIDYAVIHAR UNIVERSITY
e oS

Yavie® KJ Somaiya College of Engineering TRUST

Inserting a New Element in a B Tree

* Look at the B tree of order 5 given below and insert 8, 9, 39, and 4 into it.

o722 e
@ 54| @

63|® -aubﬁag-an-

® |45

_—
i
N
e
i

® (18
o7 ITHI @219 (27(®|36(®[42(®
Step 1: Insert 8

@18/ ® e72e
® 36 ®42|®| (@540

63|@| |@(81/®39/e|o0|®
Step 2: Insert 9

45

@18/ @ (45 @ |72(®

#§5 SON o / Y T
O e @] 7] 0] 8 -Tg o[11e]| [e]21e]27/e[36]e[42]® -\54T-53 o| [e]s1]e]sg]®]o0

Inserting a New Element in a B Tree

* The node in which 39 should be inserted is already full as it contains four
values. Here we split the nodes to form two separate nodes. But before

splitting, arrange the key values in order (including the new value). The
ordered set of values is given as 21, 27, 36, 39, and 42.

* The median value is 36, so push 36 into its parent’s node and split the leaf
nodes.

Etep 3: Insert 39

@36/ @45 |72|®
— N
I?IEITEI/IHI ®21® ® |39 e 42 @ ETIEFBI ® 81® B9 @90

@‘% SOMAIYA
@
)

& VIDYAVIHAR UNIVERSITY
S

s Ry
“a\ie¥® K J Somaiya College of Engineering

Inserting a New Element in a B Tree

* The ordered set of values is given as 4, 7, 8, 9, and 11. The median value is
8, so we push 8 into its parent’s node and split the leaf nodes. But again,
we see that the parent’s node is already full, so we split the parent node
using the same procedure.

Step 4: Insert 4

®(36|®

|®
o

18| ®

——
,—I--''-

o< ®
!
/
\

11® -zﬂ‘-z?- -39442-

@497 @99

‘75 SOMAIYA
<

&5 VIDYAVIHAR UNIVERSITY
S

Ya\is¥’ K J Somaiya College of Engineering

Inserting a New Element in a B Tree

 Create a B Tree of Order 5

List of Keys
10, 70, 60, 20, 110, 40,80,130,100,50,190,90,180,240,30,120,140,160

‘ » SOMAIYA
o\ & /& VIDYAVIHAR UNIVERSITY
%

Sv\d\!&\ K J Somaiya College of Engineering TRUST

Inserting a New Element in a B Tree

List of
Keys=10,70,60,20,110,40,80,130,100,50,190,90,180,24
0,30,120,140,160

Insert 10

Insert 70
After Inserting 70, the keys in the node will be sorted

Insert 60
After Inserting 60, the keys in the node will be sorted

52 SOMAIYA

<
9] VIDYAVIHAR UNIVERSITY

Yavie® KJ Somaiya College of Engineering TRUST

Inserting a New Element in a B Tree

List of
Keys=10,70,60,20,110,40,80,130,100,50,190,90,180,24
0,30,120,140,160

Insert 20
After Inserting 20, the keys in the node will be sorted

Insert 110
Node was already full,
After insertion of 110, It splits into 2 nodes

60 is the median key, so it goes to parent or becomes
root

#§s SOMAIYA

&5 VIDYAVIHAR UNIVERSITY

o)
Vg vd\!’?’ K J Somaiya College of Engineering TRUST

Inserting a New Element in a B Tree

List of }
Keys=10,70,60,20,110,40,80,130,10 -

0,50,190,90,180,240,30,120,140,16 / \

0 140 20 "4 70 110

Insert 40

After Inserting 40, the keys in the
node will be sorted

" / 0 80 110
Insert 80 N 0 8 I
After Inserting 80, the keys in the L o |
node will be sorted

FR SOMAIYA

s VIDYAVIHAR UNIVERSITY

o) &
“avie¥® K J Somaiya College of Engineering TRUST

Inserting a New Element in a B Tree

List of
Keys=10,70,60,20,110,40,80,130,10

0,50,190,90,180,240,30,120,140,16
110 130

70 80
Insert 130 !To 20 40
Insert 100
60 100
Node was already full
After insertion of 100, it splitsin2 /
nodes, 100 is the median key , \ﬂ’ 20 40 . i le ,

100 goes up to the parent node

#y» SOMAIYA

s VIDYAVIHAR UNIVERSITY

o) -\
“a\ie¥® K J Somaiya College of Engineering TRUST

Inserting a New Element in a B Tree

List of
Keys=10,70,60,20,110,40,80,13
0,100,50,190,90,180,240,30,12
0,140,160

Insert 50

Insert 190

52; SOMAIYA

<
9] VIDYAVIHAR UNIVERSITY

Yavie® KJ Somaiya College of Engineering TRUST

Inserting a New Element in a B Tree

60 100
List of e
Keys=10,70,60,20,110,40,80,13 /
0,100,50,190,90,180,240,30,12
0,140,160 10 20 40 50 70 80 90 110 130 190
Insert 90

60 100
Insert 180 /

10 20 40 50 0 8 90| | 10130 180 1% |

75 SOMAIYA
<

VIDYAVIHAR UNIVERSITY

Ya\is¥’ K J Somaiya College of Engineering TRUST

Inserting a New Element in a B Tree

List of
Keys=10,70,60,20,110,40,80,130,
100,50,190,90,180,240,30,120,14
0,160

Insert 240

Insert 30

Node was already full, so after
insertion of 30, splits in 2 nodes,
30 is the median key so it will go
to the parent

#§s SOMAIYA

&5 VIDYAVIHAR UNIVERSITY
J’an\P K J Somaiya College of Engineering TRUST

o)

Inserting a New Element in a B Tree

List of
Keys=10,70,60,20,110,40,80,13
0,100,50,190,90,180,240,30,12
0,140,160

Insert 120

Insert 140

52% SOMAIYA

VIDYAVIHAR UNIVERSITY
e Vios® K J Somaiya College of Engineering TRUST

Inserting a New Element in a B Tree

List of
Keys=10,70,60,20,110,40,80,130,100,50,190,90,18
0,240,30,120,140,160

Insert 160

Node was already full,

After insertion of 160

Splits into 2 nodes

130 is the median so it goes up

Root is already full, so it splits in 2 nodes, 100 is
the median so it becomes new root

#§s SOMAIYA

&5 VIDYAVIHAR UNIVERSITY

/,>
Vi Vi d‘l K J Somaiya College of Engineering

Create a B tree of order 5 by inserting the following elements:
3,14, 7,1,8,5, 11,17, 13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25,19.

Step1:Insert 3, 14, 7,1 Step 2: Insert 8
e(1|®|3 (e 7 (014 ® e 7 e

ol1/e|3|e| |(e[8lellde

Step 3: Insert 5, 11, 17 Step 4: Insert 13
e 7|® e\ 7(®13®

I \

2 193|859 ® 8 Io/111e9114 817\ ® e 1@ 3 @5 ®5eH11e e|14e17®

ote o Y,
é‘i “» SOMAIYA
[} & VIDYAVIHAR UNIVERSITY
<

Y, kS
Yavie® KJ Somaiya College of Engineering TRUST

Create a B tree of order 5 by inserting the following elements:
3,14,7,1,8,5,11,17,13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25, and 19.

Step 5: Insert 6, 23, 12, 20
| 7|913®

!

e|1|je|3|e5|@e6|® (@ s|e1le(12(e (e(14e(17 e 20(®(23 @

Step 6: Insert 26
@7 (®13®
11

2

200 @
e12e| |e14e(17|®| (@23 ® 26 @

ote o Y,
é‘i “» SOMAIYA
[} & VIDYAVIHAR UNIVERSITY
<

Y, kS
Yavie® KJ Somaiya College of Engineering TRUST

Create a B tree of order 5 by inserting the following elements:
3,14,7,1,8,5, 1,17, 13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25, and 19.

Step 7: Insert 4
@4|@|7(®13®|20®

____,-4- g S
i ___‘—__
o —
o
—_ R

I1IT_Z;/;_/I5IEI @8 (e(1le(12e @14e(1/|®| |®230|26)®

Step 8: Insert 16, 18, 24, 25
e 4@ 7 |®13(e20e

25

&‘%ﬁ SOMAIYA

@ &5 VIDYAVIHAR UNIVERSITY
e oS

) 5
“a\vie¥’ K J Somaiya College of Engineering

Create a B tree of order 5 by inserting the following elements:
3,14,7,1,8,5,11,17,13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25, and 19.

Step 9: Insert 19

ofi3e
_—ﬁ__ _“‘——_______h—___.h
-T?/- 17|@20/®
¥ — &
o/1|e|3]e| [0|5]|0]6|e| [0]8|e|11]e|12]e -14111/5 18/e[19)@| (e[23(e24e25/e|26/0

ote o Y,
é“i “» SOMAIYA
[} & VIDYAVIHAR UNIVERSITY
L

) 5
“a\vie¥’ K J Somaiya College of Engineering

TRUST

Deleting an Element from a B Tree

* Deletion is also done from the leaf nodes.

* There are two cases of deletion.

* First case, a leaf node has to be deleted.

e Second case, an internal node has to be deleted.

@r% SOMAIYA

@ &5 VIDYAVIHAR UNIVERSITY
e oS

Y, kS
Yavie® KJ Somaiya College of Engineering TRUST

Deleting an Element from a B Tree

1. Locate the leaf node which has to be deleted.

2. If the leaf node contains the minimum number of key values (m/2
elements), then delete the value.

3. Else if the leaf node does not contain m/2 elements, then fill the node by
taking an element either from the left or from the right sibling.

(a) If the left sibling has more than the minimum number of key values,
push its largest key into its parent’s node and pull down the intervening
element from the parent node to the leaf node where the key is deleted.

(b) Else, if the right sibling has more than the minimum number of key
values, push its smallest key into its parent node and pull down the
intervening element from the parent node to the leaf node where the key is

deleted.
r SOMAIYA Qe
0] % VIDYAVIHAR UNIVERSITY

o]
N &
“a\ie¥® K J Somaiya College of Engineering TRUST

Deleting an Element from a B Tree

4.Else, if both left and right siblings contain only the minimum number of
elements, then create a new leaf node by combining the two leaf nodes
and the intervening element of the parent node (ensuring that the number
of elements does not exceed the maximum number of elements a node can
have, that is, m). If pulling the intervening element from the parent node
leaves it with less than the minimum number of keys in the node, then
propagate the process upwards, thereby reducing the height of the B tree.

* To delete an internal node, promote the successor or predecessor of the
key to be deleted to occupy the position of the deleted key. This
predecessor or successor will always be in the leaf node. So the
processing will be done as if a value from the leaf node has been deleted.

@‘% SOMAIYA

&5 VIDYAVIHAR UNIVERSITY
S

Sowape

TRUST

)
C
N §

“a\ie¥® K J Somaiya College of Engineering

Deleting an Element from a B Tree
Consider the B tree of order 5 and delete values 93, 201, 180, and 72

@108/

-aa-Té1 . s 1E'T- 201®

279 0| (®00e|93/8|101/e| (8| 111|8]114{e| (®|151/8]180|e| @24 3|8 [256/®(333|e[450

®|108|®

, —
153;&(-11?{-201-

|
|
/ | \ /
Y
0 (36|0|45(@ ITEIITqI @P0®(101®| (@ 111|/®|114|®((®@/151|@|180|®| (@(243|/®|256|/8|333(®(450

Deleting an Element from a B Tree

Step 2: Delete 201

®|108(®
NEDEE o[117|0[243/®
/ II \ / / \
|
Y
o[36//45/0| (e[72@(79e| (@j00e|101/®| (@] 111)e|114|e| [8|151/@(180/® 333(@(450®

75 SOMAIYA
<

VIDYAVIHAR UNIVERSITY

Ya\is¥’ K J Somaiya College of Engineering TRUST

Deleting an Element from a B Tree

Step 3: Delete 180
®|108|®

NEERER ®|117|®(256(®

RN i

@ 36e45 e (72 e7Ie | e90 e |101e| (® 111e|114/e| |®|151)/® 243 @ | |®|333|® (450 @

75 SOMAIYA
<

VIDYAVIHAR UNIVERSITY

Ya\is¥’ K J Somaiya College of Engineering TRUST

Deleting an Element from a B Tree

Etep 4: Delete 72
® 108/ @ (117 |(®|256|®

S\

e(101|e| |(@|111|je(114|®

75 SOMAIYA
<

VIDYAVIHAR UNIVERSITY

Ya\is¥’ K J Somaiya College of Engineering TRUST

EE

‘8\‘*

’))9) &
Va

Vis¥ K J Somaiya College of Engin

Insert and delete an element from a B Tree

* Consider the B tree of order 3 given below and perform the following
operations: (a) insert 121, 87 and then (b) delete 36

lJHR

72

i
7
36

SOMAIYA

IIIIIIIIIIIIIIIIIIII

ring

I

A}l 108

&1

®90(®| (@

109

117

TRUST

Insert and delete an element from a B Tree

Step 1: Insert 121

e 27|e|36|e| |@|54|@| |@|81|@|00|@| |@|109|@| |@|121|@®

52: SOMAIYA

IIIIIIIIIIIIIIIIIIII

Insert and delete an element from a B Tree

otep 2: Insert 87

e/72le|108|®
III \
¥
N'EE els7|e e|117|®
27/ @ |36|@| | @ 31le| |@boje| |e|100]e| |e|121e

SOMAIYA

VVVVVVVV

RRRRRRRRRRRR

TRUST

Insert and delete an element from a B Tree

atep 3: Delete 36
e72le(108 ®

45| ® ®|57(® @11/ @®

IIIIIIIIIIIIIIIIIIII

TRUST

Insert and delete an element from a B Tree

Step 4: Delete 109
®|72(®

45/ ® @ 87|®|108|®

/

27 & ® 54 ® @|81® @90 ® @117|®(121|®

" SOMAIYA

IIIIIIIIIIIIIIIIIIII
A
“avie¥ K J Somaiya College of Engineering TRUST

Application of B tree

* We take a large value of m mainly because of three reasons:

1. Disk access is very slow. We should be able to fetch a large amount of
data in one disk access.

2. Disk is a block-oriented device. That is, data is organized and retrieved in
terms of blocks. So while using a B tree (generalized M-way search tree), a
large value of m is used so that one single node of the tree can occupy the
entire block. In other words, m represents the maximum number of data
items that can be stored in a single block. m is maximized to speed up
processing. More the data stored in a block, lesser the time needed to
move it into the main memory.

3. A large value minimizes the height of the tree. So, search operation

becomes really fast.
£ SOMAIYA Qowaspes

& VIDYAVIHAR UNIVERSITY
S

2]
o]
N, N

%a Vie® K J Somaiya College of Engineering T RU S T

SOMAIYA .

® ~ VIDYAVIHAR UNIVERSITY

S

2\ S
Y%avie® KJ Somaiya College of Engineering B + ‘ r e e S

What are B+ Trees used for
What is a B Tree

What is a B+ Tree
Searching

Insertion

Deletion

#y» SOMAIYA .
What are B+ Trees Used For?

m A
2 &

2N §
Yavie? KJ Somaiya College of Engineering

e When we store data in a table in a DBMS we want

. Fast lookup by primary key
. Just this — hashtable O(c)

Ability to add/remove records on the fly

. Some kind of dynamic tree on disk
. Sequential access to records (physically sorted by primary key on disk)
. Tree structured keys (hierarchical index for searching)

. Records all at leaves in sorted order

g@"";;? "a;fj%’
7B SOMAYA T
2, N

. $
“a i K J Somaiya College of Engineering

— A variation of B trees in which
— Internal nodes contain only search keys (no data)
— Leaf nodes contain pointers to data records
— Data records are in sorted order by the search key
— All leaves are at the same depth

TRUST

o o St Definition of a B+Tree .

A A
“a i K J Somaiya College of Engineering

A B+ tree is a balanced tree in which every path from the root of the tree to a leaf is
of the same length, and each non-leaf node of the tree has between [M/2] and
[M] children, where n is fixed for a particular tree.

B+ Tree Nodes

) &
“a i K J Somaiya College of Engineering

M Internal node
B Pointer (Key, NodePointer)*M-1 in each node
M First i keys are currently in use

kO kl eoe kl—l
0 1 \ i-1 M- 2
e Leaf

— (Key, DataPointer)* L in each node
— first j Keys currently in use

kO k 00 kj—l

e

Data for k, Data for k, Data for k.,

#§> SOMAIYA .
@ ~ VIDYAVIHAR UNIVERSITY

g
“a \io¥® K J Somaiya College of Engineering

B+ Tree withM = 4
Often, leaf nodes linked together

1040

#5 SOMAIYA .

0] 5 VIDYAVIHAR UNIVERSITY
2 <

2 $
Yavie? KJ Somaiya College of Engineering

Advantages of B+ tree usage for databases

Bkeeps keys in sorted order for sequential traversing

BMuses a hierarchical index to minimize the number of disk reads
Buses partially full blocks to speed insertions and deletions
Bkeeps the index balanced with a recursive algorithm

HMIn addition, a B+ tree minimizes waste by making sure the interior nodes are at
least half full. A B+ tree can handle an arbitrary number of insertions and
deletions.

7% SOMAIYA B
@ ~ VIDYAVIHAR UNIVERSITY
Searching

]
e ,b‘J\\‘ - . .
Ya \ioy K J Somaiya College of Engineering

BJust compare the key value with the data in the tree, then return the
result.

For example: find the value 45, and 15 in below tree.

et

5 |110|15|20] |25|30 50|55|60|65||75|80|85| 90

Searching

% “Q
“a Vd\s K J Somaiya College of Engineering

BResult:
1. For the value of 45, not found.
2. For the value of 15, return the position where the pointer located.

TRUST

7% SOMAIYA .

@ ~ VIDYAVIHAR UNIVERSITY

&
&

[]
R
“a\vie¥’ K J Somaiya College of Engineering | n S e rt I O n

Minserting a value into a B+ tree may unbalance the tree, so rearrange
the tree if needed.

BExample #1: insert 22 into the below tree.

L

#3% SOMAIYA .

@ s VIDYAVIHAR UNIVERSITY

3

DA : ineeri .
“a\Vie® K J Somaiya College of Engineering | n S e rt | O n

BMResult:

T

S
<

g

#}» SOMAIYA

~ VIDYAVIHAR UNIVERSITY

&

R S
Yavie?® KJ Somaiya College of Engineering

Insertion

BMExample #2: insert 70 into below tree

T

50

=5

|

15

20

25

30

50

55

60

65

D

80

85

90

#3% SOMAIYA

@ ~ VIDYAVIHAR UNIVERSITY

&
&

Ao .
“a\vie¥® K J Somaiya College of Engineering | n S e rt I O n

BProcess: split the leaf and propagate middle key up the tree

[[25], 5075

T

50[]5|60|65

#§» SOMAIYA B
@ ~ VIDYAVIHAR UNIVERSITY
Insertion

]
e ,b‘J\“ - . .
Ya \ioy K J Somaiya College of Engineering

BResult: chose the middle key 60, and place it in the index page
between 50 and 75.

[[25],[50]]60[]J75].

/

lone

€ A8
e
2

s’j/a Vioy?

3
$

7 SOMAIYA

VIDYAVIHAR UNIVERSITY

)

K J Somaiya College of Engineering

Insertion

The insert algorithm for B+ Tree
Leaf Node Index Node Full | Action
Full
NO NO Place the record in sorted position in the appropriate leaf page
YES NO 1. Split the leaf node
2. Place Middle Key in the index node in sorted order.
3. Left leaf node contains records with keys below the middle key.
4, Right leaf node contains records with keys equal to or greater than the middle key.
YES YES Split the leaf node.
Records with keys < middle key go to the left leaf node.
Records with keys >= middle key go to the right leaf node.
Split the index node.
4, Keys < middle key go to the left index node.
5. Keys > middle key go to the right index node.
6. The middle key goes to the next (higher level) index node.
IF the next level index node is full, continue splitting the index nodes.

#3% SOMAIYA

@ ~ VIDYAVIHAR UNIVERSITY

A
“a \is¥> K J Somaiya College of Engineering

Insertion

BExercise: add a key value 95 to the below tree.

|25],|50],|60].]75].

TRUST

#§» SOMAIYA B
@ ~ VIDYAVIHAR UNIVERSITY
Insertion

g
“a \io¥® K J Somaiya College of Engineering

BResult: again put the middle key 60 to the index page and rearrange

the tree.
/r 60\
5 1101520 25128130 50|55 601 65|70

75|80 85(90|95

#5% SOMAIYA .
~ VIDYAVIHAR UNIVERSITY

@
&\Q
® K J Somaiya College of Engineering

BSame as insertion, the tree has to be rebuild if the deletion result violate the
rule of B+ tree.

MExample #1: delete 70 from the tree

L [25[50 475,185

25|28|30 50|55 60| 65

TRUST

#3% SOMAIYA

s VIDYAVIHAR UNIVERSITY

g

3

T AS
“a\vie¥’ K J Somaiya College of Engineering

M Result:

Deletion

60

25

50

g

75

85]

1:5

20

25

28

30

50

55

D

80

85

90

95

#§> SOMAIYA .
@ ~ VIDYAVIHAR UNIVERSITY

A
“a \is¥> K J Somaiya College of Engineering

Example #2: delete 25 from below tree, but 25 appears in the index pag

2 Ty

75|80 85|90|95

#§> SOMAIYA .
@ ~ VIDYAVIHAR UNIVERSITY

A
“a \is¥> K J Somaiya College of Engineering

BResult: replace 28 in the index page.

60| 4

l/ \

754185

7580 85|90|95

7 SOMAIYA .
@ ~ VIDYAVIHAR UNIVERSITY
Deletion

A
“a \is¥> K J Somaiya College of Engineering

BExample #3: delete 60 from the below tree

/ e
28| |50l 75|;|85].
L
5 110(15|20||28|30 50(55 50| 65

85|90|95

#§> SOMAIYA .
@ ~ VIDYAVIHAR UNIVERSITY
Deletion

]
e ,b‘J\“ - . .
Ya \ioy K J Somaiya College of Engineering

BResult: delete 60 from the index page and combine the rest of index
pages.

#7 SOMAIYA .

® 5 VIDYAVIHAR UNIVERSITY
%, <

[]
.)
Yavie? KJ Somaiya College of Engineering D e ‘ et | O n

M Delete algorithm for B+ trees

Data Page Below Fill Factor Index Page Below Fill Factor Action

NO NO Delete the record from the leaf page. Arrange keys in ascending
order to fill void. If the key of the deleted record appears in the
index page, use the next key to replace it.

YES NO Combine the leaf page and its sibling. Change the index page to
reflect the change.

YES YES 1. Combine the leaf page and its sibling.
Adjust the index page to reflect the change.
Combine the index page with its sibling.

Continue combining index pages until you reach a page
with the correct fill factor or you reach the root page.

7% SOMAIYA B
@ 5 VIDYAVIHAR UNIVERSITY
Conclusion

%/'ya vm@§ K J Somaiya Coll f i i
ya College of Engineering

* Fora B+ Tree:
 |tis “easy” to maintain its balance
. Insert/Deletion complexity O(logy,,)

* The searching time is shorter than most of other types of trees
because branching factor is high

& T %&
7§ SOMAIYA B
@ 5 VIDYAVIHAR UNIVERSITY B T D B IV|

“a\vie¥’ K J Somaiya College of Engineering r e e S a n

— Used to index primary keys
— Can access records in O(log,,,) traversals (height of the tree)

— Interior nodes contain Keys only

— Set node sizes so that the M-1 keys and M pointers fits inside a single block on disk
— E.g., block size 40968, keys 10B, pointers 8 bytes
— (8+ (10+8)*M-1) = 4096
— M =228; 2.7 billion nodes in 4 levels

— One block read per node visited

#§» SOMAIYA B
@ ~ VIDYAVIHAR UNIVERSITY
Reference

]
e ,b‘J\“ - . .
Ya \ioy K J Somaiya College of Engineering

Li Wen & Sin-Min Lee, San Jose State University

#3% SOMAIYA

VIDYAVIHAR UNIVERSITY

D &
) &
Yavie? KJ Somaiya College of Engineering

Queries?

#3% SOMAIYA

VIDYAVIHAR UNIVERSITY

D &
) &
Yavie? KJ Somaiya College of Engineering

Thank you!

