Linked List

Prof. Sushma Kadge
sushmakadge@somaiya.edu

Linked List

* A linked list, in simple terms, is a linear collection of data
elements. These data elements are called nodes.

 Linked list I1s a data structure which in turn can be used to
Implement other data structures.

 Acts as a building block to implement data structures such as
stacks, queues, and their variations.

A linked list can be perceived as a train or a sequence of nodes
In which each node contains one or more data fields and a
pointer to the next node.

START

Y
|
¥
|
¥
|
¥
|
¥
|
¥
|
¥

75 SOMAIYA
<

&5 VIDYAVIHAR UNIVERSITY
S

Ya\io¥® K J Somaiya College of Engineering TRUST

Linked List =

= 1 > 2 > 3 = 4 » 5 > 6 = 7 | X

- Ev%ry node contains two parts, an integer and a pointer to the next
node.

* The left part of the node which contains data may include a simple
data type, an arraK, or a structure.

* The right part of the node contains a pointer to the next node (or
address of the next node in sequence).

* The last node will have no next node connected to it, so it will
store a special value called NULL.

* The NULL pointer is represented by X. Define NULL as —1.

* Every node contains a {)ointer to another node which is of the
same type, it is also called a self-referential data type.

. Pﬁir}ter variable START that stores the address of the first node in
the list.

r SOMAIYA Somase

& VIDYAVIHAR UNIVERSITY
S

(2}
C
£ S
%, v\d‘!q’A K J Somaiya College of Engineering T RU S T

Linked List =

Y
=
Y
3]
Y
L
Y
$a
A
9]
Y
o]
Y
|
ks

struct node

{

int data;//information field

struct node *next; //Pointer that points to the structure itself, thus Linked

5

Linked lists provide an efficient way of storing related data and perform
basic operations such as insertion, deletion, and updation of information
at the cost of extra space required for storing address of the next node.

vd‘! K J Somaiya College of Engineering TRUST

Types of Linked List

* Singly Linked List
« Doubly Linked List
e Circular Linked List

f‘% SOMAIYA
IIIIIIIIIIIIIIIIIIII

V2 Vio® K J Somaiya College of Engineering TRUST

Singly Linked list

« A singly linked list is the simplest type of linked list in which
every node contains some data and a pointer to the next node
of the same data type.

 All nodes are linked in sequential manner, Linear Linked List,
One way chain, It has beginning and end.

« Asingly linked list allows traversal of data only in one way.

START

SOMAIYA
‘, IIIIIIIIIIIIIIIIIIII

ev\d\!&\ K J Somaiya College of Engineering TRUST

Linked List Operations

* Creation

* Insertion
.)eletlon
e Traversal
« Searching

f‘% SOMAIYA
IIIIIIIIIIIIIIIIIIII

V2 Vio® K J Somaiya College of Engineering TRUST

Creation of a new node

struct node({

- Info part

struct node *li;i:
}:

struct node

(info
int info; |

struct node *link;

};

struct node *start = NULL;

é\e‘\‘” Along (’2‘)9
3 SOMAIYA
5 VIDYAVIHAR UNIVERSITY SMG/
$
2 N

L7

\))OS

%a \i?¥® K J Somaiya College of Engineering

SOMAIYA :
%¢ 5 VIDYAVIHAR UNIVERSITY C re a t I O N Of a N eW N O d e

. 3
Yavie? KJ Somaiya College of Engineering

New node=temp
struct node *tmp;
tmp= (struct node *) malloc(sizeof(struct node));
tmp->info=data;

tmp->link=NULL;
Syntax-
tmp=(type_cast*)malloc(size)
tmp = name of pointer that holds the starting address of allocated
memory block
type cast* = is the data type into which the returned pointer is to be
converted and Size = size of allocated memory block in bytes

Creating a Linked List

create_list(int data)
{
struct node *q,*tmp;
tmp= (struct node *) malloc(sizeof(struct node));
tmp->info=data,;
tmp->link=NULL,;

i{f(star ==NULL) /*If list is empty */

}

else |
{ [*Element inserted at the end */

start=tmp;

YV /T indAl AL mavia nd A~ I:.-..t()*/

e Along , .)
o z,%’
#3 SOMAIYA
Q 5 VIDYAVIHAR UNIVERSITY SMG/
2, N

: 3
“a\is¥? K J Somaiya College of Engineering

Traversing a Linked List:

 Traversing a linked list means accessing the nodes of the list
In order to perform some processing on them.

75 SOMAIYA
<

VIDYAVIHAR UNIVERSITY

Ya\is¥’ K J Somaiya College of Engineering TRUST

Algorithm for traversing a linked list

Step 1.

SET PTR = START// initialize PTR with the address of START
Step 2: Repeat Steps 3 and 4 while PTR != NULL

Step 3: Apply Process to PTR ->DATA// we apply the process
(e.g., print) to the current node, i.e, the node pointed by PTR.

Ste
[EN
Ste

0 4: SET PTR = PTR NEXT
D OF LOOP]
0 5: EXIT

R o s,

i ‘ “ SOMAIYA

» 5 VIDYAVIHAR UNIVERSITY SMGI
2, $

: 3
“a\is¥? K J Somaiya College of Engineering

Algorithm to print(count) the number of nodes in a
linked list

Step 1:[INITIALIZE] SET COUNT=0

Step 2:[INITIALIZE] SET PTR=START

Step 3: Repeat Steps 4 and 5 while PTR!=NULL
Step 4: Set COUNT=COUNT +1

Step 5: Set PTR=PTR->LINK

[End of Loop]

Step 6:Print COUNT

Step 7:EXIT

#\e‘we Along (’2‘)9
3y SOMAIYA
5 VIDYAVIHAR UNIVERSITY SMG/
RS

%

: 3
“a\is¥? K J Somaiya College of Engineering

Searching for a Value in a Linked List

Searching a linked list means to find a particular element in the
linked list.

A linked list consists of nodes which are divided into two parts,
So searching means finding whether a given value is present In
the information part of the node or not.

If it Is present, the algorithm returns the address of the node
that contains the value.

#\e‘we Along l’i‘)s
#§% SOMAIYA
0 5 VIDYAVIHAR UNIVERSITY (}N 5,.1 Gs
N

: 3
“a\is¥? K J Somaiya College of Engineering

Searching for a Value in a Linked List

Step T:[INITIALIZE] SET POSITION=1
Ste 2:[INITIALIZE] SET PTR=START
Step 3: Repeat Steps 4 while PTR!=NULL
Step 4: If Val=PTR->Data
Print POSITION
Exit
[End of If]
Set PTR=PTR->LINK
Set POSITION=POSITION +1
[End of Loop]
Step 5:1f PTR=NULL
Print Search Unsuccessful
[End of If]
Step 6: Exit

#\e‘we Along (’2‘)9
3y SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
% &

”)
“a\is¥? K J Somaiya College of Engineering

Searching for a Value in a Linked List

search(int data)

{

struct node *ptr = start;
int pos = 1;
while(ptr!'=NULL)

i{f(ptr->info::data)

printf("Item %d found at position %d\n",data,pos);
return;

}
ptr = ptr->link;
POS++;

}
If(ptr == NULL)
printf("Item %d not found in list\n",data);
}*End of search()*/

#\e‘we Along (’2‘)9
3y SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
) &

“a\is¥? K J Somaiya College of Engineering

Searching for a Value in a Linked List

1| —F/ 7| />3 | /4| 2| —TT>6| —T+5|X

PTR
Here PTR —> DATA = 1. Since PTR —> DATA != 4, we move to the next node.

1| —4+—» 7| —» 3| 14— 4| —/—>» 2| &—» 6| ——»5|X

PTR
Here PTR —» DATA = 7. Since PTR —> DATA != 4, we move to the next node.

1| —/» 7| /3| 14| > 2| |T»>>6| T>5|X

PTR
Here PTR —> DATA = 3. Since PTR —> DATA != 4, we move to the next node.

1| 7| 3| T ™4| 2| T>6| T>5|X

PTR
Here PTR —» DATA = 4. Since PTR —» DATA = 4, POS = PTR. POS now stores
E;(z the address of the node that contains VAL
AVAL AL AL LA

Alon,
bge ey,
¢ ?
SAIR
S %
<4 -}

@\ ‘ /s VIDYAVIHAR UNIVERSITY SMG/
% §

”)
“a\is¥? K J Somaiya College of Engineering

Insertion into a Linked List

Insertion Is possible in two ways:
= |nsertion at Beginning
= |nsertion in Between

é\eége Along (’bs
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2, $

' S
“a\is¥? K J Somaiya College of Engineering

Case I- Insertion at Beginning

1| &—» 7| &—» 3| —+—>»> 4| —/—» 2| &—»> 6| &—>» 5 | X

START

Allocate memory for the new node and initialize its DATA part to 9.

9

Add the new node as the first node of the list by making the NEXT part of the new
node contain the address of START.

9 —+—>»> 1| —F/—» 7| —+>3| +—> 4| &—>» 2| &+—»6| ——»5 | X

START
Now make START to point to the first node of the list.

9 T 1| /7| 1> 3| T ™4| T 2| T >O6| T>5|X
START

#\e‘we Along (’2‘)9
3y SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2 &

”)
“a\is¥? K J Somaiya College of Engineering

Case I- Insertion at Beginning

« First check whether Memory Is available for the new node.
« If the memory has exhausted then an Overflow message Is
orinted

* Else We allocate memory for the new node

#\e‘we Along (’2‘)9
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2, N

: 3
“a\is¥? K J Somaiya College of Engineering

Case I- Insertion at Beginning

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 7/

[END OF IF]

Step 2: SET NEW NODE = AVAIL

Step 3: SET AVAIL = AVAIL-> NEXT

Step 4: SET NEWNODE -> DATA = VAL
Step 5: SET NEWNODE ->NEXT = START
Step 6: SET START = NEW NODE

Step 7: EXIT

#\e‘we Along (’2‘)9
3y SOMAIYA
5 VIDYAVIHAR UNIVERSITY SMG/
RS

%

: 3
“a\is¥? K J Somaiya College of Engineering

Case 2- Insertion at end

7 —1—» 3 > 4 — = 2 ——» b —— 5 x
START
Allocate memory for the new node and initialize its DATA part to 9 and
MEXT part to MNULL.
9 | X
Take a pointer wariable PTR which points to START.
1 = 7 = 3 > 4 - 2 » 6 = 5 X
START, PTR
Move PTR so that it points to the last node of the list.
1 —» 7 ——» 3 —— 4 — = 2 ——» b —— 5 x
START FTR
Add the new node after the node pointed by PTR. This is done by storing the address
of the new node in the NEXT part of PTR.
1 —1— 7 —T—» 3 —T > 4 —T— 2 —1—» 6 —1— 5 —r—>» 9 X
START PTR
e}We»‘xlcm‘g(
#3» SOMAIYA
» 5 VIDYAVIHAR UNIVERSITY
°/,> A3
“a\is¥? K J Somaiya College of Engineering

TRUST

Case 2- Insertion at end

Step 1: IF AVAIL = NULL
Write OVERFLOW
Go to Step 10
[END OF IF]
Step 2: SET NEW NODE = AVAIL

S5tep 3: S5ET AVAIL = AVAIL — > NEXT
S5tep 4: SET NEW NODE —>=> DATA = VAL
Step 5: SET NEW_NODE —= NEXT = NULL
Step 6: SET PTR = START
Step 7: Repeat Step 8 while PTR —=NEXT != NULL
S5tep 8: S5ET PTR = PTR — = NEXT
[END OF LOOP]
Step 9: SET PTR —=> NEXT = NEW _NODE
Step 18: EXIT

:** SOMAIYA
‘8 5 VIDYAVIHAR UNIVERSITY S .Gs

%aviel KJ Somaiya College of Engineering

&

|
L

4 = X X

¥

1 = T e

Y

ETART
Allocate memory +Tor the new node and initialize its DATA part to 9.

o

Teke two polnter wvariasbles PTR and PREFTR and initislize them with START
g0 that START, PTR, and PREPTR point to the first node of the list,

1| —q—= 7 = 3| | 4 = 2| —T > & = 5 | X

START
PTR
FREFTR

Move PTR and PREPTR wntil the DATA part of PREPTR = value of the node
after which insertion has to be done. PREPTR will always point to the

node just before PTH.

1 = 7 = 3 o I o = & w5 | x
START PREPTR PTR
1 - 7 = 3| | a - 2 | 1—| & = 5 | x
START PREPTR PTR
Add the new node in between the nodes polnted by PREPTR and PTR.
1| 44— 7| 4+—= 2 4| 4+—»| 2| |6 | 4—={ 5 | x
START PF.EF'TF.J’ T PR
é\ew;‘
5§@(G
‘8,/> MEW_NODE
(9/—1’8
1 w7 | 4+— 3 = g ol 4 | 4| 2| F— &8 | —

START

Inserting a Node After a Given Node in a Linked List

TRUST

Inserting a Node After a Given Node in a Linked List

St 1: IF AVAIL = NULL 2 .
=P i te OVERFLOW While loop: traverse through the
Cenp o o Step 12 linked list to reach the node that
Step 2: SET NEW_NODE = AVAIL has its value equal to NUM.
Step 3: SET AVAIL = AVATL — > NEXT We need tO reaCh thIS node
Step 4: SET NEW _NODE — = DATA = VAL .
Step 5: SET PTR = START because the new node will be
=] - = . .
-_-—,te.ﬁ 7: Repeat Steps 8 and 9 while PREPTR — > DATA Inserted after this node.
1= NUM . .
step 8: SET PREPTR - PTR Once we reach this node, in
Step 9: SET PTR = PTR—>NExt Steps 10 and 11, we change the
END OF LOOP . .
Step 10: PREPTR —>NEXT = NEW_NODE NEXT pOInterS_ln.SUCh a way
Sroh 13 ey NEWLNODE -~ NEXT = PR that new node Is inserted after
' the desired node.

#y5 SUIVIALYA :
(82& & VIDYAVIHAR UNIVERSITY SMGI

“a\is¥? K J Somaiya College of Engineering

Deleting a Node from a Linked List

Case 1: The first node is deleted.
Case 2: The last node Is deleted.
Case 3: The node after a given node is deleted.

é\eége Along (’bs
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2, N

' 3
“a\is¥? K J Somaiya College of Engineering

Deleting the First Node from a Linked List

1| =7 | —1+*3| >4 +>2|—T>o6| —T>5|X

START
Make START to point to the next node in sequence.

7|3 4| T*2| THE| T+ |X
START

#\e‘we Along (’2‘)9
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2, N

: 3
“a\is¥? K J Somaiya College of Engineering

Deleting a Node from a Linked List

Initialize PTR with
Step 1: IF 5TART = NULL START that stores the
Write UNDERFLOW address of the first node
Go to Step 5 of the list.
[END OF IF] Step 3, START is made
Step 2: SET PTR = START to point to the next node
Step 3: SET START = START —> NEXT in sequence and finally
StEFl 4+ FREE PTR the memory_OCCUpled by
Step 5: EXIT the node pointed by PTR
IS freed and returned to

the free pool.

#\e‘we Along l’i‘)s
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2, N

: 3
“a\is¥? K J Somaiya College of Engineering

Deleting the Last Node from a Linked

1| 7| 3| F—a| 2| 46| 4+—5]|x
START
Take pointer variables PTR and PREPTR which inmitially point to START.

1 ——»| 7 ——» 2 —1T— 4 —T—» 2 ——» b —1» 5 | X
START

PREPTR

FTR

Move PTR and PREPTR such that MEXT part of PTR = NULL. PREPTR always points
to the node just before the node pointed by PTR.

1| 7| 3| F—a| 2| 46| 45]|x
START PREPTR FTR
Set the NEXT part of PREPTR node to NULL.

1| —4—» 7| 4T 3| &—> 4| —4/—» 2| /> 6 | X

START

#\e‘we Along l’i‘)s
3y SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
S

”)
“a\is¥? K J Somaiya College of Engineering

Deleting the Last Node from a Linked

Step 1: IF START = NULL In.the whl_le loop, we take anothgr
Write UNDERFLOW pointer variable PREPTR such that it
Go to Step 8 always points to one node before the
[END OF IF]
Step 2: SET PTR = START PTR.
Step 3: Repeat Steps 4 and 5 while PTR —>NEXT != NULL Once we reach the last node and the
Step 4: SET PREPTR = FTR second last node, we set the NEXT
S5tep 5 SET PTR = PTR — NEXT :
(END OF LOOP] pointer of the §econd last node to
Step 6: SET PREPTR —>NEXT = NULL NULL, so that it now becomes the
Step 7: FREE PTR (new) last node of the linked list.
Step 8: EXIT The memory of the previous last node

_ L . L. . Is freed and returned back to the free
pool.

#\e‘we Along (’2‘)9
3y SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
) &

“a\is¥? K J Somaiya College of Engineering

Deleting the Node after a Given Node in a Linked List

1 » 7| ——] 3 = 4 »| 2 » & » 5 | x
START

Take pointer wariables PTR and PREPTR which imitially point to START.

1 = 7 > 3 = 4 - 2 = G = 5 X
START

PREFPTH

PTR

Mowe PREPTR and PTR such that PREPTR points to the node comtainimg WAL
and PTR points to the succeeding node.

1 = 7 > 3 = 4 = Z = G = 5 x
START PREFTR PTR
1 > 7 — = 3 = 4 = 2 > & = 5 x
START PREFTR PTR
1 = 7 = 3 =1 4 = =z = & = 5 x
START FREFTR PTR
Set the NEXT part of PREPTR to the NEXT part of PTR.
1 = 7 = 3 = 4 2 & > 5 x
START PREPTR PTR A
1 = 7 - 3 > 4 > & » 5 | x
3 SOMAIYA stawe

VIDYAVIHAR UNIVERSITY

5
&

@

[®)

R,
“a\is¥? K J Somaiya College of Engineering

TRUST

Deleting the Node after a Given Node in a Linked List

5tep 1: IF 5TART = NULL Step 2, we take a pointer variable PTR and initialize it
Write UNDERFLOW with START.
G0 to Step 10 In the while loop, we take another pointer variable
ctep 2 [Eﬁ EFHIE]STMT PREPTR such that it always points to one node before
St:E 3j SET PREP;H - PTR the PTR. Once we reach the node containing VAL and
Step 4: Repeat Steps 5 and 6 while PREPTR —=DATA 1= NUM the node sgcpeedlng it, we set the next po_lnter-of the
Step 5 SET PREPTR = PTR node containing VAL to the address contained in next
Step 6: SET PTR = PTR —> NEXT field of the node succeeding it. _ _ _
[END OF LOOP] The memory of the node succeeding the given node is
Step 7: SET TEMP = PTR freed and returned back to the free pool.
Step 8: SET PREPTR —» NEXT = PTR —>MNEXT
Step 9: FREE TEMP
Step 10: EXIT

#\e‘we Along (’2‘)9
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2, $

: $
“a\is¥? K J Somaiya College of Engineering

Circular Linked List

* In a singly linked list,
If we are at any node in the middle of the list, then it is
not possible to access nodes that precede the given
node.
This problem can be solved by slightly altering the structure
of singly linked list.

* In a singly linked list, next part (pointer to next node) of the

ast node is NULL,

« If we utilize this link to point to the first node then we can

reach preceding nodes.

& Tk o,
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/

%/jfa v\d\!"’§ K J Somai i i
ya College of Engineering

Circular Linked List

* In a circular linked list, the last node contains a pointer to the
first node of the list.

 We can have a circular singly linked list as well as a circular
doubly linked list.

* While traversing a circular linked list, we can begin at any
node and traverse the list in any direction, forward or
backward, until we reach the same node where we started.

* Thus, a circular linked list has no beginning and no ending.

START

7 ‘% SOMAIYA t
@ 5 VIDYAVIHAR UNIVERSITY SMGI
N

R 3
“%a\vie¥® K J Somaiya College of Engineering

Circular Linked List

* Widely used in operating systems for task maintenance.

 Where a circular linked list Is used?

 When we are surfing the Internet, we can use the Back button and
the Forward button to move to the previous pages that we have
already visited.

 How Is this done? The answer Is simple.

« A circular linked list is used to maintain the sequence of the Web

pages visited. Traversing this circular linked list either in forward or

packward direction helps to revisit the pages again using Back and

—orward buttons. Actually, this is done using either the circular stack

~or the circular queue.
ff SOMAIQRQ% Qomas

A 3
“%a\vie¥® K J Somaiya College of Engineering

Circular Linked List

We can traverse the list until we find the NEXT entry that contains the
address of the first node of the list. This denotes the end of the linked

list, that IS, the node that contains the address of the first node is
actually the last node of the list.

START

1 DATA NEXT
L > 1 - 4
2
3
4 E i
5
6
Fi L 8
8 L 10
#3 SOMAIYA °
%¢ & VIDYAVIHAR UNIVERSITY 10 0 1 SMGI

: 3
“a\is¥? K J Somaiya College of Engineering

Circular Linked List

« Two different linked lists are simultaneously maintained in the
memory. There Is no ambiguity in traversing through the list
because each list maintains a separate START pointer which gives
the address of the first node of the respective linked list.

 The remaining nodes are reached by looking at the value stored In
NEXT.

* The roll numbers of the students who have opted for Biology are

« S01, S03, S06, S08, S10, and S11.

« Similarly, the roll numbers of the students who chose Computer
Science are S02, S04, S05, S07, and S09.

#}» SOMAIYA
g VIDYAVIHAR UNIVERSITY SMGI

Ya \io¥® K J Somaiya College of Engineering

< 4
w
[®)
2

“%a Vioy?

73 SOMAIYA

5 VIDYAVIHAR UNIVERSITY

&

K J Somaiya College of Engineeri..y

Circular Linked List

START
1 | (Biology) Roll No NEXT
I -1 S01 3
- 2 S02 5
IE 3 S03 8
4
START - S04 -
{Computer
Science) =
= SOS 10
g SO6 11
9
10 S07 12
11 508 13
12 sS09 1
13 510 15
14
15 511 2

Circular Linked List

Inserting a New Node in a Circular Linked List

How a new node is added into an already existing linked list.

Two cases

Case 1: The new node is inserted at the beginning of the circular linked list.
Case 2: The new node is inserted at the end of the circular linked list.

#\e‘we Along l’i‘)s
3y SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2

N

: 3
“a\is¥? K J Somaiya College of Engineering

Inserting a Node at the Beginning of a Circular Linked List

1 —t= 7 —r= 3 —r= 4 — = 2 —t= 6 —t= 5
START A
Allocate memory for the new node and initialize its DATA part to 9.
9
Take a pointer wariable PTR that points to the START node of the list.
1 : = 3 = 4 = 2 = & »= 5
START, 4 PTR
Mowe PTR so that it now points to the last node of the list.
1 — = 7 —1~ 3 —1—= 4 — 1= 2 — = B — | wl 5
sTART 4 PTR
Add the new node in between PTR and START.
9 » 1 | —9= 7 — 3 — > 4 > 2 > 5 —— 5
A START PTR
Make START point to the new node.
9 > 1 > 7 —» 3 e o I > 2 > & > 5
START A
\edge Along l’bs
#3» SOMAIYA
» ~ VIDYAVIHAR UNIVERSITY
“a\is¥? K J Somaiya College of Engineering

TRUST

Inserting a Node at the Beginning of a Circular Linked List

Step 1: IF AVAIL = NULL

Write OVERFLOW « Step 1, we first check whether memory is available for the
Go to Step 11 new node. If the free memory has exhausted, then an
[END OF IF] OVERFLOW message is printed. Otherwise, if free memory
Step 2: SET NEW NODE = AVAIL cell is available, then we allocate space for the new node.
Step 3: SET AVAIL = AVAIL - NEXT « Set its DATA part with the given VAL and the NEXT part is
Step 4: SET NEW NODE —>DATA = VAL initialized with the address of the first node of the list, which is
Step 5: SET PTR = START stored in START.

* Now, since the new node is added as the first node of the
list, it will now be known as the START node, that is, the
START pointer variable will now hold the address of the

Step 6: Repeat Step 7 while PTR = NEXT != START
Step 7: PTR = PTR—> NEXT

[END OF L0OP] NEW_NODE. While inserting a node in a circular linked list,
Step 8: SET NEW_NODE —>NEXT = START we have to use a while loop to traverse to the last node of the
Step 9: SET PTR—>NEXT = NEW_NODE list. Because the last node contains a pointer to START, its
Step 10: SET START = NEW_NODE NEXT field is updated so that after insertion it points to the
Step 11: EXIT new node which will be now known as START.
Z#3% SOMAIYA ,
UO;¢ @ VIDYAVIHAR UNIVERSITY SMW

: $
“a\is¥? K J Somaiya College of Engineering

Inserting a Node at the end of a Circular Linked List

Lo L=

1| —»7 | >3 | —»4| —>2| >6| T>5

START A
Allocate memory for the new node and initialize its DATA part to 9.

9

Take a pointer variable PTR which will initially point to START.
1| =7 | 3| —/H4| 2| —»6| TH5
START, A PTR

Move PTR so that it now points to the last node of the list.

1| —»= 7| —»=3| —»=m4| —»=2| —>=6| —T»5
START A PTR
Add the new node after the node pointed by PTR.

1] —H 7| P3| —Pa| 2| 6| 5| 09
START A PTR

73 SOMAIYA

5 VIDYAVIHAR UNIVERSITY

K,

\)\OS

0,,{;,.1 Gs
\ &
“a\is¥? K J Somaiya College of Engineering

Inserting a Node at the end of a Circular Linked List

Step 1: IF AVAIL = NULL
Write OVERFLOW

Go to Step 10
[END OF IF]
Step 2: SET NEW_NODE = AVAIL

Step 3: SET AVAIL = AVAIL —>NEXT
Step 4: SET NEW NODE —>DATA = VAL
Step 5: SET NEW NODE —>NEXT = START
Step 6: SET PTR = START
Step 7: Repeat Step 8 while PTR —>NEXT != START
Step 8: SET PTR = PTR —> NEXT
[END OF LOOP]

Step 9: SET PTR->NEXT = NEW NODE
Step 10: EXIT

#3 SOMAIYA

0 5 VIDYAVIHAR UNIVERSITY
2 S

R, S
“a\is¥? K J Somaiya College of Engineering

In Step 6, we take a pointer variable PTR and
initialize it with START. That is, PTR now points to
the first node of the linked list.

In the while loop, we traverse through the linked
list to reach the last node. Once we reach the last
node, in Step 9, we change the NEXT pointer of
the last node to store the address of the new
node.

Remember that the NEXT field of the new node
contains the address of the first node which is
denoted by START.

Circular Linked List

Deleting a Node from a Circular Linked List
Case 1: The first node is deleted.
Case 2: The last node is deleted.

é\e‘\‘” Along (’2‘)9
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2, N

» R
“a\is¥? K J Somaiya College of Engineering

Circular Linked List

Deleting a Node from a Circular Linked List
Case 1: The first node is deleted.
Case 2: The last node is deleted.

é\e‘\‘” Along (’2‘)9
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2, N

» R
“a\is¥? K J Somaiya College of Engineering

Circular Linked List

Deleting a Node from a Circular Linked List
Case 1: The first node is deleted.
Case 2: The last node is deleted.

é\e‘\‘” Along (’2‘)9
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2, N

» R
“a\is¥? K J Somaiya College of Engineering

Deleting the first Node from a Circular Linked List

1 > 7 > 3 > 4 > 2 > b6 > 5

START +
Take a variable PTR and make it point to the START node of the list.

1| — 7| —>3| 14| —>2|—>6|—T>5
START, A PTR

Move PTR further so that it now points to the last node of the list.

1| — 7| 3| —>a| —>2|—»e6| —1»5
START A PTR

The NEXT part of PTR is made to point to the second node of the list
and the memory of the first node is freed. The second node becomes
the first node of the list.

7| 3| /> a| > 2| > 6| 45
START A PTR

#\e‘we Along (’2‘)9
3y SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
% &

”)
“a\is¥? K J Somaiya College of Engineering

Deleting the first Node from a Circular Linked List

 However, if there are nodes in the
Step 1: IF START = NULL . : :
Write UNDERFLOW linked list, then we use a pointer
Go to Step 8 variable PTR which will be used to
[END OF IF] traverse the list to ultimately reach
Step 2: S5ET PTR = S5TART the last node.
-] _ =
Step 4: SET PIR = PIR == NEXT pointer of the last node to point to
LEND OF LOOP] the second node of the circular
Step 5: SET PTR —> NEXT = START —> NEXT : ;
Step 6: FREE START linked list. In Step 6, the memory
Step 7: SET START = PTR —> NEXT OCCUpied by the first node is freed.
Step 8: EXIT « Step 7, the second node now

becomes the first node of the list

and its address is stored in the
‘“2%"9 SOMAIYA pointer variable START. Qs
%2 @ VIDYAVIHAR UNIVERSITY G G |

: $
“a\is¥? K J Somaiya College of Engineering

Circular Linked List

Deleting the last Node from a Circular Linked List

1| —» 7 —» 3 —> 4 »> 2 —» 6 | —» 5
START A
Take two pointers PREPTR and PTR which will initially point to START.

1| — 7| > 3| >4 > 2| —>» 6| —> 5

START +
PREPTR
PTR

Move PTR so that it points to the last node of the list. PREPTR will
always point to the node preceding PTR.

1| — =) 7| —1» 3| —|» 4 > 2 | — > 6| —»™ 5
START + PREPTR PTR

Make the PREPTR's next part store START node's address and free the
space allocated for PTR. Now PREPTR is the last node of the list.

5?;?%§% E;(:)IVGJQLI‘YUAK 1| —»> 7| —>» 3| > 4 > 2| — ™ 6

~ VIDYAVIHAR UNIVERSITY

(0]

N A START A PREPTR

K,

\))OS

'4\
%a Vis¥> K J Somaiya College of Engineerir

Circular Linked List

Deleting the last Node from a Circular Linked List

Step 1: IF START = NULL * InStep 2, we t_ake_a pointer variable PTR
Write UNDERFLOW and initialize it with START. PTR now
enp oF] T points to the first node of the list. |
Step 2: SET PTR = START * In the while loop, we take another pointer
Step 3: Repeat Steps 4 and 5 while PTR—>NEXT != START :
Step 4 SET PREPTR — PTR variable PREPTR such that PREPTR
Step 5: SET PTR = PTR—>NEXT always points to one node before PTR.
[END OF LOOP] Once we reach the last node and the
Step 6: SET PREPTR —>NEXT = START .
Step 7: FREE PTR second last node, we set the next pointer
Step 8: EXIT of the second last node to START, so that
it now becomes the (new) last node of the
linked list.

« The memory of the previous last node is
freed and returned to the free pool.

#\eﬁge Along l’i‘)@’
3 SOMAIYA
@ s VIDYAVIHAR UNIVERSITY SMG/
2, <

: $
“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

« A doubly linked list or a two-way linked list is a more complex type of linked list

which contains a pointer to the next as well as the previous node in the
sequence.

It consists of three parts—data, a pointer to the next node, and a pointer to the
previous node.

START

#3 SOMAIYA

w ~ VIDYAVIHAR UNIVERSITY

e
- -
“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

* A doubly linked list calls for more space per node and more expensive
basic operations.

* A doubly linked list provides the ease to manipulate the elements of the
list as it maintains pointers to nodes in both the directions (forward and
backward).

* The main advantage of using a doubly linked list is that it makes
searching twice as efficient.

*\zﬂg Along 4/%'

#p» SOMAIYA

@ 5 VIDYAVIHAR UNIVERSITY SMGI
2 $

A 3
“%a\vie¥® K J Somaiya College of Engineering

DOUBLY Linked List

The structure of a doubly linked list can be given as,

struct node

{

struct node *prev;

Int data;

struct node *next;

}

 The PREYV field of the first node and the NEXT field of the last node will contain
NULL.

« The PREV field is used to store the address of the preceding node, which
enables us to traverse the list in the backward direction.

R o s,

#p» SOMAIYA

@ 5 VIDYAVIHAR UNIVERSITY SMGI
2, $

: 3
“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

START
1 DATA PREV NEXT « A variable START is used to store the
5 1 H 1 3 address of the first node.

* In this example, START = 1, so the first
2 data is stored at address 1, which is H.
3 E 1 6 Since this is the first node, it has no
4 previous node and hence stores NULL in
5 the PREV field. We will traverse the list
6] 3 - untii we reach a position where the
NEXT entry contains NULL. This

7 L 6 9 denotes the end of the linked list.
8 « When we traverse the DATA and NEXT
9 0 7 -1 in this manner, we will finally see that the
linked list in the above example stores
OMAIYA characters that when put together form

VIDYAVIHAR UNIVERSITY th € Wo rd H E L LO ' SMW

k

@ tﬁ

A
J/a VAON

K J Somaiya College of Engineering

Inserting a New Node in a DOUBLY Linked List

Case 1: The new node is inserted at the beginning.
Case 2: The new node is inserted at the end.

Case 3: The new node is inserted after a given node.
Case 4. The new node is inserted before a given node.

#\e‘we Along l’i‘)s
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2, N

: 3
“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

Inserting a Node at the Beginning of a Doubly Linked List

= | R -
X |1) 7 ¢ 3 < 4 ¢ 2| X
START
Allocate memory for the new node and initialize its DATA part to 9 and PREV field to NULL.
X |9
Add the new node before the START node. Now the new node becomes the first node of
the list.
—— - —— > — 1 —
X1° — 1 -« / «— 3 - - < 2 | X
START
#§5 SOMAIYA [T
~ VIDYAVIHAR UNIVERSITY N
‘%\‘é\@ Oma™q

“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

Insertina a Node at the Beainnina of a Doubly Linked List

Step 1: IF AVAIL = NULL * In Step 1, we first check whether memory
Write OVERFLOW IS available for the new node. If the free
Go to Step 9 memory has exhausted, then an
[END OF IF] OVERFLOW message IS p”nted
Step 2: SET NEW_NODE = AVAIL Otherwise, if free memory cell is available,
Step 3: SET AVAIL = AVAIL > NEXT Sot ts DATA part with the given VAL and
Step 4: SET NEW_NODE —DATA = VAL the NEXT part is initialized with the
Step 5: SET NEW_NODE —>PREV = NULL address of the first node of the list, which
Step 6: SET NEW_NODE — NEXT = START is stored in START.
Step 7: SET START — PREV = NEW_NODE « Now, since the new node is added as the
Step 8: SET START = NEW_NODE first node of the list, it will now be known
Step 9: EXIT as the START node, that is, the START
pointer variable will now hold the address
of NEW_NODE.

& Tk “,

1% SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2 &

“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

Inserting a Node at the End of a Doubly Linked List

>] R R
X |1 [< 7| < 3| < 4| [2 | X

START
Allocate memory for the new node and initialize its DATA part to 9 and its

NEXT field to NULL.

9| X
Take a pointer variable PTR and make it point to the first node of the list.
—>1] —»]
X1 ” 7 ¢ 3 ¢ 4 ¢ 2 | X
START,PTR

Move PTR so that it points to the last node of the list. Add the new node after the
node pointed by PTR.
—> —> —> > —>»

X |1 ¢ 7 ¢ 3 ¢ 4 ¢ 2 ¢ 9 | X

START PTR

#\e‘we Along l’i‘)s
#§% SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY (}N 5,.1 Gs
$

”)
“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

Inserting a Node at the End of a Doubly Linked List

Step 1: IF AVAIL = NULL * In Step 6, we take a pointer variable PTR and
gglig g};gfﬁ” initialize it with START. In the while loop, we
[END OF IF] traverse through the linked list to reach the
Step 2: SET NEW_NODE = AVAIL last node.
Step 3: SET AVAIL = AVAIL —>NEXT « Once we reach the last node, in Step 9, we
Step 4: SET NEW_NODE —> DATA = VAL

Step 6: SET PTR = START store the address of the new node.

Step 7: Repeat Step 8 while PTR —>NEXT != NULL « Remember that the NEXT field of the new
Step SET PTR = PTR—> NEXT node contains NULL which signifies the end
Step 9:[::!2 E'T'Rliﬂ:é}ﬂ = NEW_NODE of the Iinked_list. .

Step 10: SET NEW_NODE > PREV = PTR The PR_EV f_leld of the NEW_N_ODE will be set
Step 11: EXIT so that it points to the node pointed by PTR

(now the second last node of the list).

2

3

4 change the NEXT pointer of the last node to
Step 5: S5ET NEW_NODE —= NEXT = NULL

6

7

8

#\eﬁge Along l’i‘)@’
3y SOMAIYA
@ s VIDYAVIHAR UNIVERSITY SMG/
) &

“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

Deleting a Node from a Doubly Linked List
Case 1: The first node is deleted.

Case 2: The last node is deleted.

Case 3: The node after a given node is deleted.
Case 4. The node before a given node is deleted.

#\e‘we Along l’i‘)s
3 SOMAIYA
@ 5 VIDYAVIHAR UNIVERSITY SMG/
2, N

: 3
“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

Deleting the First Node from a Doubly Linked List

—> —» —» —> —>
X |1 ¢ 3 ¢ 5 ¢ 7 ¢ 8 ¢ 91 X

START
Free the memory occupied by the first node of the list and make the second node of the

list as the START node.

X1 3

—] —
5 < 7 < 8 < 9 | X

>
<«

START

73 SOMAIYA

VIDYAVIHAR UNIVERSITY SMG/

K J Somaiya College of Engineering

< 4
Q &
[®)
N A3
Va iy

DOUBLY Linked List

Deleting the First Node from a Doubly Linked List

* In Step 1 of the algorithm, we check if the linked list

Step 1: IF START = NULL exists or not. If START = NULL, then it signifies
Write UNDERFLOW that there are no nodes in the list and the control is
Go to Step 6 transferred to the last statement of the algorithm.

[END OF IF] « However, if there are nodes in the linked list, then

Step 2: SET PTR = START we use a temporary pointer variable PTR that is set

Step 3: SET START = START — NEXT to point to the first node of the list.

Step 4: SET START —=PREV = NULL * For this, we initialize PTR with START that stores

Step 5: FREE PTR the address of the first node of the list.

Step 6: EXIT * In Step 3, START is made to point to the next node

in sequence and finally the memory occupied by
PTR (initially the first node of the list) is freed and
returned to the free pool.

/ ‘ OMAIYA ”
(83 {b§$ VIDYAVIHAR UNIVERSITY G o |

J’a VAON

K J Somaiya College of Engineering

DOUBLY Linked List

Deleting the last Node from a Doubly Linked List

—> —> > —> —>
X |1 ¢ 3 ¢ 5 < 7 < 8 ¢ 9 | X
START
Take a pointer variable PTR that points to the first node of the 1list.

—]]] >
X |1 ¢ 3 ¢ 5 ¢ 7 ¢ 8 ¢ 9 | X
START,PTR
Move PTR so that it now points to the last node of the list.

—]]] >
X140 e 3] e |°] Je— 7] Je— [8] je-+ |°|X
START PTR

Free the space occupied by the node pointed by PTR and store NULL in NEXT field of
its preceding node.

> > > >
X1 |g 3| < 5 | < 7 < 8 | X

START

#\eﬁge Along l’i‘)@’
3 SOMAIYA
@ s VIDYAVIHAR UNIVERSITY SMG/
2, <

: $
“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

Deleting the last Node from a Doubly Linked List

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 7
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Step 4 while PTR — NEXT != NULL
Step 4: SET PTR = PTR —> NEXT
[END OF LOOP]
Step 5: SET PTR — PREV — NEXT = NULL
Step 6: FREE PTR
Step 7: EXIT

OMAIYA

k
0 (3 VIDYAVIHAR UNIVERSITY
2 <
2 A
J’a VAON

K J Somaiya College of Engineering

In Step 2, we take a pointer variable PTR and
initialize it with START. That is, PTR now points to
the first node of the linked list.

The while loop traverses through the list to reach
the last node. Once we reach the last node, we can
also access the second last node by taking its
address from the PREYV field of the last node.

To delete the last node, we simply have to set the
next field of second last node to NULL, so that it
now becomes the (new) last node of the linked list.
The memory of the previous last node is freed and
returned to the free pool.

DOUBLY Linked List

Deleting the last Node from a Doubly Linked List

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 7
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Step 4 while PTR — NEXT != NULL
Step 4: SET PTR = PTR —> NEXT
[END OF LOOP]
Step 5: SET PTR — PREV — NEXT = NULL
Step 6: FREE PTR
Step 7: EXIT

OMAIYA

k
0 (3 VIDYAVIHAR UNIVERSITY
2 <
2 A
J’a VAON

K J Somaiya College of Engineering

In Step 2, we take a pointer variable PTR and
initialize it with START. That is, PTR now points to
the first node of the linked list.

The while loop traverses through the list to reach
the last node. Once we reach the last node, we can
also access the second last node by taking its
address from the PREYV field of the last node.

To delete the last node, we simply have to set the
next field of second last node to NULL, so that it
now becomes the (new) last node of the linked list.
The memory of the previous last node is freed and
returned to the free pool.

DOUBLY Linked List

Deleting the Node After a Given Node in a Doubly Linked List

> > > > >
X111 < 3 < 4 < 7 - 8 < 9| X
START
Take a pointer variable PTR and make it point to the first node of the list.
k. .
X1 < 3 < 4 < 7| < 8 < 9 | X
START,PTR

Move PTR further so that its data part is equal to the wvalue after which the node has
to be inserted.

> > > > >

X |1 < 3 < 4 < 7 < 8 < 9 | X
START PTR
Delete the node succeeding PTR.

o <« 3 <« 4 1A ! Al | 8 « 9 | X
START PTR

> r > r

X |1 < 3 < 4 < 8 ¢ 9 | X

START

*\ew‘ o z""@,
3+ SOMAIYA
@ s VIDYAVIHAR UNIVERSITY SMG/
2, <

: $
“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

Deleting the Node After a Given Node in a Doubly Linked List

Step 1: IF START = NULL * |In Step 2, we take a pointer variable PTR and
Write UNDERFLOW T . . .
Go to Step 9 Initialize it with START. That i1s, PTR now
[END OF IF] .) . .
Step 2: SET PTR = START points to the first node of the doubly I|r_1ked I|§t.
Step 3: Repeat Step 4 while PTR —>DATA != NUM « The while loop traverses through the linked list
Step 4: SET PTR = PTR —= NEXT .
(END OF LOOP] to reach the given node. Once we reach the
Step 5: SET TEMP = PTR —>PREV node containing VAL, the node succeeding it
S5tep 6: SET TEMP —= PREV —= NEXT = PTR .]
Step 7: SET PTR—>PREV = TEMP—> PREV can be easily accessed by using the address
Step 8: FREE TENP stored in its NEXT field.

 The NEXT field of the given node is set to
contain the contents in the NEXT field of the
succeeding node.

« The memory of the node succeeding the given

s SOMAIYA node is freed and returned to the free pool.

« VIDYAVIHAR UNIVERSITY Mﬁ/
<

Q ©

R, S
“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

Deleting the Node Before a Given Node in a Doubly Linked List

r > > 1 >
X1 ¢ 3 < 4 ¢ 7 ¢ 8 ¢ 9| X
START
Take a pointer variable PTR that points to the first node of the list.
X |1 < ? 3 < ? 4 < ? 7 ¢) 8 < 2 9| X
START,PTR
Move PTR further till its data part is equal to the value before which the node has
to be deleted.
X |1 Plia 3 Plid 4 Plia 7 > 8 - 9 | x
START PTR
Delete the node preceding PTR.
x| 1|, 3 A4 & 7 8 1 |9|x
START | TR
X1 - 4 «— 7 «— 8 -« 9| X
START
3 SOMAILYA
@ 5 VIDYAVIHAR UNIVERSITY
) &

'A\
“a\is¥? K J Somaiya College of Engineering

DOUBLY Linked List

Deleting the Node Before a Given Node in a Doubly Linked List

< 4
w
[®)
2

“%a Vioy?

S5tep 1: IF 5TART = NULL

Write UNDERFLOW

Go to Step 9
[END OF IF]

Step 2: 5ET PTR = START
Step 3: Repeat Step 4 while PTR —>DATA != NUM

Step 4: SET PTR = PTR —> NEXT
[END OF LOOP]

Step 5: SET TEMP = PTR — PREV

Step 6: SET TEMP — PREV — NEXT = PTR

Step 7: SET PTR —=PREV = TEMP — PREV

Step 8: FREE TEMP

S5tep 9: EXIT

73 SOMAIYA

5 VIDYAVIHAR UNIVERSITY

&

K J Somaiya College of Engineering

In Step 2, we take a pointer variable PTR
and initialize it with START. That is, PTR
now points to the first node of the linked
list.

The while loop traverses through the
linked list to reach the desired node.
Once we reach the node containing VAL,
the PREV field of PTR is set to contain
the address of the node preceding the
node which comes before PTR.

The memory of the node preceding PTR
Is freed and returned to the free pool.

#§ SOMAIYA .

5 VIDYAVIHAR UNIVERSITY
{3

®

[

P
Yavie? KJ Somaiya College of Engineering

Queries???

Thank you!!

TRUST

