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Classification of Data 

Structure 

• Primitive Data Structure  

    - are the basic DS that directly operate upon the      

             machine instructions. 

        - can store the value of only one data type.  

            example, a char data structure can store only     

            characters. 

• Non-Primitive Data Structure 
          - are more complicated DS  

         - are derived from primitive DS. 

         - they emphasize on grouping same or different data  

            items with relationship between each data item.  

                example, arrays. Lists and files come under this  

                category  
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Primitive data structures 

• are the basic DS that directly operate 

upon the machine instructions. 

•  can store the value of only one data type.  

•  example, a char data structure can store      

      only characters. 



Classification of Data 

Structure 

Data structure 

Primitive DS Non-Primitive DS 

Character Pointer Integer Float 



Non-Primitive data structures 

• are more complicated DS  

• are derived from primitive DS. 

•  they emphasize on grouping same or 

different data items with relationship 

between each data item.  

• example, arrays. Lists and files come under 

this category  

 



Classification of Data 

Structure 
Non-Primitive DS 

Linear List Non-Linear List 

Array 

Link List Stack 

Queue Graph Trees 



Linear data structures 

• The data structure where data items are 

organized sequentially or linearily one after 

another is called Linear data structures. 

 

• Examples : Stack and Queue 



Data structures and their representations 



Stack 

 Stack is a DS in which addition and deletion 

of element is allowed at the same end called 

as TOP of the stack.  

 

 A Stack is LIFO( Last In First Out) DS where 

element that added last will be retrieved first 
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Queue 

 A Queue is a DS in which addition  of 

element is allowed at the one end called as 

REAR and deletion is allowed at another end 

called as FRONT.  

 

 A Queue is FIFO( First In First Out) DS 

where element that added first will be 

retrieved first. 



Queue 

Front 

Data4 

Data3 

Data2 

Data1 

Rear 



List- A Flexible structure that can grow and 

shrink on demand 
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Non Linear data structures 

• The data structure in which the data items 

are not organized sequentially or in linear 

fashion is called Non Linear data structures. 

 

• Examples : Tree and Graph 



Tree 

 Tree is collection of nodes where these 

nodes are arranged hierarchically and form a 

parent child relationship 



Tree  

Image courtesy:  ExamRadar.com 



Graph 

 A Graph is a collection of a finite number of 

vertices and edges which connect these 

vertices. 

 Edges represent relationships among 

vertices that stores data elements. 



Binary Tree, Binary search tree and 

Heaps 

Image courtesy:  ExamRadar.com 



Graph  

Image courtesy:  Medium.com 



Difference  Linear and Non-linear Data Structures:  

 

S.NO Linear Data Structure Non-linear Data Structure 

1. 

In a linear data structure, data elements are arranged in a linear order 

where each and every element is attached to its previous and next 

adjacent. 

In a non-linear data structure, data elements are 

attached in hierarchically manner. 

2. In linear data structure, single level is involved. 
Whereas in non-linear data structure, multiple levels 

are involved. 

3. Its implementation is easy in comparison to non-linear data structure. 
While its implementation is complex in comparison to 

linear data structure. 

4. 
In linear data structure, data elements can be traversed in a single run 

only. 

While in non-linear data structure, data elements 

can’t be traversed in a single run only. 

5. In a linear data structure, memory is not utilized in an efficient way. 

While in a non-linear data structure, memory is 

utilized in an efficient way.  

  

6. Its examples are: array, stack, queue, linked list, etc. While its examples are: trees and graphs. 

7. 
Applications of linear data structures are mainly in application software 

development. 

Applications of non-linear data structures are in 

Artificial Intelligence and image processing. 



Abstract Data Type and Data 

Structure 
• Definition:- 

• Abstract Data Types (ADTs) stores data 
and allow various operations on the data to 
access and change it. 

• A mathematical model, together with 
various operations defined on the model 

• An ADT is a collection of data and 
associated operations for manipulating that 
data 



Abstract Data Type 

• ADTs support abstraction, encapsulation, and 
information hiding. 

• Abstraction is the structuring of a  problem 
into well-defined entities by defining their data 
and operations. 

• The principle of hiding the used data structure 
and to only provide a well-defined interface is 
known as encapsulation. 

 



ADT Operations  

Every Collection ADT should provide a way to: 

• Create data structure 

• add an item 

• remove an item 

• find, retrieve, or access an item 

 
No single data structure works well for all purposes, 
and so it is important to know the strengths and 
limitations of several of them 

 

 

 



ADT Syntax : Value Definition  

Abstract typedef < ParameterType Parameter1, 
ParameterType Parameter2……, ParameterType 

ParameterN > ADTType 

condition: 

 



ADT Syntax : Operator definition 

Abstract ReturnType OperationName 
(ParameterType Parameter1, ParameterType 
Parameter2……, ParameterType ParameterN) 

Precondition: 

Postcondition: 

OR 

Abstract ReturnType OperationName (Parameter1, 
Parameter2……, ParameterN) 

ParameterType Parameter1, ParameterType 
Parameter2……, ParameterType ParameterN 

Precondition: 

Postcondition: 

 

 



Abstract Data Structure 

• Logical Definition 

• Mathematical definition 

 

• ADTs represent concepts 

• Free from hardware or software dependency 

• Operation name is assumed as the return 

variable name 



Abstraction 

• The process of isolating implementation 
details and extracting only essential 
property from an entity 

• Hence, abstractions in a program:  
– Data abstraction :What operations are needed 

by the data 

– Functional abstraction :  What is the purpose 
of a function (algorithm) 

Program = data + algorithms 

Courtsey: 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf


ADTs 

• Abstract Data Type (ADT):  

– End result of data abstraction  

– A collection of data together with a set of 

operations on that data  

– ADT = Data + Operations  

• ADT is a language independent concept 

– Different language supports ADT in different 

ways 

– In C++, the class construct is the best match  
Courtsey: 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf


IS ADT a function? 



Important Properties of ADT 

• Specification:  The supported operations of the 

ADT 

• Implementation:  Data structures and actual 

coding to meet the specification 

 

Courtsey: 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf


ADT : Specification and Implementation 

• Specification and implementation are 
disjointed:  
– One specification  
– One or more implementations  

• Using different data structure  
• Using different algorithm  

• Users of ADT:  
– Aware of the specification only  

• Usage only base on the specified operations  

– Do not care / need not know about the actual 
implementation  

• i.e. Different implementation do not affect the user 
Courtsey: 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf


Example ADT : String 

• Definition: String is a sequence of 

characters 

• Operations: 

– StringLength 

– StringCompare 

– StringConcat 

– StringCopy 



Example ADT : String 

• Value Definition 

Abstract Typedef StringType<<Chars>> 

Condition: None (A string may contain n 

characters where n=>0) 

 



Example ADT : String 

Operator Definition 

 1. abstract Integer StringLength (StringType 

String) 

Precondition: None (A string may contain n 

characters where n=>0) 

Postcondition: Stringlength= 

NumberOfCharacters(String) 

 



Example ADT : String 

Operator Definition 

 2. abstract StringType StringConcat( 

StringType String1, StringType String2) 

Precondition: None 

Postcondition: StringConcat= 

String1+String2 / All the characters in 

Strings1 immediately followed by all the 

characters in String2 are returned as result. 

 

 



Example ADT : String 

Operator Definition 

 3. abstract Boolean StringCompare( StringType 

String1, StringType String2) 

Precondition: None  

Postcondition: StringCompare= True if 

strings are equal, StringCompare= False if 

they are unequal . (Function returns 1 if 

strings are same, otherwise zero) 

 

 

 



Example ADT : String 

Operator Definition 

 4. abstract StringType StringCopy( 

StringType String1, StringType String2) 

Precondition: None 

Postcondition: StringCopy: String1= String2 / 

All the characters in Strings2 are 

copied/overwritten into String1.  

 

 



Example ADT : Rational 

Number 
• Definition:  expressed as 

the quotient or fraction of two integers, 

• Operations: 

– IsEqualRational() 

– MultiplyRationa() 

– AddRational() 

https://en.wikipedia.org/wiki/Integer


Example ADT : Rational 

Number 
• Value Definition 

abstract  TypeDef<integer, integer> 

RATIONALType;  

Condition: RATIONALType [1]!=0; 



Example ADT : Rational Number Operator Definition 

• abstract 

RATIONALType 

makerational<a,b>  

integer a,b;  

Preconditon:  b!=0;  

postcondition :  

makerational [0] =a; 

makerational [1] =b;  

• abstract 

RATIONALtype 

add<a,b> 

RATIONALType a,b;  

Precondition: none 

postcondition :  

add[0] = 

a[0]*b[1]+b[0]*a[1]  

add[1] =  a[1] * b[1]  

 



• abstract 

RATIONALType 

mult<a, b> 

 RATIONALType a,b;  

Precondition: none 

postcondition  

mult[0] = = a[0]*b[0]  

mult[1] = = a[1]*b[1]  

• abstract  RetunType?  

Equal<a,b> 

RATIONALType a,b;  

Precondition: none 

postcondition equal = = 

|a[0] * b[1] = = b[0] * a[1]; 

 

Example ADT : Rational Number 

Operator Definition 

 



Abstract Data Types: Advantages 

• Hide the unnecessary details by building 

walls around the data and operations  

– o that changes in either will not affect other 

program components that use them  

• Functionalities are less likely to change  

• Localize rather than globalize changes  

• Help manage software complexity  

• Easier software maintenance 
Courtsey: 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf


Courtsey: 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf


Courtsey: 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5%20-

%20ADT.pdf 

https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf
https://www.comp.nus.edu.sg/~stevenha/cs1020e/lectures/L5 - ADT.pdf


12.46 

ADT Implementation 

• Computer languages do not provide complex 

ADT packages.  

• To create a complex ADT, it is first 

implemented and kept in a library.  



• Abstract TypeDef StackType 

• Condition: 



Thank you 


