
William Stallings

Computer Organization

and Architecture

7th Edition

Chapter 5

Memory

SYLLABUS

Characteristics of memory system and hierarchy,

Main memory ,ROM, Types of ROM, RAM,

SRAM, DRAM, Flash memory, High speed memories

Cache Memory Organization: Address mapping, Replacement

Algorithms

Cache Coherence, MESI protocol, Interleaved and associative

memories

Virtual memory, main memory allocation, segmentation paging,

secondary storage ,RAID levels

Characteristics of Memory

1. Location

2. Capacity

3. Unit of transfer

4. Access method

5. Performance(SRAM,DRAM)

6. Physical type

7. Physical characteristics

8. Organisation

1. Direct Mapping,Associative Mapping

1. Location

• CPU

• Internal

• External

2. Capacity

• Word size

—The natural unit of organisation

• Number of words

—or Bytes

Types of various Units of Memory-

Byte

Kilo Byte

Mega Byte

Giga Byte

Tera Byte

Peta Byte

Exa Byte

Zetta Byte

Yotta Byte

3. Unit of Transfer

• INTERNAL

—Usually governed by data bus width

• EXTERNAL

—Usually a block which is much larger than a

word

• Addressable unit

—Smallest location which can be uniquely

addressed

4. Access Methods (1)

• Sequential

—Start at the beginning and read through in
order

—Access time depends on location of data and
previous location

—e.g. tape

• Direct

—Individual blocks have unique address

—Access is by jumping to vicinity plus
sequential search

—Access time depends on location and

 previous location

—e.g. disk

Access Methods (2)

• Random

—Individual addresses identify locations exactly

—Access time is independent of location or
previous access

—e.g. RAM

• Associative

—Data is located by a comparison with contents
of a portion of the store

—Access time is independent of location or
previous access

—e.g. cache

5. Performance

• Access time

—Time between requesting for operation and

the time it is made available at the required

location

• Memory Cycle time

—Minimum time elapsed between two

consecutive read requests

• Transfer Rate

—Rate at which data can be moved

6. Physical Types

• Semiconductor

—RAM

• Magnetic

—Disk & Tape

• Optical

—CD & DVD

7. Physical Characteristics

• Decay

• Volatility

• Erasable

• Power consumption

8. Organisation

• Physical arrangement of bits into words

• Not always obvious

• e.g. interleaved

Memory Hierarchy

• Registers

—In CPU

• Internal or Main memory

—May include one or more levels of cache

—“RAM”

• External memory

—Backing store

Memory Hierarchy - Diagram

 Going down the hierarchy

 Decreasing Cost

 Increase Capacity

 Increase Access Time

RAM- Random Access Memory

• RAM

—random access

—Read/Write

—Volatile

—Temporary storage

—Static or dynamic

Dynamic RAM Structure

Dynamic RAM

• Bits stored as charge in capacitors

• Charges leak

• Need refreshing even when powered

• Simpler construction

• Less expensive

• Need refresh circuits

• Slower

• Main memory

• Essentially analog

—Level of charge determines value

Static RAM Structure

Static RAM

• Bits stored as on/off switches

• No charges to leak

• No refreshing needed when powered

• More complex construction

• Larger information per bit

• More expensive

• Does not need refresh circuits

• Faster

• Cache

• Digital

—Uses flip-flops

Static RAM Operation

• Transistor arrangement gives stable logic

state

• State 1

—C1 high, C2 low

—T1 T4 off, T2 T3 on

• State 0

—C2 high, C1 low

—T2 T3 off, T1 T4 on

SRAM v DRAM

• Both volatile

—Power needed to preserve data

• Dynamic cell

—Simpler to build, smaller

—More dense

—Less expensive

—Needs refresh

—Larger memory units

• Static

—Faster

—Cache

Read Only Memory (ROM)

• Permanent storage

—Non volatile

—Can read a ROM but cant write new data into it

• TYPES OF ROM

—PROM

—EPROM

—EEPROM

PROM-Programmable ROM

• Written during manufacture

• Programmable (“once”)

—PROM

—Small amount of data to be written

—Less expensive

—Non volatile, written only once

—Writing performed electrically at the time of

chip fabrication

Read “mostly”

—Erasable Programmable (EPROM)

– Erased by UV

—Electrically Erasable (EEPROM)

– Takes much longer to write than read

—Flash memory

– Erase whole memory electrically

EPROM

—Read and written electrically

—All storage cells should be erased electrically

to initial state by exposure to UV radiation

—Can be altered multiple times and holds data

virtually indefinitely

—More expensive than PROM

EEPROM

• Can be written anytime without erasing
prior contents

• Write operation takes longer than read

• More expensive than EPROM, less dense

Types of ROM

1. Programmable Read Only Memory (PROM)

• Empty of data when manufactured

• May be permanently programmed by the user

2. Erasable Programmable Read Only Memory (EPROM)

• Can be programmed, erased and reprogrammed

• The EPROM chip has a small window on top allowing it to be erased
by shining ultra-violet light on it

• After reprogramming the window is covered to prevent new
contents being erased

• Access time is around 45 – 90 nanoseconds

Types of ROM

3. Electrically Erasable Programmable Read Only Memory (EEPROM)

• Reprogrammed electrically without using ultraviolet light

• Must be removed from the computer and placed in a special machine to do
this

• Access times between 45 and 200 nanoseconds

4. Flash ROM

• Similar to EEPROM

• However, can be reprogrammed while still in the computer

• Easier to upgrade programs stored in Flash ROM

• Used to store programs in devices e.g. modems

• Access time is around 45 – 90 nanoseconds

5. ROM cartridges

• Commonly used in games machines

• Prevents software from being easily copied

Cache

• Small amount of fast memory

• Sits between main memory and CPU

• May be located on CPU chip or module

The operation of cache memory

1 Cache fetches data
from addresses in
main memory

2. CPU checks to see
whether the next
instruction it
requires is in cache

3. If present then
the instruction is
fetched from the
cache – a very fast
operation

4. If not, the CPU
has to fetch next
instruction from
main memory - a
much slower process

Main

Memory

(DRAM)

CPU

Cache

Memory

(SRAM)

= Bus connections

Cache operation – overview

• CPU requests contents of memory location

• Check cache for this data

• If present, get from cache (fast)

• If not present, read required block from

main memory to cache

• Then deliver from cache to CPU

• Cache includes tags to identify which block

of main memory is in each cache slot

TAG - A unique identifier for a group of data.

 Since different regions of memory may be

 mapped into a block, the tag is used to

 differentiate between them.

• CPU cache is divided into three main 'Levels', L1, L2, and L3.

— The hierarchy is according to the speed, and thus, the size of the

cache.

 Level 1 (L1) cache -fast small, embedded in the processor chip

(CPU).

 Level 2 (L2) cache more capacity than L1; located on the CPU

or on a separate chip or coprocessor.

 Level 3 (L3) cache specialized memory to improve the

performance of L1 and L2.

 Slower than L1 or L2, double the speed of RAM

Cache Design

• Size

• Mapping Function

• Replacement Algorithm

• Write Policy

• Block Size

• Number of Caches

Size does matter

• Cost

—More cache is expensive

• Speed

—More cache is faster (up to a point)

—Checking cache for data takes time

MAPPING TECHNIQUES

• DIRECT MAPPING

• ASSOCIATIVE MAPPING

—FULLY ASSOCIATIVE MAPPING

—SET ASSOCIATIVE MAPPING

– 2-WAY SET ASSOCIATIVE MAPPING

DIRECT MAPPING CONCEPT

0ABCCE

1

2

3

4FFFFE

5

6

7

8

9

10

11

0 / 4 / 8

[4FFFFEE]

1 /5 / 9 [9]

2 /6 / 10 [2]

3 /7/ 11 [7]

Main Memory

Cache

DIRECT MAPPING

• Cache- 128 blocks of 16 words each

—128 * 16 = 2048 approx 2 KB

• Main Memory – 4K blocks of 16 words each

—4K * 16 = 64000 approx 64 KB

• TOTAL ADDRESS SIZE 16 bit

 5(16-(7+4)) 7(2 7) 4 (2 4)

Tag Block/Line(128) Word(16)

0 16 words

1 16 words

… 16 words

127 16 words

Working of Direct Mapping

• Word" field selects one from among the 16 addressable

words in a line.

• The "Line" field defines the cache line where this memory

line should reside.

• The "Tag" field of the address is then compared with that

cache line's 5-bit tag to determine whether there is a hit or

a miss.

— If there's a miss, we need to swap out the memory line that occupies

that position in the cache and replace it with the desired memory line.

FULLY ASSOCIATIVE MAPPING

ASSOCIATIVE MAPPING

• Cache- 128 blocks of 16 words each

• 128 * 16 = 2048 approx 2 KB

• Main Memory – 4K blocks of 16 words each

• 4K * 16 = 64000 approx 64 KB

• TOTAL ADDRESS SIZE 16 bit

12(16-4) 4 (2 4)

Tag Word

Working of Fully Associative Mapping

• "Tag" field identifies one of the 2 12 = 4096 memory lines;

• All the cache tags are searched to find out whether or not

the Tag field matches one of the cache tags.

• If so, we have a hit, and if not there's a miss and we need

to replace one of the cache lines by this line before reading

or writing into the cache.

• (The "Word" field again selects one from among 16

addressable words (bytes) within the line.)

Two way set associative mapping

SET ASSOCIATIVE MAPPING(2-way)

• Cache- 128 blocks of 16 words each

• 128 * 16 = 2048 approx 2 KB

• Set divided into 2 (128 /2) =64

• Main Memory – 4K blocks of 16 words each

• 4K * 16 = 64000 approx 64 KB

6(16-(4+6)) 6(2 6) 4 (2 4)

Tag Set Word

Working

• "Tag" field identifies one of the 26 = 64 different memory
lines in each of the 26 = 64 different "Set" values.

• Since each cache set has room for only two lines at a time,
the search for a match is limited to those two lines (rather
than the entire cache).

• If there's a match, we have a hit and the read or write can
proceed immediately.

• Otherwise, there's a miss and we need to replace one of the
two cache lines by this line before reading or writing into the
cache. (The "Word" field again select one from among 16
addressable words inside the line.)

• In set-associative mapping, when the number of lines per
set is n, the mapping is called n-way associative. For
instance, the above example is 2-way associative.

Direct Mapping

Cache Line Table

• Cache line Main Memory blocks held

• 0 0, m, 2m, 3m…2s-m

• 1 1,m+1, 2m+1…2s-m+1

• m-1 m-1, 2m-1,3m-1…2s-1

Direct Mapping pros & cons

• Simple

• Inexpensive

• Fixed location for given block

—If a program accesses 2 blocks that map to

the same line repeatedly, cache misses are

very high

Associative Mapping

• A main memory block can load into any

line of cache

• Memory address is interpreted as tag and

word

• Tag uniquely identifies block of memory

• Every line’s tag is examined for a match

• Cache searching gets expensive

Set Associative Mapping

• Cache is divided into a number of sets

• Each set contains a number of lines

• A given block maps to any line in a given set

—e.g. Block B can be in any line of set i

• e.g. 2 lines per set

—2 way associative mapping

—A given block can be in one of 2 lines in only one set

Problem statement

Consider a cache consisting of 256 blocks of 16 words

each for a total of 4096(4KB) words and assume that the

main memory is addressable by a 16 bit address and it

consists of 4KB blocks of 16 words.

How many bits are there in each of the TAG,BLOCK/SET

and WORD field for Direct Mapping , Fully Associative and

2-way set associative techniques?

Problem statement

A block set associative cache memory consists of 128

blocks divided into four block sets. The main memory

consists of 16,384 blocks and each block contains 256

words.

i) How many bits are required for addressing the main

memory?

ii) How many bits are needed to represent the TAG, SET

and WORD fields?

Problem statement

A block set associative cache memory consists of 64

blocks divided into four block sets. The main memory

consists of 4096 blocks and each block contains 128

words.

i) How many bits are there in main memory?

ii) How many bits are needed to represent the TAG, SET

and WORD fields?

CACHE COHERENCE

Cache Coherence

• Problem - multiple copies of same data in

different caches

• Can result in an inconsistent view of memory

—Write through

—Write back policy

—Write invalidate

—Write Update

Software Solutions

• Compiler and operating system deal with problem

• Overhead transferred to compile time

• Complier marks data likely to be changed and OS

prevents such data from being cached

• Design complexity transferred from hardware to

software

Hardware Solution

• Cache coherence protocols

• Dynamic recognition of potential problems

• Run time

• More efficient use of cache

• Transparent to programmer

• Snoopy protocols(to maintain cache consistency)

Snoopy Protocols

• Distribute cache coherence responsibility

among cache controllers

• Cache recognizes that a line is shared

• Updates announced to other caches

• Suited to bus based multiprocessor

• Increases bus traffic

Write through

• All writes go to main memory as well

as cache

• Multiple CPUs can monitor main memory

traffic to keep local (to CPU) cache up to

date

• Lots of traffic

• Slows down writes

Write back

• Updates initially made in cache only

• Update bit for cache slot is set when

update occurs

• If block is to be replaced, write to main

memory only if update bit is set

• Other caches get out of sync

• I/O must access main memory through

cache

Write Update

• Multiple readers and writers

• Updated word is distributed to all other

processors

• Some systems use an adaptive mixture of

both solutions

Write Invalidate

• Multiple readers, one writer

• When a write is required, all other caches of

the line are invalidated

• Writing processor then has exclusive access

until line required by another processor

• State of every line is marked as modified,

exclusive, shared or invalid

• MESI protocol

MESI Protocol

 Commonly implemented for Cache coherence

MESI protocol -four states that a cache line

may be in:

• Modified

• Exclusive

• Shared

• Invalid

MESI protocol

• Invalid: This cache line is not valid

• Exclusive: This cache has the only copy

of the data. The memory is valid.

• Shared: More than one cache is holding a

copy of this line. The memory copy is

valid.

• Modified: The line has been modified. The

memory copy is invalid.

Interleaved

And

Associative Memory

Interleaved Memory

• Interleaved memory is a design made to compensate

for the relatively slow speed of DRAM

• Spreads memory addresses evenly across

• Contiguous memory reads and writes

• Resulting in higher memory throughputs due to

reduced waiting.

• Content-addressed or associative memory-memory is

accessed by its content (as opposed to an explicit

address).

• Reference clues are "associated" with actual memory

contents until a desirable match (or set of matches) is

found.

• Humans retrieve information best when it can be linked

to other related information.

Associative Memory

Virtual Memory

• Virtual
memory

Allows more

programs to be

opened

simultaneously by

using the hard disk

as temporary

storage of memory

pages.

VIRTUAL MEMORY

• 32 or 64MB of RAM available for CPU usage.

• Users expect all their programs to run at once.

• Ex Email program,a Web browser and word

processor(all in RAM simultaneously)

• Find RAM for areas that have not been used recently

and copy them onto the hard disk

• Frees up space in RAM to load the new application.

• Copying happens automatically(feels like unlimited

RAM space)

• Hard disk space is much cheaper than RAM chips, thus

has a economic benefit.

• Read/write speed of a hard drive & technology is not

geared toward accessing small pieces of data at a time.

VIRTUAL MEMORY

• Operating system has to constantly swap information

back and forth between RAM and the hard disk.

• Thrashing- computer feels incredibly slow.

VIRTUAL MEMORY

PAGING

• Unequal fixed size /Variable Size partitions(Inefficient)

• Primary memory is divided into small equal fixed

sized partitions (256, 512, 1K) called page frames.

• Process are divided into same sized blocks(pages)

called paging.

• Recently referenced pages in the memory.

• Need a page table to this management.

Page Table Sample

SEGMENTATION

• Paging internal fragmentation.

• Segmentation maps segments representing

data structures, modules, etc. into variable

partitions.

• Nor contiguous memory blocks neither all

segments of a process are loaded at a time.

• We need a segment table very much like a

page table.

Main Memory Allocation

• Memory is divided into set of contiguous

locations called regions/segments/pages

• Store blocks of data

• Placement of blocks of information in memory

is called Memory Allocation

• Memory Management Systems keeps

information in a table containing available and

free slots

Allocation is done only as per needs

• First Fit

• Best Fit

Replacement Algorithms

• Hardware implemented algorithm (speed)

• Least Recently used (LRU)

—Pick the slot that hasn't been used in the
longest time.

• First in first out (FIFO)

—replace block that has come into cache first

• Random

• OPT-Optimal(Future)

7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

FIFO,LRU,OPT

1) 1 , 6 ,4 , 5 , 1 ,4, 3, 2, 1, 2, 1, 4,6,7,4

FIFO 7 – 4 – 6

LRU 4 - 6 - 7

OPT 7 – 6 -4 (Conflict resolved using LRU)

2) 2 , 3 , 2 , 1 , 5 , 2 , 4 , 5 , 3 , 2 , 5 , 2

FIFO 3 - 2 - 5

LRU 3 – 5 - 2

OPT 2 - 3 - 5

FIFO Page Replacement

A. Frank - P. Weisberg

LRU Page Replacement

Optimal Page Replacement

Secondary Storage

• Magnetic disks

• Floppy disks

• Magnetic Tape

• RAID

• Optical Memory

• CD-ROM

• DVD

RAID Levels 0 - 6

REDUNDANT ARRAY OF INDEPENDENT DISKS

• Storage is an important consideration when setting up a server.

• Almost all of the important information that you and your users care

about will at one point be written to a storage device to save for

later retrieval.

• Single disks can serve you well if your needs are straight forward.

• However, if you have more complex redundancy or performance

requirements, solutions like RAID can be helpful.

RAID Level 0- Non Redundant

RAID Level -1 Mirrored

RAID Level 2- Hamming Code

RAID Level 3 –Bit Interleaved Parity

RAID Level 4- Block level parity

RAID Level 5- Block level Distributed

Parity

RAID Level 6- Dual Redundancy

RAID 0, 1, 2 –

Redundant Array of Independent Disks

RAID 3 & 4

RAID 5 & 6

Solve using FIFO , LRU and OPT page

replacement algorithms

• Given page reference string:
1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

