
K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

Title: Implementation of Linked List

Objective: To understand the use of linked list as data structures for various application.

Expected Outcome of Experiment:

CO Outcome

CO 2 Apply linear and non-linear data structure in application development.

Books/ Journals/ Websites referred:

Introduction:

Define Linked List

A linked list is a sequence of data structures, which are connected together via

links. Linked List is a sequence of links which contains items. Each link contains

a connection to another link. Linked list is the second most-used data structure

after array.

Types of linked list:

● Singly linked lists

● Doubly linked lists

● Circular linked lists

Batch: A3 Roll No.: 16010121045

Experiment No. 6

Grade: AA / AB / BB / BC / CC / CD /DD

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

● Circular doubly linked lists

Algorithm for creation, insertion, deletion, traversal and searching an element in

assigned linked list type:

Singly Linked List

Insertion

In a single linked list, the insertion operation can be performed in three ways. They are
as follows...

1. Inserting At Beginning of the list
2. Inserting At End of the list
3. Inserting At Specific location in the list

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the single linked
list...

• Step 1 - Create a newNode with given value.
• Step 2 - Check whether list is Empty (head == NULL)
• Step 3 - If it is Empty then, set newNode→next = NULL and head = newNode.
• Step 4 - If it is Not Empty then,
set newNode→next = head and head = newNode.

Inserting At End of the list

We can use the following steps to insert a new node at end of the single linked list...

• Step 1 - Create a newNode with given value and newNode → next as NULL.
• Step 2 - Check whether list is Empty (head == NULL).
• Step 3 - If it is Empty then, set head = newNode.
• Step 4 - If it is Not Empty then, define a node pointer temp and initialize
with head.
• Step 5 - Keep moving the temp to its next node until it reaches to the last node
in the list (until temp → next is equal to NULL).
• Step 6 - Set temp → next = newNode.

Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the single linked
list...

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

• Step 1 - Create a newNode with given value.
• Step 2 - Check whether list is Empty (head == NULL)
• Step 3 - If it is Empty then, set newNode →
next = NULL and head = newNode.
• Step 4 - If it is Not Empty then, define a node pointer temp and initialize
with head.
• Step 5 - Keep moving the temp to its next node until it reaches to the node after
which we want to insert the newNode (until temp1 → data is equal to location, here
location is the node value after which we want to insert the newNode).
• Step 6 - Every time check whether temp is reached to last node or not. If it is
reached to last node then display 'Given node is not found in the list!!! Insertion not
possible!!!' and terminate the function. Otherwise move the temp to next node.
• Step 7 - Finally, Set 'newNode → next = temp → next' and 'temp →
next = newNode'

Deletion

In a single linked list, the deletion operation can be performed in three ways. They are
as follows...

1. Deleting from Beginning of the list
2. Deleting from End of the list
3. Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the single linked list...

• Step 1 - Check whether list is Empty (head == NULL)
• Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not
possible' and terminate the function.
• Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize
with head.
• Step 4 - Check whether list is having only one node (temp → next == NULL)
• Step 5 - If it is TRUE then set head = NULL and delete temp (Setting Empty list
conditions)
• Step 6 - If it is FALSE then set head = temp → next, and delete temp.

Deleting from End of the list

We can use the following steps to delete a node from end of the single linked list...

• Step 1 - Check whether list is Empty (head == NULL)
• Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not
possible' and terminate the function.

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

• Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and
'temp2' and initialize 'temp1' with head.
• Step 4 - Check whether list has only one Node (temp1 → next == NULL)
• Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate
the function. (Setting Empty list condition)
• Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next
node. Repeat the same until it reaches to the last node in the list. (until temp1 →
next == NULL)
• Step 7 - Finally, Set temp2 → next = NULL and delete temp1.

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the single linked list...

• Step 1 - Check whether list is Empty (head == NULL)
• Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not
possible' and terminate the function.
• Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2'
and initialize 'temp1' with head.
• Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted
or to the last node. And every time set 'temp2 = temp1' before moving the 'temp1' to
its next node.
• Step 5 - If it is reached to the last node then display 'Given node not found in
the list! Deletion not possible!!!'. And terminate the function.
• Step 6 - If it is reached to the exact node which we want to delete, then check
whether list is having only one node or not
• Step 7 - If list has only one node and that is the node to be deleted, then
set head = NULL and delete temp1 (free(temp1)).
• Step 8 - If list contains multiple nodes, then check whether temp1 is the first
node in the list (temp1 == head).
• Step 9 - If temp1 is the first node then move the head to the next node (head
= head → next) and delete temp1.
• Step 10 - If temp1 is not first node then check whether it is last node in the list
(temp1 → next == NULL).
• Step 11 - If temp1 is last node then set temp2 → next = NULL and
delete temp1 (free(temp1)).
• Step 12 - If temp1 is not first node and not last node then set temp2 →
next = temp1 → next and delete temp1 (free(temp1)).

Displaying a Single Linked List

We can use the following steps to display the elements of a single linked list...

• Step 1 - Check whether list is Empty (head == NULL)
• Step 2 - If it is Empty then, display 'List is Empty!!!' and terminate the function.

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

• Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize
with head.
• Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches
to the last node
• Step 5 - Finally display temp → data with arrow pointing to NULL (temp →
data ---> NULL).

Doubly Linked List

 Insert At Beginning

1. Start

2. Input the DATA to be inserted

3. Create a new node.

4. NewNode → Data = DATA NewNode →Lpoint =NULL

5. IF START IS NULL NewNode→ Rpoint = NULL

6. Else NewNode → Rpoint = START START→Lpoint = NewNode

7. START =NewNode
8. Stop

ii. Insertion at location:

1. Start
2. Input the DATA and POS

3. Initialize TEMP = START; i = 0

4. Repeat the step 4 if (i less than POS) and (TEMP is not equal to NULL)
5. TEMP = TEMP → RPoint; i = i +1

6. If (TEMP not equal to NULL) and (i equal to POS)

(a) Create a New Node

(b) NewNode → DATA = DATA

(c) NewNode → RPoint = TEMP → RPoint

(d) NewNode → LPoint = TEMP

(e) (TEMP → RPoint) → LPoint = NewNode

1. (f) TEMP → RPoint = New Node

2. Else

(a) Display “Position NOT found”

1. Stop

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

iii. Insert at End

1. Start
2. Input DATA to be inserted
3. Create a NewNode

4. NewNode → DATA = DATA

5. NewNode → RPoint = NULL
6. If (SATRT equal to NULL)

a. START = NewNode

b. NewNode → LPoint=NULL

1. Else

a. TEMP = START

b. While (TEMP → Next not equal to NULL)

i. TEMP = TEMP → Next

c. TEMP → RPoint = NewNode

d. NewNode → LPoint = TEMP

1. Stop

iv. Forward Traversal

1. Start
2. If (START is equal to NULL)

a) Display “The list is Empty”

b) Stop

1. Initialize TEMP = START

2. Repeat the step 5 and 6 until (TEMP == NULL)

3. Display “TEMP → DATA”
4. TEMP = TEMP → Next

5. Stop

v. Backward Traversal

1. Start

2. If (START is equal to NULL)
3. Display “The list is Empty”

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

4. Stop

5. Initialize TEMP = TAIL
6. Repeat the step 5 and 6 until (TEMP == NULL)
7. Display “TEMP → DATA”

8. TEMP = TEMP → Prev
9. Stop

Circular Linked List

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the circular linked
list...

• Step 1 - Create a newNode with given value.
• Step 2 - Check whether list is Empty (head == NULL)
• Step 3 - If it is Empty then, set head = newNode and newNode→next = head .
• Step 4 - If it is Not Empty then, define a Node pointer 'temp' and initialize with
'head'.
• Step 5 - Keep moving the 'temp' to its next node until it reaches to the last node
(until 'temp → next == head').
• Step 6 - Set 'newNode → next =head', 'head = newNode' and 'temp →
next = head'.

Inserting At End of the list
We can use the following steps to insert a new node at end of the circular linked list...

• Step 1 - Create a newNode with given value.
• Step 2 - Check whether list is Empty (head == NULL).
• Step 3 - If it is Empty then, set head = newNode and newNode →
next = head.
• Step 4 - If it is Not Empty then, define a node pointer temp and initialize
with head.
• Step 5 - Keep moving the temp to its next node until it reaches to the last node
in the list (until temp → next == head).
• Step 6 - Set temp → next = newNode and newNode → next = head.

Inserting At Specific location in the list (After a Node)
We can use the following steps to insert a new node after a node in the circular linked
list...

• Step 1 - Create a newNode with given value.

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

• Step 2 - Check whether list is Empty (head == NULL)
• Step 3 - If it is Empty then, set head = newNode and newNode →
next = head.
• Step 4 - If it is Not Empty then, define a node pointer temp and initialize
with head.
• Step 5 - Keep moving the temp to its next node until it reaches to the node after
which we want to insert the newNode (until temp1 → data is equal to location, here
location is the node value after which we want to insert the newNode).
• Step 6 - Every time check whether temp is reached to the last node or not. If it
is reached to last node then display 'Given node is not found in the list!!! Insertion
not possible!!!' and terminate the function. Otherwise move the temp to next node.
• Step 7 - If temp is reached to the exact node after which we want to insert the
newNode then check whether it is last node (temp → next == head).
• Step 8 - If temp is last node then set temp → next = newNode and newNode
→ next = head.
• Step 8 - If temp is not last node then set newNode → next = temp →
next and temp → next = newNode.

Deletion
In a circular linked list, the deletion operation can be performed in three ways those are
as follows...

1. Deleting from Beginning of the list
2. Deleting from End of the list
3. Deleting a Specific Node

Deleting from Beginning of the list
We can use the following steps to delete a node from beginning of the circular linked
list...

• Step 1 - Check whether list is Empty (head == NULL)
• Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not
possible' and terminate the function.
• Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2'
and initialize both 'temp1' and 'temp2' with head.
• Step 4 - Check whether list is having only one node (temp1 → next == head)
• Step 5 - If it is TRUE then set head = NULL and
delete temp1 (Setting Empty list conditions)
• Step 6 - If it is FALSE move the temp1 until it reaches to the last node.
(until temp1 → next == head)
• Step 7 - Then set head = temp2 → next, temp1 → next = head and
delete temp2.

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

Deleting from End of the list
We can use the following steps to delete a node from end of the circular linked list...

• Step 1 - Check whether list is Empty (head == NULL)
• Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not
possible' and terminate the function.
• Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and
'temp2' and initialize 'temp1' with head.
• Step 4 - Check whether list has only one Node (temp1 → next == head)
• Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate
from the function. (Setting Empty list condition)
• Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next
node. Repeat the same until temp1 reaches to the last node in the list. (until temp1 →
next == head)
• Step 7 - Set temp2 → next = head and delete temp1.

Deleting a Specific Node from the list
We can use the following steps to delete a specific node from the circular linked list...

• Step 1 - Check whether list is Empty (head == NULL)
• Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not
possible' and terminate the function.
• Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2'
and initialize 'temp1' with head.
• Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted
or to the last node. And every time set 'temp2 = temp1' before moving the 'temp1' to
its next node.
• Step 5 - If it is reached to the last node then display 'Given node not found in
the list! Deletion not possible!!!'. And terminate the function.
• Step 6 - If it is reached to the exact node which we want to delete, then check
whether list is having only one node (temp1 → next == head)
• Step 7 - If list has only one node and that is the node to be deleted then
set head = NULL and delete temp1 (free(temp1)).
• Step 8 - If list contains multiple nodes then check whether temp1 is the first
node in the list (temp1 == head).
• Step 9 - If temp1 is the first node then set temp2 = head and keep
moving temp2 to its next node until temp2 reaches to the last node. Then set head =
head → next, temp2 → next = head and delete temp1.
• Step 10 - If temp1 is not first node then check whether it is last node in the list
(temp1 → next == head).
• Step 1 1- If temp1 is last node then set temp2 → next = head and
delete temp1 (free(temp1)).

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

• Step 12 - If temp1 is not first node and not last node then set temp2 →
next = temp1 → next and delete temp1 (free(temp1)).

Displaying a circular Linked List
We can use the following steps to display the elements of a circular linked list...

• Step 1 - Check whether list is Empty (head == NULL)
• Step 2 - If it is Empty, then display 'List is Empty!!!' and terminate the function.
• Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize
with head.
• Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches
to the last node
• Step 5 - Finally display temp → data with arrow pointing to head → data.

Doubly circular linked list

Inserting a new node at the beginning
 Step 1: IF AVAIL = NULL
 Write OVERFLOW
 Go to Step 13
 [END OF IF]
 Step 2: SET NEW_NODE = AVAIL
 Step 3: SET AVAIL = AVAIL -> NEXT
 Step 4: SET NEW_NODE -> DATA = VAL
 Step 5: SET PTR = START
 Step 6: Repeat Step 7 while PTR -> NEXT != START
 Step 7: SET PTR = PTR -> NEXT
 [END OF LOOP]
 Step 8: SET PTR -> NEXT = NEW_NODE
 Step 9: SET NEW_NODE -> PREV = PTR
 Step 10: SET NEW_NODE -> NEXT = START
 Step 11: SET START -> PREV = NEW_NODE
 Step 12: SET START = NEW_NODE
 Step 13: EXIT

Inserting a Node at the End

Step 1: IF AVAIL = NULL

 Write OVERFLOW

 Go to Step 12

 [END OF IF]

 Step 2: SET NEW_NODE = AVAIL

 Step 3: SET AVAIL = AVAIL -> NEXT

 Step 4: SET NEW_NODE -> DATA = VAL

 Step 5: SET NEW_NODE > NEXT = START

 Step 6: SET PTR = START

 Step 7: Repeat Step 8 while PTR -> NEXT != START

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 Step 8: SET PTR = PTR -> NEXT

 [END OF LOOP]

 Step 9: SET PTR -> NEXT = NEW_NODE

 Step 10: SET NEW_NODE -> PREV = PTR

 Step 11: SET START -> PREV = NEW_NODE

 Step 12: EXIT

Deleting the First Node
Step 1: IF START = NULL

 Write UNDERFLOW

 Go to Step 8

 [END OF IF]

 Step 2: SET PTR = START

 Step 3: Repeat Step 4 while PTR -> NEXT != START

 Step 4: SET PTR = PTR -> NEXT

 [END OF LOOP]

 Step 5: SET PTR -> NEXT = START -> NEXT

 Step 6: SET START -> NEXT -> PREV = PTR

 Step 7: FREE START

 Step 8: SET START = PTR -> NEXT

Deleting the Last Node

Algorithm to delete the last node**

 Step 1: IF START = NULL

 Write UNDERFLOW

 Go to Step 8

 [END OF IF]

 Step 2: SET PTR = START

 Step 3: Repeat Step 4 while PTR -> NEXT != START

 Step 4: SET PTR = PTR -> NEXT

 [END OF LOOP]

 Step 5: SET PTR -> PREV -> NEXT = START

 Step 6: SET START -> PREV = PTR -> PREV

 Step 7: FREE PTR

 Step 8: EXIT

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

Implementation of an application using linked list:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// doubly linked list

struct node

{

 int data;

 struct node *next;

 struct node *prev;

};

struct node *front = NULL;

int isEmpty()

{

 if (front == NULL)

 {

 return 1;

 }

 return 0;

}

void insertend()

{

 int new_data;

 printf("Enter the data to be inserted: ");

 scanf("%d", &new_data);

 struct node *newnode = malloc(sizeof(struct node));

 struct node *ptr;

 newnode->data = new_data;

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 newnode->prev = NULL;

 newnode->next = NULL;

 if (isEmpty() == 1)

 {

 front = newnode;

 }

 else

 {

 ptr = front;

 while (ptr->next != NULL)

 {

 ptr = ptr->next;

 }

 ptr->next = newnode;

 newnode->prev = ptr;

 newnode->next = NULL;

 }

}

void insertbegin()

{

 int new_data;

 printf("Enter the data to be inserted:");

 scanf("%d", &new_data);

 struct node *newnode = malloc(sizeof(struct node));

 newnode->data = new_data;

 newnode->prev = NULL;

 newnode->next = NULL;

 if (isEmpty() == 1)

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 {

 front = newnode;

 }

 else

 {

 front->prev = newnode;

 newnode->next = front;

 front = newnode;

 }

}

void deletebegindoubly()

{

 struct node *temp;

 temp = front;

 temp = temp->next;

 if (isEmpty() == 1)

 {

 printf("The list is empty");

 }

 else

 {

 temp->prev = NULL;

 }

 free(temp);

}

void deleteenddoubly()

{

 struct node *temp;

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 temp = front;

 while (temp->next != NULL)

 {

 temp = temp->next;

 }

 temp->next = NULL;

 temp->prev = NULL;

 free(temp);

}

void displaydoubly()

{

 struct node *ptr;

 if (front == NULL)

 {

 printf("The list is empty");

 }

 else

 {

 ptr = front;

 printf("The list is: ");

 while (ptr != NULL)

 {

 printf("%d\t", ptr->data);

 ptr = ptr->next;

 }

 }

}

void searchdoub()

{

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 int c;

 printf("Enter the element you want to search in the linked list:");

 scanf("%d", &c);

 struct node *p;

 p = front;

 int i = 1;

 while (p->data != c)

 {

 p = p->next;

 i++;

 }

 if (p->data == c)

 {

 printf("The position of the element %d in the list is: %d", p->data, i);

 }

 else

 {

 printf("The element is not in the list");

 }

}

// Circular linked list

struct Node

{

 int data1;

 struct Node *next;

} * list;

void insertbegincircular()

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

{

 int a;

 printf("Enter the data to be inserted: ");

 scanf("%d", &a);

 struct Node *p;

 struct Node *newnode1 = malloc(sizeof(struct Node));

 newnode1->data1 = a;

 if (list == NULL)

 {

 list = newnode1;

 newnode1->next = list;

 }

 else

 {

 p = list;

 while (p->next != list)

 {

 p = p->next;

 }

 p->next = newnode1;

 newnode1->next = list;

 list = newnode1;

 }

}

void inserAtendcircular()

{

 int b;

 struct Node *p, *q;

 printf("Enter the element you want to enter in the list:");

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 scanf("%d", &b);

 p = (struct Node *)malloc(sizeof(struct Node));

 p->data1 = b;

 q = list;

 if (q == NULL)

 {

 list = p;

 }

 else

 {

 while (q->next != list)

 {

 q = q->next;

 }

 q->next = p;

 }

 p->next = list;

}

void deletebegincircular()

{

 struct Node *p;

 if (list == NULL)

 {

 printf("The list is empty");

 }

 else

 {

 p = list;

 while (p->next != list)

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 {

 p = p->next;

 }

 p->next = list->next;

 free(list);

 list = p->next;

 }

}

void deleteendcircular()

{

 struct Node *p, *q;

 if (list == NULL)

 {

 printf("The list is empty");

 }

 else

 {

 p = list;

 while (p->next != list)

 {

 q = p;

 p = p->next;

 }

 q->next = p->next;

 free(p);

 }

}

void displaycircular()

{

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 struct Node *p;

 if (list == NULL)

 {

 printf("The list is empty");

 }

 else

 {

 p = list;

 printf("The list is: ");

 while (p->next != list)

 {

 printf("%d ", p->data1);

 p = p->next;

 }

 printf("%d", p->data1);

 }

}

void searchcirc()

{

 int h;

 printf("Enter the element you want to search in the linked list:");

 scanf("%d", &h);

 struct Node *p;

 p = list;

 int i = 1;

 while (p->data1 != h)

 {

 p = p->next;

 i++;

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 }

 if (p->data1 == h)

 {

 printf("The position of the element %d in the list is: %d", p->data1, i);

 }

 else

 {

 printf("The element is not in the list");

 }

}

// Circular Doubly Linked List

struct Node1

{

 int data2;

 struct Node1 *next;

 struct Node1 *prev;

} * list1;

void insertbegincirdoub()

{

 int a;

 struct Node1 *newnode2 = malloc(sizeof(struct Node1));

 struct Node1 *ptr;

 printf("Enter the data to be inserted: ");

 scanf("%d", &a);

 newnode2->data2 = a;

 if (list1 == NULL)

 {

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 list1 = newnode2;

 newnode2->next = list1;

 }

 else

 {

 ptr = list1;

 while (ptr->next != list1)

 {

 ptr = ptr->next;

 }

 newnode2->prev = ptr;

 ptr->next = newnode2;

 newnode2->next = list1;

 list1->prev = newnode2;

 list1 = newnode2;

 }

}

void insertAtendcirdoub()

{

 int b;

 struct Node1 *p, *q;

 printf("Enter the element you want to enter in the list:");

 scanf("%d", &b);

 p = (struct Node1 *)malloc(sizeof(struct Node1));

 p->data2 = b;

 if (list1 == NULL)

 {

 list1 = p;

 }

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 else

 {

 q = list1;

 while (q->next != list1)

 {

 q = q->next;

 }

 q->next = p;

 p->prev = q;

 p->next = list1;

 list1->prev = p;

 }

}

void deletebegincirdoub()

{

 struct Node1 *p, *temp;

 if (list1 == NULL)

 {

 printf("The list is empty");

 }

 else

 {

 p = list1;

 while (p->next != list1)

 {

 p = p->next;

 }

 p->next = list1->next;

 temp = list1;

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 list1 = list1->next;

 list1->prev = p;

 free(temp);

 }

}

void deleteendcirdoub()

{

 struct Node1 *p, *q;

 if (list1 == NULL)

 {

 printf("The list is empty");

 }

 else

 {

 p = list1;

 while (p->next != list1)

 {

 q = p;

 p = p->next;

 }

 q->next = p->next;

 p->next->prev = p;

 free(p);

 }

}

void displaycirdoub()

{

 struct Node1 *p;

 if (list1 == NULL)

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 {

 printf("The list is empty");

 }

 else

 {

 p = list1;

 printf("The list is:");

 while (p->next != list1)

 {

 printf("%d\t", p->data2);

 p = p->next;

 }

 printf("%d", p->data2);

 }

}

void searchcircdoub()

{

 int l;

 printf("Enter the element you want to search in the linked list:");

 scanf("%d", &l);

 struct Node1 *p;

 p = list1;

 int i = 1;

 while (p->data2 != l)

 {

 p = p->next;

 i++;

 }

 if (p->data2 == l)

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 {

 printf("The position of the element %d in the list is: %d", p->data2, i);

 }

 else

 {

 printf("The element is not in the list");

 }

}

int main()

{

 int x, y, z, k;

 while (1)

 {

 printf("\nWhich linked list you want to use?\n1.Doubly Linked List\n2.Circular

Linked Linked\n3.Circular Doubly Linked List\n4.Exit\nEnter the number in front the

type of linked list to use the linked list:");

 scanf("%d", &x);

 switch (x)

 {

 case 1:

 while (y != 8)

 {

 printf("\n**************Doubly Linked List**************\n");

 printf("\n1.Insert at the begin\n2.Insert at the end\n3.Delete at the

begin\n4.Delete at the end\n5.Traverse\n6.Search\n7.Exit\n");

 printf("Enter the number in front of the operation in Doubly Linked List:");

 scanf("%d", &y);

 if (y == 1)

 {

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 insertbegin();

 }

 else if (y == 2)

 {

 insertend();

 }

 else if (y == 3)

 {

 deletebegindoubly();

 }

 else if (y == 4)

 {

 deleteenddoubly();

 }

 else if (y == 5)

 {

 displaydoubly();

 }

 else if (y == 6)

 {

 searchdoub();

 }

 else if (y == 7)

 {

 break;

 }

 else

 {

 printf("Invalid option");

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 }

 }

 break;

 case 2:

 while (z != 8)

 {

 printf("\n**************Circular Linked List**************\n");

 printf("\n1.Insert at the begin\n2.Insert at the end\n3.Delete at the

begin\n4.Delete at the end\n5.Traverse\n6.Search\n7.Exit\n");

 printf("Enter the number in front of the operation in Circular Linked List:");

 scanf("%d", &z);

 if (z == 1)

 {

 insertbegincircular();

 }

 else if (z == 2)

 {

 inserAtendcircular();

 }

 else if (z == 3)

 {

 deletebegincircular();

 }

 else if (z == 4)

 {

 deleteendcircular();

 }

 else if (z == 5)

 {

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 displaycircular();

 }

 else if (z == 6)

 {

 searchcirc();

 }

 else if (z == 7)

 {

 break;

 }

 else

 {

 printf("Invalid option");

 }

 }

 break;

 case 3:

 while (k != 8)

 {

 printf("\n**************Circular Doubly Linked List**************\n");

 printf("\n1.Insert at the begin\n2.Insert at the end\n3.Delete at the

begin\n4.Delete at the end\n5.Traverse\n6.Search\n7.Exit\n");

 printf("Enter the number in front of the operation in Circular Doubly Linked

List:");

 scanf("%d", &k);

 if (k == 1)

 {

 insertbegincirdoub();

 }

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 else if (k == 2)

 {

 insertAtendcirdoub();

 }

 else if (k == 3)

 {

 deletebegincirdoub();

 }

 else if (k == 4)

 {

 deleteendcirdoub();

 }

 else if (k == 5)

 {

 displaycirdoub();

 }

 else if (k == 6)

 {

 searchcircdoub();

 }

 else if (k == 7)

 {

 break;

 }

 else

 {

 printf("Invalid option");

 }

 }

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

 break;

 case 4:

 printf("Exiting the program............");

 exit(1);

 break;

 default:

 printf("Invalid option");

 break;

 }

 }

 return 0;

}

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

Output:

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

Conclusion:- Hence we successfully implemented various type of Linked Lists.

Post lab questions:

1. Compare and contrast SLL and DLL

Singly linked list (SLL) Doubly linked list (DLL)
SLL nodes contains 2 field -data
field and next link field.

DLL nodes contains 3 fields -data
field, a previous link field and a
next link field.

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

In SLL, the traversal can be done
using the next node link only.
Thus traversal is possible in one
direction only.

In DLL, the traversal can be done
using the previous node link or
the next node link. Thus traversal
is possible in both directions
(forward and backward).

The SLL occupies less memory
than DLL as it has only 2 fields.

The DLL occupies more memory
than SLL as it has 3 fields.

Complexity of insertion and
deletion at a given position is
O(n).

Complexity of insertion and
deletion at a given position is O(n
/ 2) = O(n) because traversal can
be made from start or from the
end.

Complexity of deletion with a
given node is O(n), because the
previous node needs to be known,
and traversal takes O(n)

Complexity of deletion with a
given node is O(1) because the
previous node can be accessed
easily

We mostly prefer to use singly
linked list for the execution of
stacks.

We can use a doubly linked list to
execute heaps and stacks, binary
trees.

When we do not need to perform
any searching operation and we
want to save memory, we prefer a
singly linked list.

In case of better implementation,
while searching, we prefer to use
doubly linked list.

A singly linked list consumes less
memory as compared to the
doubly linked list.

The doubly linked list consumes
more memory as compared to the
singly linked list.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2013/03/Linkedlist.png
https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2014/03/DLL1.png

	Objective: To understand the use of linked list as data structures for various application.
	Expected Outcome of Experiment:
	Books/ Journals/ Websites referred:
	Introduction:
	Define Linked List
	A linked list is a sequence of data structures, which are connected together via links. Linked List is a sequence of links which contains items. Each link contains a connection to another link. Linked list is the second most-used data structure after ...
	Types of linked list:
	Batch: A3 Roll No.: 16010121045
	Experiment No. 6
	Grade: AA / AB / BB / BC / CC / CD /DD
	Algorithm for creation, insertion, deletion, traversal and searching an element in assigned linked list type:
	Insertion
	In a single linked list, the insertion operation can be performed in three ways. They are as follows...
	Inserting At Beginning of the list
	We can use the following steps to insert a new node at beginning of the single linked list...
	Inserting At End of the list
	We can use the following steps to insert a new node at end of the single linked list...
	Inserting At Specific location in the list (After a Node)
	We can use the following steps to insert a new node after a node in the single linked list...
	Deletion
	In a single linked list, the deletion operation can be performed in three ways. They are as follows...
	Deleting from Beginning of the list
	We can use the following steps to delete a node from beginning of the single linked list...
	Deleting from End of the list
	We can use the following steps to delete a node from end of the single linked list...
	Deleting a Specific Node from the list
	We can use the following steps to delete a specific node from the single linked list...
	Displaying a Single Linked List
	We can use the following steps to display the elements of a single linked list...
	Inserting At Beginning of the list
	We can use the following steps to insert a new node at beginning of the circular linked list...
	Inserting At End of the list
	We can use the following steps to insert a new node at end of the circular linked list...
	Inserting At Specific location in the list (After a Node)
	We can use the following steps to insert a new node after a node in the circular linked list...
	Deletion
	In a circular linked list, the deletion operation can be performed in three ways those are as follows...
	Deleting from Beginning of the list
	We can use the following steps to delete a node from beginning of the circular linked list...
	Deleting from End of the list
	We can use the following steps to delete a node from end of the circular linked list...
	Deleting a Specific Node from the list
	We can use the following steps to delete a specific node from the circular linked list...
	Displaying a circular Linked List
	We can use the following steps to display the elements of a circular linked list...
	Implementation of an application using linked list:
	Output:
	Conclusion:- Hence we successfully implemented various type of Linked Lists.
	Post lab questions:
	1. Compare and contrast SLL and DLL

