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 Structure of a binary search tree node 

 • Every node in a binary search tree contains one value and two 
pointers, left and right, which point to the node’s left and right sub-
trees, respectively.  

 

 

 

• Binary search tree M = 2, so it has one value and two sub-trees.  

• In other words, every internal node of an M-way search tree 
consists of pointers to M sub-trees and contains M – 1 keys, where 
M > 2. 



 
 Multiway Tree Definition 

 • A multiway tree of order m (or an m-way tree) is one in which a tree can 
have m children.  

• Nodes in an m-way tree will be made up of key fields,  and pointers to 
children. The structure of an M-way search tree node is shown in Fig. 

 

 

• P0, P1, P2, ..., Pn are pointers to the node’s sub-trees and K0, K1, K2, ..., 
Kn–1are the key values of the node. i.e. Ki < Ki+1. 

• All the key values are stored in ascending order. 

 

 



 
Multiway Tree  

 • In an M-way search tree, it is not compulsory that every node has exactly 
M–1 values and M subtrees.  

• The node can have anywhere from 1 to M–1 values, and the number of 
sub-trees can vary from 0 (for a leaf node) to i + 1, where i is the number 
of key values in the node.  

• M is thus a fixed upper limit that defines how many key values can be 
stored in the node 



 
Multiway Tree  

 • Consider the M-way search tree shown in Fig. where, M = 3. So a node 
can store a maximum of two key values and can contain pointers to three 
sub-trees. 

• In our example, we have taken a very small value of M so that the concept 
becomes easier, but in practice, M is usually very large.  

• Using a 3-way search tree, let us lay down some of the basic properties of 
an M-way search tree. 



 
Multiway Tree  

 



 
4way Tree  

 



 
Basic properties of an M-way search tree 

 • Note that the key values in the sub-tree pointed by P0 are less than the key value K0.  

• Similarly, all the key values in the sub-tree pointed by P1 are less than K1, so on and so 
forth.   

• Thus, the generalized rule is that all the key values in the sub-tree pointed by Pi are 
less than Ki, where  0 ≤ i ≤ n–1. 

• Note that the key values in the sub-tree pointed by P1 are greater than the key value 
K0.  

• Similarly, all the key values in the sub-tree pointed by P2 are greater than K1, so on 
and so forth.  

• Thus, the generalized rule is that all the key values in the sub-tree pointed by Pi are 
greater than Ki–1, where 0 ≤ i ≤ n–1. 

• In an M-way search tree, every sub-tree is also an M-way search tree and follows the 
same rules. 



 
B Tree  

 • B tree is a specialized M-way tree.  

• B tree of order m can have a maximum of m–1 keys and m pointers to its 
sub-trees.  

• Storing a large number of keys in a single node keeps the height of the 
tree relatively small. 

• B tree is designed to store sorted data and allows search, insertion, and 
deletion operations to be performed.  

• B tree of order m (the maximum number of children that each node can 
have) is a tree with all the properties of an M-way search tree. 



 
B Tree properties  

 1. Every node in the B tree has at most (maximum) m children. 

2. Every node in the B tree except the root node and leaf nodes has at least 
(minimum) m/2 children. This condition helps to keep the tree bushy so 
that the path from the root node to the leaf is very short, even in a tree 
that stores a lot of data. 

3. The root node has at least two children if it is not a terminal (leaf) node. 

4. All leaf nodes are at the same level. 

• An internal node in the B tree can have n number of children, where 0 ≤ n 
≤ m. It is not necessary that every node has the same number of children, 
but the only restriction is that the node should have at least m/2 children. 



 
B Tree of order 4  

 



Searching for an Element in a B Tree  
• Searching for an element in a B tree is similar to that in binary search trees. 

Consider the B tree given in Fig. To search for 59, we begin at the root node.  

• The root node has a value 45 which is less than 59. So, we traverse in the right 
sub-tree. The right sub-tree of the root node has two key values, 49 and 63. 
Since 49 ≤  59 ≤ 63, we traverse the right sub-tree of 49, that is, the left sub-
tree of 63. This sub-tree has three values, 54, 59, and 61. On finding the value 
59, the search is successful. 

• Take another example. If you want to search for 9, then we traverse the left 
sub-tree of the root node. The left sub-tree has two key values, 29 and 32. 
Again, we traverse the left sub-tree of 29. We find that it has two key values, 18 
and 27. There is no left sub-tree of 18, hence the value 9 is not stored in the 
tree. 



Searching for an Element in a B Tree  
• Search 120 



Searching for an Element in a B Tree  
 



Inserting a New Element in a B Tree 
• In a B tree, all insertions are done at the leaf node level. A new value is inserted 

in the B tree using the algorithm given below. 
1. Search the B tree to find the leaf node where the new key value should be 
inserted. 
2. If the leaf node is not full, that is, it contains less than m–1 key values, then 
insert the new element in the node keeping the node’s elements ordered. 
3. If the leaf node is full, that is, the leaf node already contains m–1 key values, 
then 
(a) insert the new value in order into the existing set of keys, 
(b) split the node at its median into two nodes (note that the split nodes are half 
full), and 
(c) push the median element up to its parent’s node. If the parent’s node is 
already full, then split the parent node by following the same steps. 



Inserting a New Element in a B Tree 
• Look at the B tree of order 5 given below and insert 8, 9, 39, and 4 into it. 



Inserting a New Element in a B Tree 
• The node in which 39 should be inserted is already full as it contains four 

values. Here we split the nodes to form two separate nodes. But before 
splitting, arrange the key values in order (including the new value). The 
ordered set of values is given as 21, 27, 36, 39, and 42.  

• The median value is 36, so push 36 into its parent’s node and split the leaf 
nodes. 



Inserting a New Element in a B Tree 
• The ordered set of values is given as 4, 7, 8, 9, and 11. The median value is 

8, so we push 8 into its parent’s node and split the leaf nodes. But again, 
we see that the parent’s node is already full, so we split the parent node 
using the same procedure. 



Inserting a New Element in a B Tree 
• Create a B Tree of Order 5 

List of Keys 

10, 70,  60,  20,  110, 40,80,130,100,50,190,90,180,240,30,120,140,160 

 

 



Inserting a New Element in a B Tree 
 

List of 
Keys=10,70,60,20,110,40,80,130,100,50,190,90,180,24
0,30,120,140,160 

 

Insert 10 

 

Insert 70 

After Inserting 70, the keys in the node will be sorted 

 

Insert 60 

After Inserting 60, the keys in the node will be sorted 

 



Inserting a New Element in a B Tree 
 List of 

Keys=10,70,60,20,110,40,80,130,100,50,190,90,180,24
0,30,120,140,160 

 

Insert 20 

After Inserting 20, the keys in the node will be sorted 

 

Insert 110 

Node was already full,  

After insertion of 110 , It splits into 2 nodes 

60 is the median key, so it goes to parent or becomes 
root 



Inserting a New Element in a B Tree 
 

List of 
Keys=10,70,60,20,110,40,80,130,10
0,50,190,90,180,240,30,120,140,16
0 

 

Insert 40 

After Inserting 40, the keys in the 
node will be sorted 

 

Insert 80 

After Inserting 80, the keys in the 
node will be sorted 

 



Inserting a New Element in a B Tree 
 

List of 
Keys=10,70,60,20,110,40,80,130,10
0,50,190,90,180,240,30,120,140,16
0 

 

Insert 130 

 

Insert 100  

Node was already full 

After insertion of 100, it splits in 2 
nodes, 100 is the median key ,  

100 goes up to the parent node 



Inserting a New Element in a B Tree 
 

List of 
Keys=10,70,60,20,110,40,80,13
0,100,50,190,90,180,240,30,12
0,140,160 

 

Insert 50 

 

Insert 190 



Inserting a New Element in a B Tree 
 

List of 
Keys=10,70,60,20,110,40,80,13
0,100,50,190,90,180,240,30,12
0,140,160 

 

Insert 90 

 

Insert 180 



Inserting a New Element in a B Tree 
 

List of 
Keys=10,70,60,20,110,40,80,130,
100,50,190,90,180,240,30,120,14
0,160 

 

Insert 240 

 

Insert 30 

Node was already full, so after 
insertion of 30, splits in 2 nodes, 
30 is the median key so it will go 
to the parent 



Inserting a New Element in a B Tree 
 

List of 
Keys=10,70,60,20,110,40,80,13
0,100,50,190,90,180,240,30,12
0,140,160 

 

Insert 120 

 

Insert 140 



Inserting a New Element in a B Tree 
 

List of 
Keys=10,70,60,20,110,40,80,130,100,50,190,90,18
0,240,30,120,140,160 

 

Insert 160 

Node was already full,  

After insertion of 160  

Splits into 2 nodes 

130 is the median so it goes up 

Root is already full, so it splits in 2 nodes , 100 is 
the median so it becomes new root 

 



Create a B tree of order 5 by inserting the following elements: 
3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25,19. 

 



Create a B tree of order 5 by inserting the following elements: 
3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25, and 19. 



Create a B tree of order 5 by inserting the following elements: 
3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25, and 19. 



Create a B tree of order 5 by inserting the following elements: 
3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25, and 19. 



Deleting an Element from a B Tree 
• Deletion is also done from the leaf nodes.  

• There are two cases of deletion.  

• First case, a leaf node has to be deleted.  

• Second case, an internal node has to be deleted.  



Deleting an Element from a B Tree 
1. Locate the leaf node which has to be deleted. 

2. If the leaf node contains the minimum number of key values (m/2 
elements), then delete the value. 

3. Else if the leaf node does not contain m/2 elements, then fill the node by 
taking an element either from the left or from the right sibling. 

(a) If the left sibling has more than the minimum number of key values, 
push its largest key into its parent’s node and pull down the intervening 
element from the parent node to the leaf node where the key is deleted. 

(b) Else, if the right sibling has more than the minimum number of key 
values, push its smallest key into its parent node and pull down the 
intervening element from the parent node to the leaf node where the key is 
deleted. 



Deleting an Element from a B Tree 
4.Else, if both left and right siblings contain only the minimum number of 
elements, then create a new leaf node by combining the two leaf nodes 
and the intervening element of the parent node (ensuring that the number 
of elements does not exceed the maximum number of elements a node can 
have, that is, m). If pulling the intervening element from the parent node 
leaves it with less than the minimum number of keys in the node, then 
propagate the  process upwards, thereby reducing the height of the B tree. 

• To delete an internal node, promote the successor or predecessor of the 
key to be deleted to occupy the position of the deleted key. This 
predecessor or successor will always be in the leaf node. So the 
processing will be done as if a value from the leaf node has been deleted. 



Deleting an Element from a B Tree 
Consider the B tree of order 5 and delete values 93, 201, 180, and 72  



Deleting an Element from a B Tree 



Deleting an Element from a B Tree 



Deleting an Element from a B Tree 



Insert and delete an element from a B Tree 
• Consider the B tree of order 3 given below and perform the following 

operations: (a) insert 121, 87 and then (b) delete 36 



Insert and delete an element from a B Tree 
 



Insert and delete an element from a B Tree 
 



Insert and delete an element from a B Tree 



Insert and delete an element from a B Tree 

 



Application of  B tree 

• We take a large value of m mainly because of three reasons: 

1. Disk access is very slow. We should be able to fetch a large amount of 
data in one disk access. 

2. Disk is a block-oriented device. That is, data is organized and retrieved in 
terms of blocks. So while using a B tree (generalized M-way search tree), a 
large value of m is used so that one single node of the tree can occupy the 
entire block. In other words, m represents the maximum number of data 
items that can be stored in a single block. m is maximized to speed up 
processing. More the data stored in a block, lesser the time needed to 
move it into the main memory. 

3. A large value minimizes the height of the tree. So, search operation 
becomes really fast. 



                    B+ Trees 
 What are B+ Trees used for 

 What is a B Tree 

 What is a B+ Tree 

 Searching 

 Insertion 

 Deletion 



                 What are B+ Trees Used For? 

• When we store data in a table in a DBMS we want 
• Fast lookup by primary key 

• Just this – hashtable O(c) 

• Ability to add/remove records on the fly 
• Some kind of dynamic tree on disk 

• Sequential access to records (physically sorted by primary key on disk) 
• Tree structured keys (hierarchical index for searching) 

• Records all at leaves in sorted order 



What is a     B+ Tree? 

– A variation of B trees in which 

– internal nodes contain only search keys (no data) 

– Leaf nodes contain pointers to data records 

– Data records are in sorted order by the search key 

– All leaves are at the same depth 

 



D                        Definition of  a B+Tree 
 

A B+ tree is a balanced tree in which every path from the root of the tree to a leaf is 
of the same length, and each non-leaf node of the tree has between [M/2] and 
[M] children, where n is fixed for a particular tree.  



 … 
 

 

__ __ k0 k1 
… 

 

 

ki-1 

                     B+ Tree Nodes 

Internal node 
Pointer (Key, NodePointer)*M-1 in each node 
 First i keys are currently in use 

• Leaf 
– (Key, DataPointer)* L in each node 

–  first j Keys currently in use 

 

k0 k1 
… 

 

 

kj-1 
 … 

 

 

__ __ 

0 1 M - 2 

0 1 L-1 

i-1 

Data for k0 
Data for kj-1 Data for k2 



                    Example 
B+ Tree with M = 4 

Often, leaf nodes linked together 

1 2     

3 5 6 9 

10 11 12   

15 17   

20 25 26   

30 32 33 36 

40 42     

50 60 70   

10 40   

3     15 20 30 50     



Advantages of B+ tree usage for databases 

keeps keys in sorted order for sequential traversing 

uses a hierarchical index to minimize the number of disk reads 

uses partially full blocks to speed insertions and deletions 

keeps the index balanced with a recursive algorithm 

In addition, a B+ tree minimizes waste by making sure the interior nodes are at 
least half full. A B+ tree can handle an arbitrary number of insertions and 
deletions. 

 



                   Searching 

Just compare the key value with the data in the tree, then return the 
result.  

   For example: find the value 45, and 15 in below tree.  

 



                   Searching 

Result:  

  1. For the value of 45, not found. 

  2. For the value of 15, return the position where the pointer located. 



                       Insertion 
inserting a value into a B+ tree may unbalance the tree, so rearrange 

the tree if needed. 

Example #1: insert 28 into the below tree. 

 

25  28   30 

Fits inside the leaf 



                           Insertion 

Result: 

 



                        Insertion 

Example #2: insert 70 into below tree 



                        Insertion 

Process: split the leaf and propagate middle key up the tree  

 

   50     55     60      65     70    

50    55  60      65      70  

Does not fit 

inside the leaf 



                    Insertion 

Result: chose the middle key 60, and place it in the index page 
between 50 and 75.  

 



                   Insertion 

The insert algorithm for B+ Tree 

 

 

Leaf Node 

Full  

Index Node Full  Action  

NO  NO  Place the record in sorted position in the appropriate leaf page  

YES  NO  1. Split the leaf node 

2. Place Middle Key in the index node in sorted order.  

3. Left leaf node contains records with keys below the middle key.  

4. Right leaf node contains records with keys equal to or greater than the middle key.  

YES  YES  1. Split the leaf node.  

2. Records with keys < middle key go to the left leaf node.  

3. Records with keys >= middle key go to the right leaf node.  

Split the index node.  

4. Keys < middle key go to the left index node.  

5. Keys > middle key go to the right index node.  

6. The middle key goes to the next (higher level) index node.  

 

IF the next level index node is full, continue splitting the index nodes.  



                   Insertion 

Exercise: add a key value 95 to the below tree.  

 

75   80   85   90   95  

 25   50   60   75   85   
75  80 85  90  95 

Leaf node full, 

split the leaf. 



                   Insertion 

Result: again put the middle key 60 to the index page and rearrange 
the tree. 

 



                     Deletion 

Same as insertion, the tree has to be rebuild if the deletion result violate the 
rule of B+ tree. 

Example #1: delete 70 from the tree 

60     65                   

OK. Node 

>=50% full 



                    Deletion 

Result:  

 



                     Deletion 

Example #2: delete 25 from below tree, but 25 appears in the index page. 

28   30                

But… 

This is OK. 



                    Deletion 

Result: replace 28 in the index page. 

 
Add 28  



                   Deletion 

Example #3: delete 60 from the below tree 

65                            

50    55     65        
Less than 

50% full 



                   Deletion 

Result: delete 60 from the index page and combine the rest of index 
pages. 



                  Deletion 

Delete algorithm for B+ trees 

  
Data Page Below Fill Factor  Index Page Below Fill Factor  Action  

NO  NO  Delete the record from the leaf page. Arrange keys in ascending 

order to fill void. If the key of the deleted record appears in the 

index page, use the next key to replace it.  

YES  NO  Combine the leaf page and its sibling. Change the index page to 

reflect the change.  

YES  YES  1. Combine the leaf page and its sibling.  

2. Adjust the index page to reflect the change.  

3. Combine the index page with its sibling.  

 

Continue combining index pages until you reach a page 

with the correct fill factor or you reach the root page.  



                   Conclusion 

• For a B+ Tree: 

• It is “easy” to maintain its balance 
• Insert/Deletion complexity O(logM/2) 

• The searching time is shorter than most of other types of trees 
because branching factor is high 

 



                        B+Trees and DBMS 
 

– Used to index primary keys 

– Can access records in O(logM/2) traversals (height of the tree) 

– Interior nodes contain Keys only 
– Set node sizes so that the  M-1 keys and M pointers fits inside a single block on disk 

– E.g., block size 4096B, keys 10B, pointers 8 bytes 

–  (8+ (10+8)*M-1) = 4096 

– M = 228; 2.7 billion nodes in 4 levels 

– One block read per node visited 
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Queries? 



Thank you! 


