

K. J. Somaiya College of Engineering, Mumbai-77

(A constituent College of Somaiya Vidyavihar University)

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2022																				Page	-	

Title: Implementation of hashing concept

Objective: To understand various hashing methods

Expected Outcome of Experiment:

CO Outcome

CO4 Demonstrate sorting and searching methods.

Websites/books referred:

Abstract: -

(Define Hashing ,hash function, list collision handling methods)

Hashing is a technique or process of mapping keys, and values into the hash table by
using a hash function. It is done for faster access to elements. The efficiency of
mapping depends on the efficiency of the hash function used.

A function that converts a given big phone number to a small practical integer value.
The mapped integer value is used as an index in hash table. So, in simple terms we can
say that a hash function is used to transform a given key into a specific slot index. Its
main job is to map each and every possible key into a unique slot index. If every key is
mapped into a unique slot index, then the hash function is known as a perfect hash
function. It is very difficult to create a perfect hash function but our job as a
programmer is to create such a hash function with the help of which the number of
collisions are as few as possible. Collision is discussed ahead.

Batch: A3 Roll. No.: 16010121045

Experiment:

Grade: AA / AB / BB / BC / CC / CD /DD

K. J. Somaiya College of Engineering, Mumbai-77

(A constituent College of Somaiya Vidyavihar University)

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2022																				Page	-	

A good hash function should have following properties:

1. Efficiently computable.

2. Should uniformly distribute the keys (Each table position equally likely for

each).

3. Should minimize collisions.

4. Should have a low load factor(number of items in table divided by size of

the table).

Collision Handling: Since a hash function gets us a small number for a big key, there is

possibility that two keys result in same value. The situation where a newly inserted key

maps to an already occupied slot in hash table is called collision and must be handled

using some collision handling technique. Following are the ways to handle collisions:

● Chaining:The idea is to make each cell of hash table point to a linked list of

records that have same hash function value. Chaining is simple, but requires

additional memory outside the table.

● Open Addressing: In open addressing, all elements are stored in the hash

table itself. Each table entry contains either a record or NIL. When

searching for an element, we examine the table slots one by one until the

desired element is found or it is clear that the element is not in the table.

K. J. Somaiya College of Engineering, Mumbai-77

(A constituent College of Somaiya Vidyavihar University)

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2022																				Page	-	

Example:

Let a hash function H(x) maps the value x at the index x%10 in an Array. For
example if the list of values is [11,12,13,14,15] it will be stored at positions
{1,2,3,4,5} in the array or Hash table respectively.

K. J. Somaiya College of Engineering, Mumbai-77

(A constituent College of Somaiya Vidyavihar University)

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2022																				Page	-	

Code and output screenshots:

/**
 * The function insert() inserts a key-value pair into the
hash table.
 *
 * The function delete() deletes a key-value pair from the
hash table.
 *
 * The function find() returns the value of a key-value pair
from the hash table.
 *
 * The function main() is the driver function.
 *
 * @param key The key to be inserted.
 * @param V The value to be inserted.
 */
#include <stdio.h>
#include <stdlib.h>

struct HashNode
{
 int key;
 int value;
};

const int capacity = 20;
int size = 0;

struct HashNode **arr;
struct HashNode *dummy;
void insert(int key, int V)
{

 struct HashNode *temp = (struct HashNode
*)malloc(sizeof(struct HashNode));
 temp->key = key;

K. J. Somaiya College of Engineering, Mumbai-77

(A constituent College of Somaiya Vidyavihar University)

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2022																				Page	-	

 temp->value = V;

 int hashIndex = key % capacity;

 while (arr[hashIndex] != NULL && arr[hashIndex]->key !=
key && arr[hashIndex]->key != -1)
 {
 hashIndex++;
 hashIndex %= capacity;
 }

 if (arr[hashIndex] == NULL || arr[hashIndex]->key == -1)
 size++;

 arr[hashIndex] = temp;
}

int delete (int key)
{
 int hashIndex = key % capacity;

 while (arr[hashIndex] != NULL)
 {
 if (arr[hashIndex]->key == key)
 {
 arr[hashIndex] = dummy;

 size--;

 return 1;
 }
 hashIndex++;
 hashIndex %= capacity;
 }

 return 0;
}

K. J. Somaiya College of Engineering, Mumbai-77

(A constituent College of Somaiya Vidyavihar University)

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2022																				Page	-	

int find(int key)
{

 int hashIndex = (key % capacity);

 int counter = 0;

 while (arr[hashIndex] != NULL)
 {

 int counter = 0;
 if (counter++ > capacity)
 break;

 if (arr[hashIndex]->key == key)
 return arr[hashIndex]->value;

 hashIndex++;
 hashIndex %= capacity;
 }
 return -1;
}

int main()
{
 arr = (struct HashNode **)malloc(sizeof(struct HashNode
*) * capacity);
 for (int i = 0; i < capacity; i++)
 arr[i] = NULL;

 dummy = (struct HashNode *)malloc(sizeof(struct
HashNode));

 dummy->key = -1;
 dummy->value = -1;

 insert(1, 5);

K. J. Somaiya College of Engineering, Mumbai-77

(A constituent College of Somaiya Vidyavihar University)

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2022																				Page	-	

 insert(2, 15);
 insert(3, 20);
 insert(4, 7);

 if (find(4) != -1)
 printf("Value of Key 4 = %d\n", find(4));
 else
 printf("Key 4 does not exists\n");

 if (delete (4))
 printf("Node value of key 4 is deleted
successfully\n");
 else
 printf("Key does not exists\n");

 if (find(4) != -1)
 printf("Value of Key 4 = %d\n", find(4));
 else
 printf("Key 4 does not exists\n");
}

Output:

K. J. Somaiya College of Engineering, Mumbai-77

(A constituent College of Somaiya Vidyavihar University)

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2022																				Page	-	

Conclusion: -

The given experiment was successfully completed and implemented. In this experiment
we learnt about Hashing and algorithms related to hashing and also coded for the same
in C language.

Post lab questions-
a. Compare and contrast various collision handling methods.

Separate Chaining is a hashing technique in which there is a list to handle collisions.
So there are many elements at the same position and they are in a list. The sequences
are maintained in a linked list.

Linear Probing is a simple collision resolution technique for resolving collisions in
hash tables, data structures for maintaining collection of values in a hash table. If there
is a collision for the position of the key value then the linear probing technique assigns
the next free space to the value.

Quadratic probing also is a collision resolution mechanism which takes in the initial
hash which is generated by the hashing function and goes on adding a successive value
of an arbitrary quadratic polynomial from a function generated until an open slot is
found in which a value is placed.

Double hashing is also a collision resolution technique when two different values to be

searched for produce the same hash key.It uses one hash value generated by the hash

function as the starting point and then increments the position by an interval which is

decided using a second, independent hash function. Thus here there are 2 different hash

functions.

K. J. Somaiya College of Engineering, Mumbai-77

(A constituent College of Somaiya Vidyavihar University)

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2022																				Page	-	

b. Store the given numbers in bucket of size 16, resolve the collisions if any
with

a. Linear probing
 20, 33, 65, 23, 11, 32, 78, 64, 3, 87, 10, 7

Index Value
0 32
1 33
2 65
3 64
4 20
5 3
6 0
7 87
8 7
9 0

10 10
11 11
12 0
13 0
14 78
15 0

