[image: Description: new_SVV_lg]

K. J. Somaiya College of Engineering, Mumbai-77
(A constituent College of Somaiya Vidyavihar University)

Batch: A3 Roll. No.: 16010121045
Experiment:
Grade: AA / AB / BB / BC / CC / CD /DD

	Title: 	 Implementation of Graph - insertion, search and traversal

Objective: To understand graph as data structure and methods of traversing Graph

Expected Outcome of Experiment:

	CO
	Outcome

	CO2
	Apply linear and non-linear data structure in application development

Websites/books referred:

Abstract: - (Definition of Graph, types of graphs, and difference and similarity between graph & tree)
Graph:

Types of Graph:
1. Null Graph
A graph is known as null graph if there are no edges in the graph.
2. Trivial Graph
Graph having only a single vertex, it is the smallest graph possible.
3. Undirected Graph
A graph in which edges do not have any direction. That is the nodes are unordered pairs in the definition of every edge.
4. Directed Graph
A graph in which edge has direction. That is the nodes are ordered pairs in the definition of every edge.
5. Connected Graph
The graph in which from one node we can visit any other node in the graph is known as a connected graph.
6. Disconnected Graph
The graph in which at least one node is not reachable from a node is known as a disconnected graph.
7. Regular Graph
The graph in which the degree of every vertex is equal to the other vertices
of the graph.
Let the degree of each vertex be K then the graph is called K-regular.
8. Complete Graph
The graph in which from each node there is an edge to each other node.
9. Cycle Graph
The graph in which the graph is a cycle in itself, the degree of each vertex is 2.

10. Cyclic Graph
A graph containing at least one cycle is known as a Cyclic graph.
11. Directed Acyclic Graph
A Directed Graph that does not contain any cycle.
12. Bipartite graph
A graph in which vertex can be divided into two sets such that vertex in each set does not contain any edge between them.
Difference between graph and tree:
[image:]
Similarity between graph and tree:
· Both graph are non linear data structures consisting of nodes and vertices/edges.

· Every node in both graph and tree has at least one data variable and a pointer.

Algorithm for DFS/BFS:
DFS
1. Mark all the visited array elements as false.
2. Call DFS for first node.
3. Mark the node as visited and print it
4. Iterate through adjacency list (node) and if they are not visited then recursively
5. call dfs for them.
6. End

BFS
1. Mark all the visited array elements as false.
2. Call BFS for first node.
3. Mark the node as visited and print it
4. Iterate through adjacency list (node), if then they are not visited then mark them
5. true and add then to the queue.
6. If queue has elements the remove the top one and call BFS for that node.
7. End.

Code and output screenshots:
#include <stdio.h>
#include <stdlib.h>
int visit[20] = {0};
int v[20] = {0};
typedef struct node
{
 int data;
 struct node *prev;
 struct node *link;
} node;

typedef struct queue
{
 struct node *rr;
 struct node *fr;
} que;

int dequeue(que *q)
{
 node *temp;
 if (q->rr != NULL)
 {
 temp = q->rr;
 int d = temp->data;
 q->rr = temp->prev;
 if (q->rr != NULL)
 q->rr->link = NULL;
 else
 q->fr = NULL;
 return d;
 }
 return 0;
}

void enqueue(int ch, que *q)
{
 node *nnode;
 nnode = (node *)malloc(sizeof(node));
 nnode->data = ch;
 nnode->link = NULL;
 nnode->prev = NULL;
 if (q->fr == NULL)
 {
 q->fr = nnode;
 q->rr = nnode;
 }
 else
 {
 nnode->link = q->fr;
 q->fr->prev = nnode;
 q->fr = nnode;
 }
}

void display(que *q)
{
 node *temp;
 temp = q->fr;
 while (temp != NULL)
 {
 printf(" %c", temp->data);
 temp = temp->link;
 }
}

void dfs(int t, int a[20][20], int n)
{
 int i, j;
 printf("%d->", t);
 visit[t - 1] = 1;
 for (i = 0; i < n; i++)
 if (a[t - 1][i] == 1 && visit[i] == 0)
 dfs(i + 1, a, n);
}

void bfs(int t, int a[20][20], int n, que *q)
{
 int i, j;
 printf("%d->", t);
 int temp;
 enqueue(t, q);
 v[t - 1] = 1;
 while (q->fr != NULL)
 {
 temp = dequeue(q);
 for (i = 0; i < n; i++)
 {
 if (a[temp - 1][i] == 1 && v[i] == 0)
 {
 enqueue(i + 1, q);
 printf("%d->", i + 1);
 v[i] = 1;
 }
 }
 }
}

int main(void)
{
 printf("Enter number of vertices:\n");
 int n, i, j, e, p, q;
 scanf("%d", &n);
 int a[20][20];
 for (i = 0; i < n; i++)
 {
 visit[i] = 0;
 for (j = 0; j < n; j++)
 a[i][j] = 0;
 }
 printf("Enter number of edges:\n");
 scanf("%d", &e);
 printf("\nEnter 1 for undirected graph and 0 for directed graph:");
 int t;
 scanf("%d", &t);
 for (i = 0; i < e; i++)
 {
 printf("Enter edge vertex(p,q):\n");
 scanf("%d%d", &p, &q);
 a[p - 1][q - 1] = 1;
 if (t == 1)
 a[q - 1][p - 1] = 1;
 }

 for (i = 0; i < n; i++)
 {
 for (j = 0; j < n; j++)
 printf("%d ", a[i][j]);
 printf("\n");
 }
 printf("Enter Element from where you want to start dfs and bfs:");
 int d;
 scanf("%d", &d);
 printf("\n DFS:\n");
 dfs(d, a, n);
 que q1;
 q1.fr = q1.rr = NULL;
 printf("\n BFS:\n");
 bfs(d, a, n, &q1);
 return 0;
}

[image:]

Post lab questions-
a. Differentiate between BFS and DFS.

[image:]

b. Give sequence of the nodes visited as per BFS and DFS strategy for following example. Source- Arad, Destination- Bucharest (Traversal would stop after destination is reached)

[image: Description: romania-distances]

BFS

Arad->Zerind -> Sibiu -> Timisoara -> Oradea ->Fagaras -> Rimnicu Vilcea -> Lugoj -> Bucharest

DFS

Arad->Zerind->Oradea->Sibiu->Fagaras->Bucharest

Conclusion: -

In this experiment we learnt about two types of traversals in a graph and
implemented them.

Department of Computer Engineering DS Sem-III – July-Dec 2021 Page -

image3.png
BFS

DFS

BFS stands for Breadth First
Search.

DFS stands for Depth First
Scarch.

2 BFS(Breadth First Scarch) uses DFS(Depth First Scarch) uses.
Queue data structure for finding | Stack data structure.
the shortest path.

3 BFS can be used to find single In DFS, we might traverse
source shortest path in an through more edges to reach a
unweighted graph, because in destination vertex from a source.
BFS, we reach a vertex with
minimum number of edges from a
source vertex.

3 BFS is more suitable for searching | DFS is more suitable when there
vertices which are closer to the are solutions away from source.

iven source.

4 BFS considers all neighbors first DFS is more suitable for game or
and therefore not suitable for puzzle problems. We make a
decision making trees used in decision, then explore all paths
games or puzzles. through this decision. And if this

decision leads to win situation,
we stop.

5. | The Time complexity of BFSis | The Time complexity of DFS is
O(V + E) when Adjacency Listis | also O(V + E) when Adjacency
used and O(V~2) when Adjacency | List is used and O(V*2) when
Matrix is used, where V stands for | Adjacency Matrix is used, where
vertices and E stands for edges. V stands for vertices and E stands

for edges.

6. Here, siblings are visited before Here, children are visited before

the children

the siblines.

image4.png
Dersiova

image1.png
w

Graph
Each node can have any
number of edges.

There is no unique node
called root in graph.

A cycle can be formed.
Applications: For finding
shortest path in networking
graph is used.

Tree

General trees consist of the nodes
having any number of child nodes.
But in case of binary trees every
node can have at the most two child
nodes.

There is a unique node called root
in trees.

There will not be any cycle.
Applications: For game trees,
decision trees, the tree is use

image2.png
pargat@Router Code % cd "/Users/pargat/Documents/COLLE
GE/DS/Code/" && gcc graph.c -o graph && "/Users/pargat
/Documents/COLLEGE/DS/Code/"graph

Enter number of vertices:

5

Enter number of edges:

7

Ente
Ente
23
Ente
12
Ente
34
Ente
22
Ente
25
Ente
51
Ente
11

1
1
1
0
1
its

mrRroSoRrRKr

nte

r
r

r

r

r

r

r

r

S ORroOoRre

DFS:
3->2->1->5->4—>
BFS:
3—>2—>4—>1—>5—>E

pargat@Router Code % [

1 for undirected graph and @ for directed graph:1
edge vertex(p,q):

edge vertex(p,q):
edge vertex(p,q):
edge vertex(p,q):
edge vertex(p,q):
edge vertex(p,q):

edge vertex(p,q):

image5.jpg

