
K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

Title: Implementation of different operations on Linked List – creation, insertion,
deletion, traversal, searching an element

Objective: To understand the advantage of linked list over other structures like arrays
in implementing the general linear list

Expected Outcome of Experiment:

CO Outcome

CO 1 To understand the advantage of linked list over other structures like arrays in
implementing the general linear list

Books/ Journals/ Websites referred:

Introduction:

A linear list is a list where each element has a unique successor. There are four

common operations associated with linear list: insertion, deletion, retrieval, and

traversal. Linear list can be divided into two categories: general list and restricted list.

In general list the data can be inserted or deleted without any restriction whereas in

restricted list there is restrictions for these operations. Linked list and arrays are

commonly used to implement general linear list. A linked list is simply a chain of

structures which contain a pointer to the next element. It is dynamic in nature. Items

may be added to it or deleted from it at will.

Batch: A3 Roll No. : 16010121045

Experiment No. : 2

Grade: AA / AB / BB / BC / CC / CD /DD

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

A list item has a pointer to the next element, or to NULL if the current element is the
tail (end of the list). This pointer points to a structure of the same type as itself. This
Structure that contains elements and pointers to the next structure is called a Node.

Related Theory: -

In computer science, a linked list is a linear collection of data elements, whose order is
not given by their physical placement in memory. Instead, each element points to the
next. It is a data structure consisting of a collection of nodes which together represent a
sequence. In its most basic form, each node contains: data, and a reference to the next
node in the sequence. This structure allows for efficient insertion or removal of
elements from any position in the sequence during iteration.

Like arrays, Linked List is a linear data structure. Unlike arrays, linked list elements are
not stored at contiguous location; the elements are linked using pointers

Linked List ADT:

Linked List is an Abstract Data Type (ADT) that holds a collection of Nodes, the
nodes can be accessed in a sequential way. Linked List doesn’t provide a random
access to a Node.

Usually, those Nodes are connected to the next node and/or with the previous one,
this gives the linked effect. When the Nodes are connected with only the next
pointer the list is called Singly Linked List and when it’s connected by the next and
previous the list is called Doubly Linked List.

Value definition:

Abstract Typedef linked_list/node<<int number, struct linked_list *next>>

 Condition: None

Operator Definition

1. Abstract void beginsert<< >>
Pre-condition: none
Post-condition: New node of linked list are linked with it’s next node; and
tail as ptr thus, successively creating circular linked lists. Takes head
node as the argument

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

2. Abstract void lastinsert<< >>
Pre-condition: none
Post-condition: Node of linked list are linked with it’s tail as ptr thus and
tail to its head

3. Abstract linked_list/node begin_delete<< >>
Pre-condition: None

Post-condition: The function then deletes the node aptly at the beginning.

4. Abstract linked_list/node last_delete<< >>
Pre-condition: None

Post-condition: The function then deletes the node aptly at the ending.

5. Abstract void display<< >>
Pre-condition: The next node for tail node must point to head
Post-condition: All nodes of the linked list is printed from head to
tail; demonstrating that the linked list previously created is indeed,
circualr linked

6. Abstract linked_list/node searching<<node *head>>
Pre-condition: None

Post-condition: Requests the user to enter the value of the data stored at
a particular node which is to be searched. The function then searches the
linked list to find the data. Returns the index of the node where the data is
stored.

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

Algorithm for creation, insertion, deletion, traversal and searching an element in
assigned linked list type:

Insertion Operation
beginsert(): Begin
create a new node node
-> data := data if the
list is empty, then head
:= node next of node =
head else temp := head
while next of temp is not head, do
temp := next of temp done next of
node := head next of temp := node
head := node end if
End

Deletion Operation
deleteFirst(): Begin

if head is null, then it is
Underflow and return else if
next of head = head, then head
:= null deallocate head else ptr
:= head
while next of ptr is not head, do

ptr := next of ptr next of
ptr = next of head
deallocate head head :=
next of ptr end if
End

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

Display List Operation

display(): Begin

if head is null, then Nothing to
print and return else ptr := head
while next of ptr is not head, do
display data of ptr ptr := next
of ptr display data of ptr end if
End

Searching:

Step 1: SET PTR = HEAD
Step 2: Set I = 0
STEP 3: IF PTR = NULL WRITE

"EMPTY LIST"
GOTO STEP 8
END OF IF

STEP 4: REPEAT STEP 5 TO 7 UNTIL PTR !=
NULL STEP 5: if ptr → data = item
write i+1 End of IF

STEP 6: I = I + 1
STEP 7: PTR = PTR → NEXT
[END OF LOOP]
STEP 8: EXIT

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

Implementation of an application using linked lists:

#include <stdio.h>
#include <stdlib.h>
struct node
{
 int value;
 struct node *hash;
};

struct node *list;

void insertBeg(int x)
{
 struct node *ptr = (struct node *)malloc(sizeof(struct
node));
 ptr->value = x;
 ptr->hash = list;
 list = ptr;
}

void deleteBeg()
{
 if (list == NULL)
 printf("The list is empty!\n");
 else
 {
 struct node *ptr = list;
 list = ptr->hash;
 free(ptr);
 }
}

void insertEnd(int x)
{
 struct node *ptr = (struct node *)malloc(sizeof(struct
node));
 ptr->value = x;
 ptr->hash = NULL;
 struct node *i = list;
 if (i == NULL)

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

 list = ptr;
 else
 {
 while (i->hash != NULL)
 i = i->hash;
 i->hash = ptr;
 }
}

void deleteEnd()
{
 if (list == NULL)
 printf("The list is empty!\n");
 else
 {
 struct node *i = list;
 struct node *j = i;
 while (i->hash != NULL)
 {
 j = i;
 i = i->hash;
 }
 j->hash = NULL;
 free(i);
 }
}

void insertAt(int x, int pos)
{
 if (list == NULL || pos == 0)
 insertBeg(x);
 else
 {
 struct node *ptr = (struct node
*)malloc(sizeof(struct node));
 ptr->value = x;
 ptr->hash = NULL;
 struct node *i = list->hash;
 struct node *j = list;
 int counter = 0;

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

 while (i != NULL)
 {
 if (++counter == pos)
 {
 j->hash = ptr;
 ptr->hash = i;
 break;
 }
 j = i;
 i = i->hash;
 }
 }
}

void deleteAt(int pos)
{
 if (list == NULL)
 printf("The list is empty!\n");
 else if (pos == 0)
 deleteBeg();
 else
 {
 struct node *i = list->hash;
 struct node *j = list;
 int counter = 0;
 while (i != NULL)
 {
 if (++counter == pos)
 {
 j->hash = i->hash;
 free(i);
 break;
 }
 j = i;
 i = i->hash;
 }
 }
}

void printList()

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

{
 if (list == NULL)
 printf("The list is empty!\n");
 else
 {
 struct node *i = list;
 printf("\n\nThe list Elements are :\n");
 while (i != NULL)
 {
 printf("%d", i->value);
 i = i->hash;
 if (i != NULL)
 printf(" -> ");
 }
 }
}

void searchList(int x)
{
 if (list == NULL)
 printf("The list is empty!\n");
 else
 {
 struct node *i = list;
 int pos = 0;
 while (i != NULL)
 {
 if (i->value == x)
 {
 printf("Element found at pos: %d\n", pos);
 pos = -1;
 break;
 }
 i = i->hash;
 pos++;
 }
 if (pos != -1)
 printf("Element Not Found!\n");
 }
}

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

int main()
{
 int t = 0;
 while (t != 11)
 {
 printf("\nSelect a function\n");
 printf("(1) Print List\n");
 printf("(2) Insert at Beginning\n");
 printf("(3) Delete Beginning\n");
 printf("(4) Insert at End\n");
 printf("(5) Delete End\n");
 printf("(6) Insert at position\n");
 printf("(7) Insert after position\n");
 printf("(8) Delete at position\n");
 printf("(9) Delete after position\n");
 printf("(10) Search Element\n");
 printf("(11) Exit\n");
 scanf("%d", &t);
 if (t == 1)
 printList();
 else if (t == 2)
 {
 int x;
 printf("Enter element to insert : ");
 scanf("%d", &x);
 insertBeg(x);
 }
 else if (t == 3)
 deleteBeg();
 else if (t == 4)
 {
 int x;
 printf("Enter element to insert : ");
 scanf("%d", &x);
 insertEnd(x);
 }
 else if (t == 5)
 deleteEnd();
 else if (t == 6)

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

 {
 int x, pos;
 printf("Enter element to insert : ");
 scanf("%d", &x);
 printf("Enter element position : ");
 scanf("%d", &pos);
 insertAt(x, pos);
 }
 else if (t == 7)
 {
 int x, pos;
 printf("Enter element to insert : ");
 scanf("%d", &x);
 printf("Enter position to insert after: ");
 scanf("%d", &pos);
 insertAt(x, pos + 1);
 }
 else if (t == 8)
 {
 int pos;
 printf("Enter position to delete: ");
 scanf("%d", &pos);
 deleteAt(pos);
 }
 else if (t == 9)
 {
 int pos;
 printf("Enter position to delete after: ");
 scanf("%d", &pos);
 deleteAt(pos + 1);
 }
 else if (t == 10)
 {
 int x;
 printf("Enter element to search: ");
 scanf("%d", &x);
 searchList(x);
 }
 else if (t == 11)
 break;

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

 else
 printf("Wrong entry!\n");
 }
 return 0;
}

Conclusion:-

We have successfully understood algorithm for creation, traversal, insertion, deletion
and searching an element in linked list. Written code for application of linked list.

Post lab questions:

1. Write the differences between linked list and linear array

Linear Array Linked List

An array is a collection of elements
of a similar data type.

A linked list is a collection of
objects known as a node where node
consists of two parts, i.e., data and

address.

Array works with a static memory.
Here static memory means that the
memory size is fixed and cannot be

changed at the run time.

The Linked list works with
dynamic memory. Here, dynamic

memory means that the memory size can
be changed at the run time according to

our
requirements.

Array takes more time while
performing any operation like

insertion, deletion, etc.

Linked list takes less time while
performing any operation like

insertion, deletion, etc.

In the case of an array,
memory is allocated at

compile-time.

In the case of a linked list, memory
is allocated at run time.

Memory utilization is inefficient in
an array

Memory utilization is efficient when
it comes to linked lists

K. J. Somaiya College of Engineering, Mumbai
(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department	of	Computer	Engineering									DS		Sem-III	–	July-Dec	2021																		Page	-	

2. Name some applications which uses linked list.

The Applications are as follows:

• Implementation of stacks and queues.
• Implementation of graphs: Adjacency list representation of graphs is most

popular which is uses a linked list to store adjacent vertices.
• Dynamic memory allocation: We use a linked list of free blocks.
• Maintaining a directory of names.
• Image viewer – Previous and next images are linked, hence can be accessed by

next and previous button.
• Useful for implementation of a queue. We can maintain a pointer to the last

inserted node and the front can always be obtained as next of last

