
sushmakadge@somaiya.edu

swatimali@somaiya.edu

DATA STRUCTURES –

TYPES AND ADT

mailto:sushmakadge@somaiya.edu

Classification of Data

Structure

• Primitive Data Structure

 - are the basic DS that directly operate upon the

 machine instructions.

 - can store the value of only one data type.

 example, a char data structure can store only

 characters.

• Non-Primitive Data Structure
 - are more complicated DS

 - are derived from primitive DS.

 - they emphasize on grouping same or different data

 items with relationship between each data item.

 example, arrays. Lists and files come under this

 category

Classification of Data

Structure

Primitive data structures

• are the basic DS that directly operate

upon the machine instructions.

• can store the value of only one data type.

• example, a char data structure can store

 only characters.

Classification of Data

Structure

Data structure

Primitive DS Non-Primitive DS

Character Pointer Integer Float

Non-Primitive data structures

• are more complicated DS

• are derived from primitive DS.

• they emphasize on grouping same or

different data items with relationship

between each data item.

• example, arrays. Lists and files come under

this category

Classification of Data

Structure
Non-Primitive DS

Linear List Non-Linear List

Array

Link List Stack

Queue Graph Trees

Linear data structures

• The data structure where data items are

organized sequentially or linearily one after

another is called Linear data structures.

• Examples : Stack and Queue

Data structures and their representations

Stack

 Stack is a DS in which addition and deletion

of element is allowed at the same end called

as TOP of the stack.

 A Stack is LIFO(Last In First Out) DS where

element that added last will be retrieved first

Stack

Top Data4

Data3

Data2

Data1

Queue

 A Queue is a DS in which addition of

element is allowed at the one end called as

REAR and deletion is allowed at another end

called as FRONT.

 A Queue is FIFO(First In First Out) DS

where element that added first will be

retrieved first.

Queue

Front

Data4

Data3

Data2

Data1

Rear

List- A Flexible structure that can grow and

shrink on demand

D
Head

A M K

D A M K
Head

Nil

Nil

Temp

Temp

Non Linear data structures

• The data structure in which the data items

are not organized sequentially or in linear

fashion is called Non Linear data structures.

• Examples : Tree and Graph

Tree

 Tree is collection of nodes where these

nodes are arranged hierarchically and form a

parent child relationship

Tree

Image courtesy: ExamRadar.com

Graph

 A Graph is a collection of a finite number of

vertices and edges which connect these

vertices.

 Edges represent relationships among

vertices that stores data elements.

Binary Tree, Binary search tree and

Heaps

Image courtesy: ExamRadar.com

Graph

Image courtesy: Medium.com

Difference Linear and Non-linear Data Structures:

S.NO Linear Data Structure Non-linear Data Structure

1.

In a linear data structure, data elements are arranged in a linear order

where each and every element is attached to its previous and next

adjacent.

In a non-linear data structure, data elements are

attached in hierarchically manner.

2. In linear data structure, single level is involved.
Whereas in non-linear data structure, multiple levels

are involved.

3. Its implementation is easy in comparison to non-linear data structure.
While its implementation is complex in comparison to

linear data structure.

4.
In linear data structure, data elements can be traversed in a single run

only.

While in non-linear data structure, data elements

can’t be traversed in a single run only.

5. In a linear data structure, memory is not utilized in an efficient way.

While in a non-linear data structure, memory is

utilized in an efficient way.

6. Its examples are: array, stack, queue, linked list, etc. While its examples are: trees and graphs.

7.
Applications of linear data structures are mainly in application software

development.

Applications of non-linear data structures are in

Artificial Intelligence and image processing.

Abstract Data Type and Data

Structure
• Definition:-

• Abstract Data Types (ADTs) stores data
and allow various operations on the data to
access and change it.

• A mathematical model, together with
various operations defined on the model

• An ADT is a collection of data and
associated operations for manipulating that
data

Abstract Data Type

• ADTs support abstraction, encapsulation, and
information hiding.

• Abstraction is the structuring of a problem
into well-defined entities by defining their data
and operations.

• The principle of hiding the used data structure
and to only provide a well-defined interface is
known as encapsulation.

ADT Operations

Every Collection ADT should provide a way to:

• Create data structure

• add an item

• remove an item

• find, retrieve, or access an item

No single data structure works well for all purposes,
and so it is important to know the strengths and
limitations of several of them

ADT Syntax : Value Definition

Abstract typedef < ParameterType Parameter1,
ParameterType Parameter2……, ParameterType

ParameterN > ADTType

condition:

ADT Syntax : Operator definition

Abstract ReturnType OperationName
(ParameterType Parameter1, ParameterType
Parameter2……, ParameterType ParameterN)

Precondition:

Postcondition:

OR

Abstract ReturnType OperationName (Parameter1,
Parameter2……, ParameterN)

ParameterType Parameter1, ParameterType
Parameter2……, ParameterType ParameterN

Precondition:

Postcondition:

Abstract Data Structure

• Logical Definition

• Mathematical definition

• ADTs represent concepts

• Free from hardware or software dependency

• Operation name is assumed as the return

variable name

Abstraction

• The process of isolating implementation
details and extracting only essential
property from an entity

• Hence, abstractions in a program:
– Data abstraction :What operations are needed

by the data

– Functional abstraction : What is the purpose
of a function (algorithm)

Program = data + algorithms

Courtsey:

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf

ADTs

• Abstract Data Type (ADT):

– End result of data abstraction

– A collection of data together with a set of

operations on that data

– ADT = Data + Operations

• ADT is a language independent concept

– Different language supports ADT in different

ways

– In C++, the class construct is the best match
Courtsey:

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf

IS ADT a function?

Important Properties of ADT

• Specification: The supported operations of the

ADT

• Implementation: Data structures and actual

coding to meet the specification

Courtsey:

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf

ADT : Specification and Implementation

• Specification and implementation are
disjointed:
– One specification
– One or more implementations

• Using different data structure
• Using different algorithm

• Users of ADT:
– Aware of the specification only

• Usage only base on the specified operations

– Do not care / need not know about the actual
implementation

• i.e. Different implementation do not affect the user
Courtsey:

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf

Example ADT : String

• Definition: String is a sequence of

characters

• Operations:

– StringLength

– StringCompare

– StringConcat

– StringCopy

Example ADT : String

• Value Definition

Abstract Typedef StringType<<Chars>>

Condition: None (A string may contain n

characters where n=>0)

Example ADT : String

Operator Definition

 1. abstract Integer StringLength (StringType

String)

Precondition: None (A string may contain n

characters where n=>0)

Postcondition: Stringlength=

NumberOfCharacters(String)

Example ADT : String

Operator Definition

 2. abstract StringType StringConcat(

StringType String1, StringType String2)

Precondition: None

Postcondition: StringConcat=

String1+String2 / All the characters in

Strings1 immediately followed by all the

characters in String2 are returned as result.

Example ADT : String

Operator Definition

 3. abstract Boolean StringCompare(StringType

String1, StringType String2)

Precondition: None

Postcondition: StringCompare= True if

strings are equal, StringCompare= False if

they are unequal . (Function returns 1 if

strings are same, otherwise zero)

Example ADT : String

Operator Definition

 4. abstract StringType StringCopy(

StringType String1, StringType String2)

Precondition: None

Postcondition: StringCopy: String1= String2 /

All the characters in Strings2 are

copied/overwritten into String1.

Example ADT : Rational

Number
• Definition: expressed as

the quotient or fraction of two integers,

• Operations:

– IsEqualRational()

– MultiplyRationa()

– AddRational()

https://en.wikipedia.org/wiki/Integer

Example ADT : Rational

Number
• Value Definition

abstract TypeDef<integer, integer>

RATIONALType;

Condition: RATIONALType [1]!=0;

Example ADT : Rational Number Operator Definition

• abstract

RATIONALType

makerational<a,b>

integer a,b;

Preconditon: b!=0;

postcondition :

makerational [0] =a;

makerational [1] =b;

• abstract

RATIONALtype

add<a,b>

RATIONALType a,b;

Precondition: none

postcondition :

add[0] =

a[0]*b[1]+b[0]*a[1]

add[1] = a[1] * b[1]

• abstract

RATIONALType

mult<a, b>

 RATIONALType a,b;

Precondition: none

postcondition

mult[0] = = a[0]*b[0]

mult[1] = = a[1]*b[1]

• abstract RetunType?

Equal<a,b>

RATIONALType a,b;

Precondition: none

postcondition equal = =

|a[0] * b[1] = = b[0] * a[1];

Example ADT : Rational Number

Operator Definition

Abstract Data Types: Advantages

• Hide the unnecessary details by building

walls around the data and operations

– o that changes in either will not affect other

program components that use them

• Functionalities are less likely to change

• Localize rather than globalize changes

• Help manage software complexity

• Easier software maintenance
Courtsey:

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf

Courtsey:

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf

Courtsey:

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf

12.46

ADT Implementation

• Computer languages do not provide complex

ADT packages.

• To create a complex ADT, it is first

implemented and kept in a library.

• Abstract TypeDef StackType

• Condition:

Thank you

