
Linked List

Prof. Sushma Kadge
sushmakadge@somaiya.edu

Linked List
• A linked list, in simple terms, is a linear collection of data

elements. These data elements are called nodes.
• Linked list is a data structure which in turn can be used to

implement other data structures.
• Acts as a building block to implement data structures such as

stacks, queues, and their variations.

• A linked list can be perceived as a train or a sequence of nodes
in which each node contains one or more data fields and a
pointer to the next node.

Linked List
• Every node contains two parts, an integer and a pointer to the next

node.
• The left part of the node which contains data may include a simple

data type, an array, or a structure.
• The right part of the node contains a pointer to the next node (or

address of the next node in sequence).
• The last node will have no next node connected to it, so it will

store a special value called NULL.
• The NULL pointer is represented by X. Define NULL as –1.
• Every node contains a pointer to another node which is of the

same type, it is also called a self-referential data type.
• Pointer variable START that stores the address of the first node in

the list.

Linked List

struct node

{

int data;//information field

struct node *next; //Pointer that points to the structure itself, thus Linked

};

• Linked lists provide an efficient way of storing related data and perform
basic operations such as insertion, deletion, and updation of information
at the cost of extra space required for storing address of the next node.

Types of Linked List
• Singly Linked List
• Doubly Linked List
• Circular Linked List

Singly Linked list

• A singly linked list is the simplest type of linked list in which
every node contains some data and a pointer to the next node
of the same data type.

• All nodes are linked in sequential manner, Linear Linked List,
One way chain, It has beginning and end.

• A singly linked list allows traversal of data only in one way.

Linked List Operations
• Creation
• Insertion
• Deletion
• Traversal
• Searching

Creation of a new node

Creation of a new node

New node=temp

 struct node *tmp;

 tmp= (struct node *) malloc(sizeof(struct node));

 tmp->info=data;

 tmp->link=NULL;
Syntax-

tmp=(type_cast*)malloc(size)

tmp = name of pointer that holds the starting address of allocated

memory block

type_cast* = is the data type into which the returned pointer is to be

converted and Size = size of allocated memory block in bytes

Creating a Linked List

create_list(int data)
{
 struct node *q,*tmp;
 tmp= (struct node *) malloc(sizeof(struct node));
 tmp->info=data;
 tmp->link=NULL;

 if(start==NULL) /*If list is empty */
 {
 start=tmp;
 }
 else
 { /*Element inserted at the end */
 }
}/*End of create_list()*/

Traversing a Linked List:

• Traversing a linked list means accessing the nodes of the list

in order to perform some processing on them.

Algorithm for traversing a linked list

Step 1:
SET PTR = START// initialize PTR with the address of START
Step 2: Repeat Steps 3 and 4 while PTR != NULL
Step 3: Apply Process to PTR ->DATA// we apply the process

(e.g., print) to the current node, i.e, the node pointed by PTR.
Step 4: SET PTR = PTR NEXT
[END OF LOOP]
Step 5: EXIT

Algorithm to print(count) the number of nodes in a
linked list

Step 1:[INITIALIZE] SET COUNT=0
Step 2:[INITIALIZE] SET PTR=START
Step 3: Repeat Steps 4 and 5 while PTR!=NULL
Step 4: Set COUNT=COUNT +1
Step 5: Set PTR=PTR->LINK
[End of Loop]
Step 6:Print COUNT
Step 7:EXIT

Searching for a Value in a Linked List

Searching a linked list means to find a particular element in the
linked list.
A linked list consists of nodes which are divided into two parts,
So searching means finding whether a given value is present in
the information part of the node or not.
If it is present, the algorithm returns the address of the node
that contains the value.

Searching for a Value in a Linked List

Step 1:[INITIALIZE] SET POSITION=1
Step 2:[INITIALIZE] SET PTR=START
Step 3: Repeat Steps 4 while PTR!=NULL
Step 4: If Val=PTR->Data
 Print POSITION
 Exit
 [End of If]
 Set PTR=PTR->LINK
 Set POSITION=POSITION +1
 [End of Loop]
Step 5:If PTR=NULL
 Print Search Unsuccessful
 [End of If]
Step 6: Exit

Searching for a Value in a Linked List

search(int data)
{
 struct node *ptr = start;
 int pos = 1;
 while(ptr!=NULL)
 {
 if(ptr->info==data)
 {
 printf("Item %d found at position %d\n",data,pos);
 return;
 }
 ptr = ptr->link;
 pos++;
 }
 if(ptr == NULL)
 printf("Item %d not found in list\n",data);
}/*End of search()*/

Searching for a Value in a Linked List

Insertion into a Linked List

Insertion is possible in two ways:
 Insertion at Beginning
 Insertion in Between

Case 1- Insertion at Beginning

Case 1- Insertion at Beginning

• First check whether Memory is available for the new node.
• If the memory has exhausted then an Overflow message is

printed
• Else We allocate memory for the new node

Case 1- Insertion at Beginning

Step 1: IF AVAIL = NULL
Write OVERFLOW
Go to Step 7
[END OF IF]
Step 2: SET NEW NODE = AVAIL
Step 3: SET AVAIL = AVAIL-> NEXT
Step 4: SET NEWNODE -> DATA = VAL
Step 5: SET NEWNODE ->NEXT = START
Step 6: SET START = NEW NODE
Step 7: EXIT

Case 2- Insertion at end

Case 2- Insertion at end

Inserting a Node After a Given Node in a Linked List

Inserting a Node After a Given Node in a Linked List

While loop: traverse through the
linked list to reach the node that
has its value equal to NUM.
We need to reach this node
because the new node will be
inserted after this node.
Once we reach this node, in
Steps 10 and 11, we change the
NEXT pointers in such a way
that new node is inserted after
the desired node.

Deleting a Node from a Linked List

Case 1: The first node is deleted.
Case 2: The last node is deleted.
Case 3: The node after a given node is deleted.

Deleting the First Node from a Linked List

Deleting a Node from a Linked List

Initialize PTR with
START that stores the
address of the first node
of the list.
 Step 3, START is made
to point to the next node
in sequence and finally
the memory occupied by
the node pointed by PTR
is freed and returned to
the free pool.

Deleting the Last Node from a Linked

Deleting the Last Node from a Linked

In the while loop, we take another

pointer variable PREPTR such that it

always points to one node before the

PTR.

Once we reach the last node and the

second last node, we set the NEXT

pointer of the second last node to

NULL, so that it now becomes the

(new) last node of the linked list.

The memory of the previous last node

is freed and returned back to the free

pool.

Deleting the Node after a Given Node in a Linked List

Deleting the Node after a Given Node in a Linked List

Step 2, we take a pointer variable PTR and initialize it

with START.

 In the while loop, we take another pointer variable

PREPTR such that it always points to one node before

the PTR. Once we reach the node containing VAL and

the node succeeding it, we set the next pointer of the

node containing VAL to the address contained in next

field of the node succeeding it.

The memory of the node succeeding the given node is

freed and returned back to the free pool.

Circular Linked List
• In a singly linked list,

If we are at any node in the middle of the list, then it is

not possible to access nodes that precede the given

node.

This problem can be solved by slightly altering the structure

of singly linked list.

• In a singly linked list, next part (pointer to next node) of the

last node is NULL,

• If we utilize this link to point to the first node then we can

reach preceding nodes.

Circular Linked List
• In a circular linked list, the last node contains a pointer to the

first node of the list.

• We can have a circular singly linked list as well as a circular

doubly linked list.

• While traversing a circular linked list, we can begin at any

node and traverse the list in any direction, forward or

backward, until we reach the same node where we started.
• Thus, a circular linked list has no beginning and no ending.

Circular Linked List
• Widely used in operating systems for task maintenance.

• Where a circular linked list is used?

• When we are surfing the Internet, we can use the Back button and

the Forward button to move to the previous pages that we have

already visited.

• How is this done? The answer is simple.

• A circular linked list is used to maintain the sequence of the Web

pages visited. Traversing this circular linked list either in forward or

backward direction helps to revisit the pages again using Back and

Forward buttons. Actually, this is done using either the circular stack
or the circular queue.

Circular Linked List
We can traverse the list until we find the NEXT entry that contains the

address of the first node of the list. This denotes the end of the linked

list, that is, the node that contains the address of the first node is
actually the last node of the list.

Circular Linked List
• Two different linked lists are simultaneously maintained in the

memory. There is no ambiguity in traversing through the list

because each list maintains a separate START pointer which gives

the address of the first node of the respective linked list.

• The remaining nodes are reached by looking at the value stored in

NEXT.

• The roll numbers of the students who have opted for Biology are

• S01, S03, S06, S08, S10, and S11.

• Similarly, the roll numbers of the students who chose Computer

Science are S02, S04, S05, S07, and S09.

Circular Linked List

Circular Linked List
Inserting a New Node in a Circular Linked List

How a new node is added into an already existing linked list.

Two cases

Case 1: The new node is inserted at the beginning of the circular linked list.
Case 2: The new node is inserted at the end of the circular linked list.

Inserting a Node at the Beginning of a Circular Linked List
.

Inserting a Node at the Beginning of a Circular Linked List
.

• Step 1, we first check whether memory is available for the

new node. If the free memory has exhausted, then an

OVERFLOW message is printed. Otherwise, if free memory

cell is available, then we allocate space for the new node.

• Set its DATA part with the given VAL and the NEXT part is

initialized with the address of the first node of the list, which is

stored in START.

• Now, since the new node is added as the first node of the

list, it will now be known as the START node, that is, the

START pointer variable will now hold the address of the

NEW_NODE. While inserting a node in a circular linked list,

we have to use a while loop to traverse to the last node of the

list. Because the last node contains a pointer to START, its

NEXT field is updated so that after insertion it points to the

new node which will be now known as START.

Inserting a Node at the end of a Circular Linked List
.

Inserting a Node at the end of a Circular Linked List
.

• In Step 6, we take a pointer variable PTR and

initialize it with START. That is, PTR now points to

the first node of the linked list.

• In the while loop, we traverse through the linked

list to reach the last node. Once we reach the last

node, in Step 9, we change the NEXT pointer of

the last node to store the address of the new

node.

• Remember that the NEXT field of the new node

contains the address of the first node which is

denoted by START.

Circular Linked List
Deleting a Node from a Circular Linked List

Case 1: The first node is deleted.
Case 2: The last node is deleted.

Circular Linked List
Deleting a Node from a Circular Linked List

Case 1: The first node is deleted.
Case 2: The last node is deleted.

Circular Linked List
Deleting a Node from a Circular Linked List

Case 1: The first node is deleted.
Case 2: The last node is deleted.

Deleting the first Node from a Circular Linked List

Deleting the first Node from a Circular Linked List

• However, if there are nodes in the

linked list, then we use a pointer

variable PTR which will be used to

traverse the list to ultimately reach

the last node.

• In Step 5, we change the next

pointer of the last node to point to

the second node of the circular

linked list. In Step 6, the memory

occupied by the first node is freed.

• Step 7, the second node now

becomes the first node of the list

and its address is stored in the

pointer variable START.

Circular Linked List
Deleting the last Node from a Circular Linked List

Circular Linked List
Deleting the last Node from a Circular Linked List

• In Step 2, we take a pointer variable PTR

and initialize it with START. PTR now

points to the first node of the list.

• In the while loop, we take another pointer

variable PREPTR such that PREPTR

always points to one node before PTR.

Once we reach the last node and the

second last node, we set the next pointer

of the second last node to START, so that

it now becomes the (new) last node of the

linked list.

• The memory of the previous last node is

freed and returned to the free pool.

DOUBLY Linked List

• A doubly linked list or a two-way linked list is a more complex type of linked list

which contains a pointer to the next as well as the previous node in the

sequence.

• It consists of three parts—data, a pointer to the next node, and a pointer to the

previous node.

DOUBLY Linked List

• A doubly linked list calls for more space per node and more expensive

basic operations.

• A doubly linked list provides the ease to manipulate the elements of the

list as it maintains pointers to nodes in both the directions (forward and

backward).

• The main advantage of using a doubly linked list is that it makes

searching twice as efficient.

DOUBLY Linked List

The structure of a doubly linked list can be given as,

struct node

{

struct node *prev;

int data;

struct node *next;
};
• The PREV field of the first node and the NEXT field of the last node will contain

NULL.

• The PREV field is used to store the address of the preceding node, which
enables us to traverse the list in the backward direction.

DOUBLY Linked List

• A variable START is used to store the

address of the first node.

• In this example, START = 1, so the first

data is stored at address 1, which is H.

Since this is the first node, it has no

previous node and hence stores NULL in

the PREV field. We will traverse the list

until we reach a position where the

NEXT entry contains NULL. This

denotes the end of the linked list.

• When we traverse the DATA and NEXT

in this manner, we will finally see that the

linked list in the above example stores

characters that when put together form

the word HELLO.

Inserting a New Node in a DOUBLY Linked List

Case 1: The new node is inserted at the beginning.

Case 2: The new node is inserted at the end.

Case 3: The new node is inserted after a given node.
Case 4: The new node is inserted before a given node.

DOUBLY Linked List

Inserting a Node at the Beginning of a Doubly Linked List

DOUBLY Linked List

Inserting a Node at the Beginning of a Doubly Linked List

• In Step 1, we first check whether memory

is available for the new node. If the free

memory has exhausted, then an

OVERFLOW message is printed.

Otherwise, if free memory cell is available,

then we allocate space for the new node.

• Set its DATA part with the given VAL and

the NEXT part is initialized with the

address of the first node of the list, which

is stored in START.

• Now, since the new node is added as the

first node of the list, it will now be known

as the START node, that is, the START

pointer variable will now hold the address

of NEW_NODE.

DOUBLY Linked List

Inserting a Node at the End of a Doubly Linked List

DOUBLY Linked List

Inserting a Node at the End of a Doubly Linked List

• In Step 6, we take a pointer variable PTR and

initialize it with START. In the while loop, we

traverse through the linked list to reach the

last node.

• Once we reach the last node, in Step 9, we

change the NEXT pointer of the last node to

store the address of the new node.

• Remember that the NEXT field of the new

node contains NULL which signifies the end

of the linked list.

• The PREV field of the NEW_NODE will be set

so that it points to the node pointed by PTR

(now the second last node of the list).

DOUBLY Linked List

Deleting a Node from a Doubly Linked List

Case 1: The first node is deleted.

Case 2: The last node is deleted.

Case 3: The node after a given node is deleted.
Case 4: The node before a given node is deleted.

DOUBLY Linked List

Deleting the First Node from a Doubly Linked List

DOUBLY Linked List

Deleting the First Node from a Doubly Linked List

• In Step 1 of the algorithm, we check if the linked list

exists or not. If START = NULL, then it signifies

that there are no nodes in the list and the control is

transferred to the last statement of the algorithm.

• However, if there are nodes in the linked list, then

we use a temporary pointer variable PTR that is set

to point to the first node of the list.

• For this, we initialize PTR with START that stores

the address of the first node of the list.

• In Step 3, START is made to point to the next node

in sequence and finally the memory occupied by

PTR (initially the first node of the list) is freed and

returned to the free pool.

DOUBLY Linked List

Deleting the last Node from a Doubly Linked List

DOUBLY Linked List

Deleting the last Node from a Doubly Linked List

• In Step 2, we take a pointer variable PTR and

initialize it with START. That is, PTR now points to

the first node of the linked list.

• The while loop traverses through the list to reach

the last node. Once we reach the last node, we can

also access the second last node by taking its

address from the PREV field of the last node.

• To delete the last node, we simply have to set the

next field of second last node to NULL, so that it

now becomes the (new) last node of the linked list.

The memory of the previous last node is freed and

returned to the free pool.

DOUBLY Linked List

Deleting the last Node from a Doubly Linked List

• In Step 2, we take a pointer variable PTR and

initialize it with START. That is, PTR now points to

the first node of the linked list.

• The while loop traverses through the list to reach

the last node. Once we reach the last node, we can

also access the second last node by taking its

address from the PREV field of the last node.

• To delete the last node, we simply have to set the

next field of second last node to NULL, so that it

now becomes the (new) last node of the linked list.

The memory of the previous last node is freed and

returned to the free pool.

DOUBLY Linked List
Deleting the Node After a Given Node in a Doubly Linked List

DOUBLY Linked List

• In Step 2, we take a pointer variable PTR and

initialize it with START. That is, PTR now

points to the first node of the doubly linked list.

• The while loop traverses through the linked list

to reach the given node. Once we reach the

node containing VAL, the node succeeding it

can be easily accessed by using the address

stored in its NEXT field.

• The NEXT field of the given node is set to

contain the contents in the NEXT field of the

succeeding node.

• The memory of the node succeeding the given

node is freed and returned to the free pool.

Deleting the Node After a Given Node in a Doubly Linked List

DOUBLY Linked List
Deleting the Node Before a Given Node in a Doubly Linked List

DOUBLY Linked List
Deleting the Node Before a Given Node in a Doubly Linked List

• In Step 2, we take a pointer variable PTR

and initialize it with START. That is, PTR

now points to the first node of the linked

list.

• The while loop traverses through the

linked list to reach the desired node.

Once we reach the node containing VAL,

the PREV field of PTR is set to contain

the address of the node preceding the

node which comes before PTR.

• The memory of the node preceding PTR

is freed and returned to the free pool.

Queries???

Thank you!!

