
Chapter 12

Processor Structure and Function

Central Processing Unit

3.1

CPU architecture, Register organization, Instruction formats and addressing

modes(Intel processor).,Basic instruction cycle. Control unit Operation ,Micro

operations : Fetch, Indirect, Interrupt , Execute cycle Control of the processor,

Functioning of micro programmed control unit, Micro instruction Execution and

Sequencing, Applications of Micro programming

3.2
RISC v/s CISC processors, RISC and CISC Architecture, RISC pipelining, Case

study on SPARC

CPU Structure

• CPU must:

– Fetch instructions

– Interpret instructions

– Fetch data

– Process data

– Write data

CPU With Systems Bus

CPU Internal Structure

Registers

• CPU must have some working space
(temporary storage)

• Called registers

• Number and function vary between processor
designs

• One of the major design decisions

• Top level of memory hierarchy

User Visible Registers

• General Purpose

• Data

• Address

• Condition Codes

Example Register Organizations

General Purpose Registers

• May be true general purpose

• May be restricted

• May be used for data or addressing

• Data

– Accumulator

• Addressing

– Segment

• Why make them general purpose?

– Increase flexibility and programmer options

– Increase instruction size & complexity

How big?

• Large enough to hold full address

• Large enough to hold full word

• Often possible to combine two data registers

– C programming

– double int a;

– long int a;

Condition Code Registers(Flag Reg)

• Sets of individual bits

– e.g. result of last operation was zero

• Can be read (implicitly) by programs

– e.g. Jump if zero

• Can not (usually) be set by programs

Control & Status Registers

• Program Counter (PC)

• Instruction Decoding Register(IR)

• Memory Address Register(MAR)

• Memory Buffer Register(MBR)

 Registers
• Memory Address Register (MAR)

– Connected to address bus

– Specifies address for read or write op

• Memory Buffer Register (MBR)

– Connected to data bus

– Holds data to write or last data read

• Program Counter (PC)

– Holds address of next instruction to be fetched

• Instruction Register (IR)

– Holds last instruction fetched/current instruction being
executed

Program Status Word

• A set of bits
• Includes Condition Codes
• Sign of last result
• Zero
• Carry
• Equal
• Overflow
• Interrupt enable/disable
• Supervisor

General Registers

 AX is the primary accumulator; it is used in input/output and most

arithmetic instructions. For example, in multiplication operation, one operand

is stored in EAX or AX or AL register according to the size of the operand.

 BX is known as the base register, as it could be used in indexed addressing.

 CX is known as the count register, as the ECX, CX registers store the loop

count in iterative operations.

 DX is known as the data register. It is also used in input/output operations.

It is also used with AX register along with DX for multiply and divide

operations involving large values.

Pointer Registers

• Instruction Pointer (IP) − The 16-bit IP register stores the offset address of the

next instruction to be executed. IP in association with the CS register (as CS:IP)

gives the complete address of the current instruction in the code segment.

• Stack Pointer (SP) − The 16-bit SP register provides the offset value within the

program stack. SP in association with the SS register (SS:SP) refers to be current

position of data or address within the program stack.

• Base Pointer (BP) − The 16-bit BP register mainly helps in referencing the

parameter variables passed to a subroutine. The address in SS register is combined

with the offset in BP to get the location of the parameter. BP can also be combined

with DI and SI as base register for special addressing.

Index Registers

SI and DI, are used for indexed addressing and sometimes used in

addition and subtraction.

There are two sets of index pointers −

Source Index (SI) − It is used as source index for string operations.

Destination Index (DI) − It is used as destination index for string

operations.

Control Registers
 • The 32-bit instruction pointer register and the 32-bit flags register

combined are considered as the control registers.

• Many instructions involve comparisons and mathematical

calculations and change the status of the flags and some other

conditional instructions test the value of these status flags to take

the control flow to other location.

• The common flag bits are:

FLAG REGISTER 8086

• Overflow Flag (OF) − It indicates the overflow of a high-order bit

(leftmost bit) of data after a signed arithmetic operation.

• Direction Flag (DF) − It determines left or right direction for

moving or comparing string data. When the DF value is 0, the

string operation takes left-to-right direction and when the value is

set to 1, the string operation takes right-to-left direction.

• Trap Flag (TF) − It allows setting the operation of the processor in single-step mode.

The DEBUG program we used sets the trap flag, so we could step through the

execution one instruction at a time.

• Sign Flag (SF) − It shows the sign of the result of an arithmetic operation. This flag

is set according to the sign of a data item following the arithmetic operation. The

sign is indicated by the high-order of leftmost bit. A positive result clears the value

of SF to 0 and negative result sets it to 1.

• Zero Flag (ZF) − It indicates the result of an arithmetic or comparison operation. A

nonzero result clears the zero flag to 0, and a zero result sets it to 1.

• Interrupt Flag (IF) − It determines whether the external

interrupts like keyboard entry, etc., are to be ignored or

processed. It disables the external interrupt when the value is

0 and enables interrupts when set to 1.

• Auxiliary Carry Flag (AF) − It contains the carry from bit 3 to bit 4 following an

arithmetic operation; used for specialized arithmetic. The AF is set when a 1-

byte arithmetic operation causes a carry from bit 3 into bit 4.

• Parity Flag (PF) − It indicates the total number of 1-bits in the result obtained

from an arithmetic operation. An even number of 1-bits clears the parity flag

to 0 and an odd number of 1-bits sets the parity flag to 1.

• Carry Flag (CF) − It contains the carry of 0 or 1 from a high-order bit (leftmost)

after an arithmetic operation. It also stores the contents of last bit of

a shift or rotate operation.

Segment Registers
 • Segments are specific areas defined in a program for containing data, code and

stack. There are three main segments −

• Code Segment − It contains all the instructions to be executed. A 16-bit Code

Segment register or CS register stores the starting address of the code segment.

• Data Segment(DS,ES) − It contains data, constants and work areas. A 16-bit Data

Segment register or DS register stores the starting address of the data segment.

• Stack Segment − It contains data and return addresses of procedures or

subroutines. It is implemented as a 'stack' data structure. The Stack Segment

register or SS register stores the starting address of the stack.

INSTRUCTION FORMAT
 (PENTIUM)

• Instruction :- MOV A (Destination),B(Source)

• Examples:

MOV AX,BX

Add AX,4

JMP

MUL 3,5

• Opcodes-Operation Code

• Operands-Data

Instruction=Opcodes+Operands.

Instruction Formats

• Layout of bits in an instruction

• Includes opcode

• Includes (implicit or explicit) operand(s)

• Usually more than one instruction format in
an instruction set

Instruction Length

• Affected by and affects:
– Memory size

– Memory organization

– Bus structure

– CPU complexity

– CPU speed

User wants more opcodes, operands, addressing
modes , address range

Allocation of Bits

• Number of addressing modes

• Number of operands

• Register versus memory

• Number of register sets

• Address range

• Address Granularity

Pentium Instruction Format

PENTIUM INSTRUCTION FORMAT

• Instruction Prefixes-LOCK prefix or one of the REPEAT

prefixes(REPE,REPNE,REPZ,REPNZ….)

• Segment Override-explicitly specifying segment register

• Address Size-16 or 32 bit (switch)

• Operand Size-16 or 32 bit (switch)

PENTIUM INSTRUCTION FORMAT
• Opcode

• Mod R/m-addressing
– Mod+ r/m (combined info of registers and addressing

modes)

– Register-register or opcode info

• SIB
– Scale-scale factor for scaled indexing

– Index-specifies index register(SI,DI)

– Base-specifies base register(BX)

• Displacement-8 or 16 or 32 bit

• Immediate-provides the value of 8/16/32 bit
operand

PENTIUM INSTRUCTION FORMAT

• Instruction Prefixes-LOCK prefix or one of the REPEAT

prefixes

• Segment Override-explicitly specifying segment register

• Address Size-16 or 32 bit (switch)

• Operand Size-16 or 32 bit (switch)

William Stallings

Computer Organization

and Architecture

6th Edition
Chapter 11

Instruction Sets:

Addressing Modes and Formats

35

Addressing Modes

• Immediate

• Direct

• Indirect

• Register

• Register Indirect

• Displacement (Indexed)

• Stack

36

Immediate Addressing
• In this mode data is present in address field of

instruction .

• Designed like one address instruction format
– Note:Limitation in the immediate mode is that the

range of constants are restricted by size of address

field.

• FEATURES

– Operand is part of instruction

– Operand = address field

– No memory reference to fetch data

– Fast

– Limited range

 MOV AX, 2000

 MOV CL, 0A

 ADD AL, 45

 ADD AX, 0000

 MOV CX, 4929 H

 ADD AX, 2387 H,

 MOV AL, FFH

37

38

Direct(M) Addressing

Diagram

 MOV AX, [DISP]

 MOV AX, [0500]

 ADD AL,[0301]

39

• The operand’s offset is given in the instruction as an 8 bit or

16 bit displacement element.

• In this addressing mode the 16 bit effective address of the

data is the part of the instruction.

• Here only one memory reference operation is required to

access the data.

40

41

Direct Addressing

• Address field contains address of operand

• EFFECTIVE ADDRESS EA = address field (A)

– Look in memory at address value for operand

• Single memory reference to access data

• No additional calculations to work out effective

address

• Limited address space

42

Indirect Addressing Diagram

• In this mode address field of instruction contains the address

of effective address.

• Here two references are required.

1st reference to get effective address.

2nd reference to access the data.

.

43

Based on the availability of Effective address, Indirect mode is of two kind:

• REGISTER INDIRECT: In this mode effective

address is in the register, and corresponding

register name will be maintained in the

address field of an instruction.

– Here one register reference,one memory reference is required to access

the data. 44

• MEMORY INDIRECT: In this mode effective

address is in the memory, and corresponding

memory address will be maintained in the

address field of an instruction.

– Here two memory reference is required to access the data

45

46

Indirect Addressing (1/2)

• Memory cell pointed to by address field contains the address

of (pointer to) the operand

• EA =(A)

– Look in A, find address (A) and look there for operand

• e.g. ADD AX, (A)

– Add contents of cell pointed to by contents of A to accumulator

47

Indirect Addressing (2/2)

• Large address space

• 2n where n = word length

• May be nested, multilevel, cascaded

– e.g. EA = (((A)))

• Draw the diagram yourself

• Multiple memory accesses to find operand

• Hence slower

48

Register Addressing Diagram

• In register addressing the operand is placed in one of 8 bit or

16 bit general purpose registers.

• The data is in the register that is specified by the instruction.

– Here one register reference is required to access the data.

49

50

Register Addressing (1/2)

• Operand is held in register named in address filed

• EA = R

• Limited number of registers

• Very small address field needed

– Shorter instructions

– Faster instruction fetch

– MOV AX, BX

– ADD AX, BX

51

Register Addressing (2/2)

• No memory access

• Very fast execution

• Very limited address space

• Multiple registers helps performance

– Requires good assembly programming or compiler writing

– N.B. C programming

• register int a;

• c.f. Direct addressing

52

Register Indirect Addressing Diagram

• In this addressing the operand’s offset is placed in any one of

the registers BX,BP,SI,DI as specified in the instruction.

• The effective address of the data is in the base register or an

index register that is specified by the instruction.

– Here two register reference is required to access the data.

53

54

Register Indirect Addressing

MOV AX, [BX]

(move the contents of memory location s addressed by the register BX to the register

AX)

MOV AX, [DI]

ADD AL, [BX]

MOV AX, [SI]

• Operand is in memory cell pointed to by contents of register R

• Large address space (2n)

• One fewer memory access than indirect addressing

55

Displacement Addressing

Diagram

56

Displacement Addressing

• EA = A + (R)

• Effective address=start address + displacement

• Effective address=Offset + (Segment Register)

• Use direct and register indirect

• Address field hold two values

– A = base value

– R = register that holds displacement

– or vice versa

57

Base-Register Addressing

• Base register addressing mode is used to implement inter

segment transfer of control.

• In this mode effective address is obtained by adding base

register value to address field value.

• EA= Base register + Address field value.

• PC= Base register + Relative value.

58

Indexed Addressing

The operand’s offset is the sum of the content of an

index register SI or DI and an 8 bit or 16 bit

displacement.

• MOV AX, [SI +05]

59

Stack Addressing
• Operand is (implicitly) on top of stack

• e.g.
– ADD Pop top two items from stack and add and push

Instruction Cycle

Instruction Cycle

• Two steps:

– Fetch

– Execute

Instruction Cycle with Interrupts

Instruction Cycle

• It is the time in which a single instruction is fetched

from memory, decoded, and executed

• An Instruction Cycle requires the following subcycle:

– FETCH

– EXECUTE

– INDIRECT

– INTERRUPT

Instruction Cycle
 Fetch

 Read next instruction from memory into the processor

 Indirect Cycle (Decode Cycle)

 May require memory access to fetch operands, therefore more

memory accesses.

 Interrupt

 Save current instruction and service the interrupt

 Execute

 Interpret the opcode and perform the indicated operation

Instruction Cycle

Fetch

Execute

Fetch

Execute

Indirect

Fetch

Execute

Interrupt

Fetch

Execute

Indirect Interrupt

Instruction Cycle State Diagram

Instruction Cycle State Diagram

• This illustrates more correctly the nature of the instruction cycle.

• Once an instruction is fetched, its operand specifiers must be

identified.

• Each input operand in memory is then fetched, and this process

may require indirect addressing.

• Register-based operands need not be fetched.

• Once the opcode is executed, a similar process may be needed to

store the result in main memory.

 Registers
• Memory Address Register (MAR)

– Connected to address bus

– Specifies address for read or write op

• Memory Buffer Register (MBR)

– Connected to data bus

– Holds data to write or last data read

• Program Counter (PC)

– Holds address of next instruction to be fetched

• Instruction Register (IR)

– Holds last instruction fetched/current instruction being executed

Fetch Cycle
• Program Counter (PC) holds address of next instruction to be

fetched

• Processor fetches instruction from memory location pointed to by

PC

• Increment PC

– Unless told otherwise

• Instruction loaded into Instruction Register (IR)

• Processor interprets instruction and performs required actions

Fetch Sequence (symbolic)

• The Fetch Cycle –
At the beginning of the fetch cycle, the address
of the next instruction to be executed is in
the Program Counter(PC).

Step 1:

• The address in the program counter is moved to the
memory address register(MAR), as this is the only
register which is connected to address lines of the
system bus.

Step 2:

• The address in MAR is placed on the address bus, now the
control unit issues a READ command on the control bus, and the
result appears on the data bus and is then copied into the
memory buffer register(MBR).

• Program counter is incremented by one, to get ready for the
next instruction.(These two action can be performed
simultaneously to save time)

Step 3:

• The content of the MBR is moved to the
instruction register(IR)

THIRD STEP

Indirect Cycle

Step 1:

The address field of the instruction is transferred to the MAR.

This is used to fetch the address of the operand.

Step 2:

The address field of the IR is updated from the MBR.(So that it now

contains a direct addressing rather than indirect addressing)

Step 3:

The IR is now in the state, as if indirect addressing has not been

occurred.

Interrupt Cycle

• At the completion of the Execute Cycle, a test is made to

determine whether any enabled interrupt has occurred or

not.

• If an enabled interrupt has occurred then Interrupt Cycle

occurs.

• The nature of this cycle varies greatly from one machine to

another.

• Step 1: Contents of the PC is transferred to the MBR, so that they

can be saved for return.

Step 2: MAR is loaded with the address at which the contents of

the PC are to be saved.

PC is loaded with the address of the start of the interrupt-

processing routine.

Step 3: MBR, containing the old value of PC, is stored in memory.

– Note: In step 2, two actions are implemented as one micro-operation. However,
most processor provide multiple types of interrupts, it may take one or more micro-
operation to obtain the save_address and the routine_address before they are
transferred to the MAR and PC respectively.a

Execute Cycle (ADD)

Different for each instruction

e.g. ADD R1,X - add the contents of location X to
Register 1 , result in R1

R1R1MDR:t

MDRMEMORY:t

MARIR:t

3

2

1

Constituent Elements of
Program Execution

Micro-Operations

• A computer executes a program

• Fetch/execute cycle

• Each cycle has a number of steps

• Called micro-operations

• Each step does very little

• Atomic operation of CPU

Types of Micro-operation

• Transfer data between registers

• Transfer data from register to external

• Transfer data from external to register

• Perform arithmetic or logical ops

William Stallings
Computer Organization

and Architecture
8th Edition

Chapter 15

Control Unit Operation

Functional Requirements(of Control
Unit)

Define basic elements of processor

Describe micro-operations processor performs

Determine functions control unit must

perform

 Registers
Memory Address Register (MAR)
◦ Connected to address bus

◦ Specifies address for read or write op

Memory Buffer Register (MBR)
◦ Connected to data bus

◦ Holds data to write or last data read

Program Counter (PC)
◦ Holds address of next instruction to be fetched

 Instruction Register (IR)
◦ Holds last instruction fetched/current instruction

being executed

Model of Control Unit

Functions of Control Unit

 Sequencing

◦ Causing the CPU to step through a series of micro-operations

 Execution

◦ Causing the performance of each micro-op

 This is done using Control Signals

Control Signals(input)
Clock
◦ One micro-instruction (or set of parallel micro-

instructions) per clock cycle

 Instruction register
◦ Op-code for current instruction
◦ Determines which micro-instructions are

performed

 Flags
◦ State of CPU
◦ Results of previous operations

 From control bus
◦ Interrupts
◦ Acknowledgements

Control Signals - output

 Within CPU

◦ Cause data movement

◦ Activate specific functions

 Via control bus

◦ To memory

◦ To I/O modules

Control Unit Organization

Implementation

• All the control unit does is generate a set of control signals

• Each control signal is on or off

• Represent each control signal by a bit

• Have a control word for each micro-operation

• Have a sequence of control words for each machine code instruction

• Add an address to specify the next micro-instruction, depending on

conditions

William Stallings
Computer Organization

and Architecture
8th Edition

Chapter 16

Micro-programmed Control

Functioning of Micro programmed
Control Unit

Micro programmed Control Unit Function

 Sequence logic unit issues read command

 Word specified in control address register is read into control

buffer register

 Control buffer register contents generates control signals and next

address information

 Sequence logic loads new address into control buffer register

based on next address information from control buffer register

and ALU flags

Next Address Decision
• Depending on ALU flags and control buffer

register

– Get next instruction

• Add 1 to control address register

– Jump to new routine based on jump
microinstruction

• Load address field of control buffer register into control
address register

– Jump to machine instruction routine

• Load control address register based on opcode in IR

Advantages and Disadvantages of
Microprogramming

• Simplifies design of control unit

– Cheaper

– Less error-prone

• Slower

Tasks Done By Microprogrammed
Control Unit

• Microinstruction sequencing

• Microinstruction execution

• Must consider both together

Micro-instruction Types
Each micro-instruction specifies many different

micro-operations to be performed in parallel

◦ (horizontal micro-programming)

Each micro-instruction specifies single (or few)

micro-operations to be performed

◦ (vertical micro-programming)

Typical Microinstruction Formats

Vertical Micro-programming

• Width is narrow

• Limited ability to express parallelism

• Considerable encoding of control information requires

external memory word decoder to identify the exact

control line being manipulated

Horizontal Micro-programming

• Wide memory word

• High degree of parallel operations possible

• Little encoding of control information

William Stallings
Computer Organization

and Architecture
7th Edition

Chapter 13

Reduced Instruction Set Computers

v/s

Complex Instruction Set Computers

Introduction

• The architectural design of the CPU is RISC & CISC.

• Hardware fused with software (Intel v/s Apple)

• Intel’s hardware oriented approach is termed as CISC while that of Apple is

RISC

• Instruction Set Architecture- Interface to allow easy communication between

the programmer and the hardware.

• ISA- execution of data, copying data, deleting it, editing

• Instruction Set , Addressing Modes,

RISC-Reduced Instruction Set
Computer

• RISC processor design has separate digital circuitry in

the control unit

• Signals needed for the execution of each instruction in

the instruction set of the processor.

• Examples of RISC processors:
– IBM RS6000, MC88100
– DEC’s Alpha 21064, 21164 and 21264 processors

CISC-Complex Instruction Set
Computer

• Control unit micro-electronic circuitry

 - generates a set of control signals activated by a

micro-code

• The primary goal of CISC architecture is to complete a

task in as few lines of assembly code as possible.

• Examples of CISC processors are:

– Intel 386, 486, Pentium, Pentium Pro, Pentium II, Pentium III

– Motorola’s 68000, 68020, 68040, etc.

CISC processor features

• Instruction set with 120-350 instructions

• Variable instruction/data formats

• Small set of general purpose registers(8-24)

• A large number of addressing modes

• High dependency on micro program

• Complex instructions to support HLL features

CISC processor features

• Complex pipelining

• Many functional chips needed to design a computer

using CISC

• Difficult to design a superscalar processor

RISC processor features

• Instruction set with limited number of instructions

• Simple instruction format

• Large set of CPU registers

• Very few addressing modes

• Easy to construct a superscalar processor

RISC processor features

• Hardwired control unit for sequencing

microinstructions

• Supports on chip cache memory

• All functional units on a single chip

• Simple pipelining

PIPELINING-Ex Laundry Analogy

Problems with pipeline

• Stalling of pipeline

– Data Dependency

– Branch,etc…

RISC Pipelining
• Most instructions are register to register

• Two phases of execution, I E

– I: Instruction fetch

– E: Execute
• ALU operation with register input and output

• For load and store(memory),I E D

– I: Instruction fetch

– E: Execute
• Calculate memory address

– D: Memory
• Register to memory or memory to register operation

NOP is typically used to generate a delay in

execution or to reserve space in code memory.

RISC Architecture
• 9 functional units interconnected by multiple data paths with width

ranging from 32-128 bits

• All internal- external buses are 32 bit wide

• Separate instruction (4KB)and data cache(8KB)

• MMU- implements paged virtual memory structure

• RISC integer unit executes load,store,fetch etc

• 2 floating point units , multiplier unit and adder unit

• Graphics unit to support 3D drawing

CISC Architecture

