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• The tree is named AVL in honour of its inventors. 

• AVL tree is a self-balancing binary search tree invented by G.M. 
Adelson-Velsky and E.M. Landis in 1962. 

AVL Tree 



 
AVL Tree  

 • In an AVL tree, the heights of the two sub-trees of a node may differ 
by at most one. Due to this property, the AVL tree is also known as a 
height-balanced tree.  

• The structure of an AVL tree is the same as that of a binary search 
tree but with a little difference. In its structure, it stores an additional 
variable called the BalanceFactor.  

• The balance factor of a node is calculated by subtracting the height of 
its right sub-tree from the height of its left sub-tree.  

• A binary search tree in which every node has a balance factor of –1, 0, 
or 1 is said to be height balanced.  

• Balance factor = Height (left sub-tree) – Height (right sub-tree) 



 
AVL Tree  

 • A node with any other balance factor is considered to be unbalanced 
and  requires rebalancing of the tree. 

• If the balance factor of a node is 1, then it means that the left sub-
tree of the tree is one level higher than that of the right sub-tree. 
Such a tree is therefore called as a left-heavy tree. 

• If the balance factor of a node is 0, then it means that the height of 
the left sub-tree (longest path in the left sub-tree) is equal to the 
height of the right sub-tree. 

• If the balance factor of a node is –1, then it means that the left sub-
tree of the tree is one level lower than that of the right sub-tree. Such 
a tree is therefore called as a right-heavy tree. 



 
AVL Tree  

 
(a) Left-heavy AVL tree, (b) right-heavy tree, (c) balanced tree 



 
AVL Tree  

 • The trees given in Fig.  are typical candidates of AVL trees because the 
balancing factor of every node is either 1, 0, or –1.  

• However, insertions and deletions from an AVL tree may disturb the 
balance factor of the nodes and, thus, rebalancing of the tree may 
have to be done.  

• The tree is rebalanced by performing rotation at the critical node. 

•  There are four types of rotations: 

• LL rotation, RR rotation, LR rotation, and RL rotation.  

• The type of rotation that has to be done will vary depending on the 
particular situation.  



 
Operations on AVL Trees  

 • Searching for a Node in an AVL Tree 

• Searching in an AVL tree is performed exactly the same way as it is 
performed in a binary search tree.  

• Since the operation does not modify the structure of the tree, no 
special provisions are required. 

 



 
Inserting a New Node in an AVL Tree 

 • Insertion in an AVL tree is also done in the same way as it is done in a 
binary search tree.  

• In the AVL tree, the new node is always inserted as the leaf node. But the 
step of insertion is usually followed by an additional step of rotation.  

• Rotation is done to restore the balance of the tree. 

• However, if insertion of the new node does not disturb the balance factor, 
that is, if the balance factor of every node is still –1, 0, or 1, then rotations 
are not required. 

• During insertion, the new node is inserted as the leaf node, so it will always 
have a balance factor equal to zero. The only nodes whose balance factors 
will change are those which lie in the path between the root of the tree 
and the newly inserted node. 

 



 
Inserting a New Node in an AVL Tree 

 • The possible changes which may take place in any node on the 
path are as follows: 

• Initially, the node was either left- or right-heavy and after 
insertion, it becomes balanced. 

• Initially, the node was balanced and after insertion, it becomes 
either left- or right-heavy. 

• Initially, the node was heavy (either left or right) and the new 
node has been inserted in the heavy sub-tree, thereby creating 
an unbalanced sub-tree. Such a node is said to be a critical node. 



 
Inserting a New Node in an AVL Tree 

 • Consider the AVL tree given in Fig. If we insert a new node with the 
value 30, then the new tree will still be balanced and no rotations will 
be required in this case. The tree after inserting node 30. 



 
Inserting a New Node in an AVL Tree 

 • Let us take another example to see how insertion can disturb the 
balance factors of the nodes and how rotations are done to restore 
the AVL property of a tree. After inserting a new node with the value 
71, the new tree will be as shown in Fig. b 



 
Inserting a New Node in an AVL Tree 

 • Note that there are three nodes in the tree that have their balance factors 
2, –2, and –2, thereby disturbing the AVLness of the tree.  

• So, here comes the need to perform rotation.  

• To perform rotation, our first task is to find the critical node.  

• Critical node is the nearest ancestor node on the path from the inserted 
node to the root whose balance factor is neither –1, 0, nor 1. Critical node 
is 72.  

• The second task in rebalancing the tree is to determine which type of 
rotation has to be done.  

• There are four types of rebalancing rotations and application of these 
rotations depends on the position of the inserted node with reference to 
the critical node. 



 
Inserting a New Node in an AVL Tree 

 • The four categories of rotations are: 

• LL rotation : The new node is inserted in the left sub-tree of the left sub-
tree of the critical node. 

• RR rotation :  The new node is inserted in the right sub-tree of the right 
sub-tree of the critical node. 

• LR rotation : The new node is inserted in the right sub-tree of the left 
sub-tree of the critical node. 

• RL rotation : The new node is inserted in the left sub-tree of the right 
sub-tree of the critical node. 



 
Inserting a New Node in an AVL Tree 

 • LL Rotation: First, we will see where and how LL rotation is applied. 

While rotation, node 
B becomes the root, 
with T1 and A as its 
left and right child.  
T2 and T3 become 
the left and right 
sub-trees of A. 



 
Inserting a New Node in an AVL Tree 

 • Consider the AVL tree given in Fig.  and insert 18 into it. 



 
Inserting a New Node in an AVL Tree 

 • RR Rotation: First, we will see where and how RR rotation is applied. 

While rotation, node 
B becomes the root, 
with A and T3 as its 
left and right child. 
T1 and T2 become 
the left and right 
sub-trees of A. 



 
Inserting a New Node in an AVL Tree 

 • Consider the AVL tree given in Fig.  and insert 89 into it. 



 
Inserting a New Node in an AVL Tree 

 • LR Rotations :  Lets see how LR rotation is done to rebalance the tree. 

While rotation, node 
C becomes the root, 
with B and A as its 
left and right  
children. Node B has 
T1 and T2 as its left 
and right sub-trees 
and T3 and T4 
become the left and 
right sub-trees of 
node A. 



 
Inserting a New Node in an AVL Tree 

 • Consider the AVL tree given in Fig.  and insert 37 into it. 



 
Inserting a New Node in an AVL Tree 

 • RL Rotations :  Lets see how RL rotation is done to rebalance the tree. 

While rotation, node 
C becomes the root, 
with A and B  as its 
left and right  
children. Node A has 
T1 and T2 as its left 
and right sub-trees 
and T3 and T4 
become the left and 
right sub-trees of 
node B. 



 
Inserting a New Node in an AVL Tree 

 • Construct an AVL tree by inserting the following elements in the given 
order. 63, 9, 19, 27, 18, 108, 99, 81. 



 
Inserting a New Node in an AVL Tree 

 • Construct an AVL tree by inserting the following elements in the given 
order. 63, 9, 19, 27, 18, 108, 99, 81. 



 
Inserting a New Node in an AVL Tree 

 • Construct an AVL tree by inserting the following elements in the given 
order. 63, 9, 19, 27, 18, 108, 99, 81. 



 
Deleting a Node from an AVL Tree 

 • Deletion of a node in an AVL tree is similar to that of binary search trees. 
Deletion may disturb the AVLness of the tree, so to rebalance the AVL 
tree, we need to perform rotations.  

• There are two classes of rotations that can be performed on an AVL tree 
after deleting a given node. These rotations are R rotation and L rotation. 

• On deletion of node X from the AVL tree, if node A becomes the critical 
node (closest ancestor node on the path from X to the root node that 
does not have its balance factor as 1, 0, or –1), then 

• the type of rotation depends on whether X is in the left sub-tree of A or in 
its right sub-tree.  



 
Deleting a Node from an AVL Tree 

 • If the node to be deleted is present in the left sub-tree of A, then L 
rotation is applied, else if X is in the right sub-tree, R rotation is 
performed. 

• Further, there are three categories of L and R rotations.  

• The variations of L rotation are L–1, L0, and L1 rotation.  

• Correspondingly for R rotation, there are R0, R–1, and R1 rotations.  

• We will discuss only R rotation. L rotations are the mirror images of R 
rotations. 



 
Deleting a Node from an AVL Tree 

 • R0 Rotation : Let B be the root of the left or right sub-tree of A (critical 
node). R0 rotation is applied if the balance factor of B is 0. 

During the process of 
rotation, node B 
becomes the root, 
with T1 and A as its 
left and right child. 
T2 and T3 become 
the left and right 
sub-trees of A. 



 
Deleting a Node from an AVL Tree 

 • Consider the AVL tree given in Fig. and delete 72 from it. 



 
Deleting a Node from an AVL Tree 

 • R1 Rotation : Let B be the root of the left or right sub-tree of A (critical 
node). R1 rotation is applied if the balance factor of B is 1. 

•  Observe that R0 and R1 rotations are similar to LL rotations; the only 
difference is that R0 and R1 rotations yield different balance factors. 

During the process of 
rotation, node B 
becomes the root, with T1 
and A as its left and 
right children. T2 and T3 
become the left and 
right sub-trees of A. 



 
Deleting a Node from an AVL Tree 

 • Consider the AVL tree given in Fig.  and delete 72 from it. 



 
Deleting a Node from an AVL Tree 

 • R–1 Rotation : Let B be the root of the left or right sub-tree of A (critical 
node). R–1 rotation is applied if the balance factor of B is –1. Observe that 
R–1 rotation is similar to LR rotation. This is illustrated in Fig. 

 

 



 
Deleting a Node from an AVL Tree 

 • Consider the AVL tree given in Fig.  and delete 72 from it. 

 



 
Deleting a Node from an AVL Tree 

 • Delete nodes 52, 36, and 61 from the AVL tree given in Fig. 

 



 
Deleting a Node from an AVL Tree 

  



Pros and Cons of AVL Trees 
• Arguments for AVL trees: 

1. All operations logarithmic worst-case because trees are always  balanced 

2. Height balancing adds no more than a constant factor to the speed of 
insert and delete 

 

• Arguments against AVL trees: 

1. Difficult to program & debug [but done once in a library!] 

2. More space for height field 

3. Asymptotically faster but rebalancing takes a little time 

4. If amortized logarithmic time is enough, use splay trees (also in the text, not 
covered in this class) 

 


