

	[image: A picture containing drawing

Description automatically generated]
	K. J. Somaiya College of Engineering, Mumbai-77
(A Constituent College of Somaiya Vidyavihar University)
Department of Computer Engineering
	 [image: A close up of a sign

Description automatically generated]

[bookmark: _heading=h.gjdgxs]	Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No: 1

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	

	TITLE: Study of PCI and SCSI.

AIM: To Study and learn PCI and SCSI
__
Expected OUTCOME of Experiment : (Mention CO/CO’s attained here)

__Books/ Journals/ Websites referred:

1. https://www.techopedia.com/definition/8815/peripheral-component-interconnect-bus-pci-bus
2. https://www.techopedia.com/definition/331/small-computer-system-interface-scsi
3. http://www.csun.edu/~edaasic/roosta/BUS_Structures.pdf
4. W.Stallings William “Computer Organization and Architecture: Designing for Performance”, Pearson Prentice Hall Publication, 7thEdition. C.

Pre Lab/ Prior Concepts:
[bookmark: bookmark=id.30j0zll]Microcomputer buses which communicate with a peripheral devices or a memory location through communication lines called buses.
The major parts of microcomputers are central processing unit (CPU), memory, and input and output unit. To connect these parts together through three sets of parallel lines, called buses. These three buses are Address bus, data bus, and Control bus.

Address Bus:
The address bus consists of 16, 20, 24, or more parallel signal lines, through which the CPU sends out the address of the memory location. This memory location is used for to written to or read from. The number of memory location is depends on 2 to the power N address lines. Example, a CPU with 16 address lines can address 216 or 65,536 memory locations. When the CPU reads data from or writes data to a port. The port address is also sent out on the address bus. This is unidirectional. This means that the CPU can send data to a memory location or I/O ports.
Data Bus:
The data bus consists of 8, 16, 32 or more parallel signal lines. The data bus lines are bidirectional. This means that the CPU can read data from memory or from a I/O port as well as send data to a memory location or to a I/O port. In a system, many output devices are connected to the data bus, but only one device at a time will be enabled to the output.

Control Bus:
The control bus consists of 4-10 parallel signal lines. The CPU sends out signals on the control bus to enable the outputs of addressed memory devices or port devices. Typically control bus signals are memory read, memory write, I/O read and I/O write. To read a data from a memory location, the CPU sends out the address of the desired data on the address bus and then sends out a memory read signal on the control bus. The memory read signal enables the addressed memory device to output the data onto the data bus where it is read by the CPU.

 PCI Bus

PCI stands for Peripheral Component Interconnect. It could be a standard information transport that was common in computers from 1993 to 2007 or so. It was for a long time the standard transport for extension cards in computers, like sound cards, network cards, etc. It was a parallel transport, that, in its most common shape, had a clock speed of 66 MHz, and can either be 32 or 64 bits wide. It has since been replaced by PCI Express, which could be a serial transport as contradicted to PCI. A PCI port, or, more precisely, PCI opening, is essentially the connector that’s utilized to put through the card to the transport. When purge, it basically sits there and does nothing.
Types of PCI :
These are various types of PCI:
· PCI 32 bits have a transport speed of 33 MHz and work at 132 MBps.
· PCI 64 bits have a transport speed of 33 MHz and work at 264 MBps.
· PCI 64 bits have a transport speed of 66 MHz and work at 512 MBps.
· PCI 64 bits have a transport speed of 66 MHz and work at 1 GBps.

Function of PCI :
PCI slots are utilized to install sound cards, Ethernet and remote cards and presently strong state drives utilizing NVMe innovation to supply SSD drive speeds that are numerous times speedier than SATA SSD speeds. PCI openings too permit discrete design cards to be included to a computer as well.
PCI openings (and their variations) permit you to include expansion cards to a motherboard. The extension cards increment the machines capabilities past what the motherboard may create alone, such as: upgraded illustrations, extended sound, expanded USB and difficult drive controller, and extra arrange interface options, to title a couple of.
Advantage of PCI :
· You’ll interface a greatest of five components to the PCI and you’ll be able moreover supplant each of them by settled gadgets on the motherboard.
· You have different PCI buses on the same computer.
· The PCI transport will improve the speed of the exchanges from 33MHz to 133 MHz with a transfer rate of 1 gigabyte per second.
· The PCI can handle gadgets employing a greatest of 5 volts and the pins utilized can exchange more that one flag through one stick.

Disadvantage of PCI :
· PCI Graphics Card cannot get to to system memory.
· PCI does not support pipeline.

SCSI bus:
The basic interface for connecting peripheral devices to a PC is a small computer system interface. Based on the specification, it can typically respond up to 16 external devices using a single route, along with a host adapter. Small Computer System Interface is used to boost performance, deliver fast data transfer delivery and provide wider expansion for machines like CD-ROM drivers, scanners, DVD> drives and CD writers. Small Computer System Interface is most commonly used for RAID, servers, highly efficient desktop computers, and storage area networks. The Small Computer System Interface has control, which is responsible for transmitting data across the Small Computer System Interface bus and the computers. It can be fixed on a motherboard, or one client adapter is installed through an extension on the computer's motherboard. The controller also incorporates a simple SCSI input/output system, which is a small chip that provides access and control equipment with the necessary software. The SCSI ID is his number. Using serial storage architecture initiators, new serial SCSI IDs such as serial attached SCSI use an automatic process which assigns a 7-bit number.

Post Lab Descriptive Questions
Q1 . Differentiate between PCI and SCSI Bus

	PCI
	SCSI

	Peripheral Component Interconnect (PCI), as its name implies is a standard that describes how to connect the peripheral components of a system together in a structured and controlled way.
	SCSI is standard electronic interfaces that allow personal computers to communicate with peripheral hardware such as disk drives, tape drives etc.

	PCI bus was created by Intel in 1993. PCI bus can transfer 32 or 64 bits at one time. PCI bus can run at 33 Mhz.
	It is a high performance bus which is used for fast disks, scanners, and for devices which require high bandwidth. It has a data rate of 160 MB/s.

	Typical bandwidth is 80 m/s
	Typical bandwidth is 1.5 to 40 m/s

	Bus type is Backplane
	Bus type is I/O

Q2. List two applications each of PCI and SCSI Bus

Applications for PCI are:

· Designed for multiprocessor system and high performing peripheral. This includes audio, video system, network adapters, graphics and accelerator board, data storage collectors
· Because each PCI design is unique, programmable logic devices provide an ideal solution for PCI design
· PCI has replaced ISA as the bus of choice in new desktop and industrial PCs. With the PCI bus, high-performance, low-cost, and convenient PCI based image processing and data acquisition solutions are at hand.

Applications for SCSI are:

· SCSI is a multi-task interface with bus arbitration function. Multiple peripherals hung on one SCSI bus can work simultaneously
· SCSI devices have equal possession of the bus.
· SCSI interface can transmit data synchronously and asynchronously. The synchronous transmission rate reaches 10MB/s, and the asynchronously transmission rate reaches 1.5MB/s.

Date: _____________ Signature of faculty in-charge

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No: 2

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	

	TITLE: To study and implement Booth’s Multiplication Algorithm.

AIM: Booth’s Algorithm for Multiplication
__
Expected OUTCOME of Experiment: (Mention CO/CO’s attained here)

Books/ Journals/ Websites referred:

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, Fifth Edition, TataMcGraw-Hill.
2. William Stallings, “Computer Organization and Architecture: Designing for Performance”, Eighth Edition, Pearson.
 3. Dr. M. Usha, T. S. Srikanth, “Computer System Architecture and Organization”, First Edition, Wiley-India.

Pre Lab/ Prior Concepts:
It is a powerful algorithm for signed number multiplication which generates a 2n bit product and treats both positive and negative numbers uniformly. Also the efficiency of the algorithm is good due to the fact that, block of 1’s and 0’s are skipped over and subtraction/addition is only done if pair contains 10 or 01

Flowchart:

[image: BM]

Design Steps:
1. Start
2. Get the multiplicand (M) and Multiplier (Q) from the user
3. Initialize A= Q-1 =0
4. Convert M and Q into binar
5. Compare Q0 and Q-1 and perform the respective operation.

	Q0 Q-1
	Operation

	00/11
	Arithmetic right shift

	01
	A+M and Arithmetic right shift

	10
	A-M and Arithmetic right shift

 6. Repeat steps 5 till all bits are compared
7. Convert the result to decimal form and display
8. End

Example: (Handwritten solved problem needs to be uploaded) [image: Table

Description automatically generated]
[image: Graphical user interface, table

Description automatically generated]
Code:
#include <bits/stdc++.h>
using namespace std;
int findbit(int m,int q){
 m=max(abs(m),abs(q));
 for(q=0;pow(2,q)<m;q++);
 return (max((q+1),4));
}
int* binary(int a,int num){
 int* ptr=(int*)malloc(num*sizeof(int));
 int acopy=abs(a),check=1;
 for (int i = 0;i<num; i++){
 ptr[i] = acopy % 2;
 acopy = acopy/2;
 }
 if (a < 0){
 for (int i = 0; i <num; i++){
 if (ptr[i] == 1 && check==1)
 check=0;
 else if(ptr[i] == 1 && check==0)
 ptr[i]=0;
 else if(ptr[i] == 0 && check==0)
 ptr[i]=1;
 }
 }
 return ptr;
}
void printbinary(int* ans,string s,int num){
 for(int i=2*num;i>num;i--)
 cout<<ans[i]<<" ";
 cout<<"\t";
 for(int i=num;i>0;i--)
 cout<<ans[i]<<" ";
 cout<<"\t"<<ans[0]<<"\t"<<s<<endl;
}
void binaryadd(int* ans,int* n,int num){
 int carry=0;
 for(int i=num+1;i<=2*num;i++){
 if(ans[i]+n[i-num-1]+carry==1){
 ans[i]=1;
 carry=0;
 }
 else if(ans[i]+n[i-num-1]+carry==2){
 ans[i]=0;
 carry=1;
 }
 else if(ans[i]+n[i-num-1]+carry==3){
 ans[i]=1;
 carry=1;
 }
 }
}
int main()
{
 int m,q;
 cout<<"Enter M and Q: ";
 cin>>m>>q;
 int num=findbit(m,q);
 int ans[2*num+1]={0};
 int *arr=binary(q,num);
 for(int i=num;i>0;i--)
 ans[i]=arr[i-1];
 cout<<endl<<"A\t\tQ\t\tQ-1\t\tOperation"<<endl<<endl;
 printbinary(ans,"Initial Value",num);
 for(int i=0;i<num;i++){
 if(ans[1]==0 && ans[0]==1){
 binaryadd(ans,binary(m,num),num);
 printbinary(ans,"A <- A + M",num);
 }
 else if(ans[1]==1 && ans[0]==0){
 binaryadd(ans,binary(-m,num),num);
 printbinary(ans,"A <- A - M",num);
 }
 for(int i=0;i<2*num;i++)
 ans[i]=ans[i+1]; // Right Shifting
 printbinary(ans,"Arithemetic Right Shift",num);
 }
 printbinary(ans,"Final Answer",num);
}

Output:
[image:]
[image:]
Conclusion:
Learnt and implemented booths algorithm along with the understanding of computer bits and operations like arithmetic shift right.

Post Lab Descriptive Questions

1. Explain advantages and disadvantages of Booth’s algorithm.
Advantages of booth's multiplication:
· Easy calculation of multiplication problem.
· Consecutive additions will be replaced.
· Less complex and ease scaling.

Disadvantages of booth's multiplication:
· This algorithm will not work for isolated 1's.
· It is time consuming.
· If digital gates are more, chip area would be large.

2. Is Booth’s recoding better than Booth’s algorithm? Justify

Advantage of Booth’s recoding is that it reduces the number of 1’s and increases the number of 0’s in a binary number. Having more number of 0’s is advantageous for easier calculation.
For Example: (01111)2 is equivalent to (+1 0 0 0 -1) in Booth Recoding. Hence it is more efficient and less time consuming in comparison to Booth’s algorithm.

Date: _____________ Signature of faculty in-charge

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No: 3

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE : To study and implement Restoring method of division

AIM : The basis of algorithm is based on paper and pencil approach and the operation involves repetitive shifting with addition and subtraction. So the main aim is to depict the usual process in the form of an algorithm.
__
Expected OUTCOME of Experiment: (Mention CO /CO’s attained here)

Books/ Journals/ Websites referred:

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, Fifth Edition, TataMcGraw-Hill.
2. William Stallings, “Computer Organization and Architecture: Designing for Performance”, Eighth Edition, Pearson.
 3. Dr. M. Usha, T. S. Srikanth, “Computer System Architecture and Organization”, First Edition, Wiley-India.

Pre Lab/ Prior Concepts:
The Restoring algorithm works with any combination of positive and negative numbers.

Flowchart for Restoring of Division:
[image:]

Design Steps:
1. Start
2. Initialize A=0, M=Divisor, Q=Dividend and count=n (no of bits)
3. Left shift A, Q
4. If MSB of A and M are same
5. Then A=A-M
6. Else A=A+M
7. If MSB of previous A and present A are same
8. Q0=0 & store present A
9. Else Q0=0 & restore previous A
10. Decrement count.
11. If count=0 go to 11
12. Else go to 3
13. STOP

Example:- (Handwritten solved problems needs to be uploaded)

[image:]
[image: Text, letter

Description automatically generated]

Code:
#include <bits/stdc++.h>
using namespace std;
int findbit(int m,int q){
 m=max(abs(m),abs(q));
 for(q=0;pow(2,q)<m;q++);
 return (max((q),4));
}
int* binary(int a,int num){
 int* ptr=(int*)malloc(num*sizeof(int));
 int acopy=abs(a),check=1;
 for (int i = 0;i<num; i++){
 ptr[i] = acopy % 2;
 acopy = acopy/2;
 }
 if (a < 0){
 for (int i = 0; i <num; i++){
 if (ptr[i] == 1 && check==1)
 check=0;
 else if(ptr[i] == 1 && check==0)
 ptr[i]=0;
 else if(ptr[i] == 0 && check==0)
 ptr[i]=1;
 }
 }
 return ptr;
}
void printbinary(int* ans,string s,int num){
 for(int i=(2*num)-1;i>num-1;i--)
 cout<<ans[i]<<" ";
 cout<<"\t";
 for(int i=num-1;i>=0;i--)
 cout<<ans[i]<<" ";
 cout<<"\t"<<s<<endl;
}
void binaryadd(int* ans,int* n,int num){
 int carry=0;
 for(int i=num;i<2*num;i++){
 if(ans[i]+n[i-num]+carry==1){
 ans[i]=1;
 carry=0;
 }
 else if(ans[i]+n[i-num]+carry==2){
 ans[i]=0;
 carry=1;
 }
 else if(ans[i]+n[i-num]+carry==3){
 ans[i]=1;
 carry=1;
 }
 }
}
int main()
{
 int m,q;
 cout<<"Enter Q and M: ";
 cin>>q>>m;
 int num=findbit(m,q);
 int ans[2*num]={0};
 int *arr=binary(q,num);
 for(int i=num-1;i>=0;i--)
 ans[i]=arr[i];
 cout<<endl<<"A\t\tQ\t\tOperation"<<endl<<endl;
 printbinary(ans,"Initial Value",num);
 for(int i=0;i<num;i++){
 for(int i=2*num;i>0;i--)
 ans[i]=ans[i-1]; // left Shifting
 ans[0]=8;
 printbinary(ans,"Arithemetic Shift Left",num);
 binaryadd(ans,binary(-m,num),num);
 printbinary(ans,"A <- A - M",num);
 if(ans[2*num-1]==1){
 binaryadd(ans,binary(m,num),num);
 printbinary(ans,"A <- A + M",num);
 ans[0]=0;
 }
 else
 ans[0]=1;
 }
 printbinary(ans,"Final Answer",num);
}

Output
[image: A picture containing text

Description automatically generated]
[image:]

Conclusion
The Restoring method of division has been studied and its implementation has been
conducted successfully.

Post Lab Descriptive Questions

1. What are the advantages of restoring division over non restoring division?

In each step of your division calculation the result of the step is either 1 or 0,
depending if the dividend is less than or larger than the divisor.
You generally do a test subtraction for each digit step; if the result is positive or zero,
you note down a 1 as next digit of your quotient.
If the result is negative, you proceed with one of two strategies:
• restoring method: you add the divisor back, and put 0 as your next
quotient digit
• non-restoring method: you don’t do that - you keep negative
remainder and a digit 1, and basically correct things by a
supplementary addition afterwards.

Date: _____________ Signature of faculty in-charge

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No. 4

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE : To study and implement Non Restoring method of division

AIM : The basis of algorithm is based on paper and pencil approach and the operation involve repetitive shifting with addition and subtraction. So the main aim is to depict the usual process in the form of an algorithm.
__
Expected OUTCOME of Experiment: (Mention CO/CO’s attained here)

To better understand the non-restoring algorithm and executing it using a programming
language. To find the advantage of non-restoring over restoring division.

Books/ Journals/ Websites referred:

3. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, Fifth Edition, TataMcGraw-Hill.
4. William Stallings, “Computer Organization and Architecture: Designing for Performance”, Eighth Edition, Pearson.
 3. Dr. M. Usha, T. S. Srikanth, “Computer System Architecture and Organization”, First Edition, Wiley-India.

Pre Lab/ Prior Concepts:
The Non Restoring algorithm works with any combination of positive and negative numbers.

Flowchart for Non Restoring of Division:
[image:]
Example: (Handwritten solved problem needs to uploaded)
[image:]
[image: Table

Description automatically generated]

Code:
#include <bits/stdc++.h>
using namespace std;
int findbit(int m,int q){
 m=max(abs(m),abs(q));
 for(q=0;pow(2,q)<m;q++);
 return (max((q),4));
}
int* binary(int a,int num){
 int* ptr=(int*)malloc(num*sizeof(int));
 int acopy=abs(a),check=1;
 for (int i = 0;i<num; i++){
 ptr[i] = acopy % 2;
 acopy = acopy/2;
 }
 if (a < 0){
 for (int i = 0; i <num; i++){
 if (ptr[i] == 1 && check==1)
 check=0;
 else if(ptr[i] == 1 && check==0)
 ptr[i]=0;
 else if(ptr[i] == 0 && check==0)
 ptr[i]=1;
 }
 }
 return ptr;
}
void printbinary(int* ans,string s,int num){
 for(int i=(2*num)-1;i>num-1;i--)
 cout<<ans[i]<<" ";
 cout<<"\t";
 for(int i=num-1;i>=0;i--)
 cout<<ans[i]<<" ";
 cout<<"\t"<<s<<endl;
}
void binaryadd(int* ans,int* n,int num){
 int carry=0;
 for(int i=num;i<2*num;i++){
 if(ans[i]+n[i-num]+carry==1){
 ans[i]=1;
 carry=0;
 }
 else if(ans[i]+n[i-num]+carry==2){
 ans[i]=0;
 carry=1;
 }
 else if(ans[i]+n[i-num]+carry==3){
 ans[i]=1;
 carry=1;
 }
 }
}
int main()
{
 int m,q;
 cout<<"Enter Q and M: ";
 cin>>q>>m;
 int num=findbit(m,q);
 int ans[2*num]={0};
 int *arr=binary(q,num);
 for(int i=num-1;i>=0;i--)
 ans[i]=arr[i];
 cout<<endl<<"A\t\tQ\t\tOperation"<<endl<<endl;
 printbinary(ans,"Initial Value",num);
 for(int i=0;i<num;i++){
 if(ans[2*num-1]==1){
 for(int i=2*num;i>0;i--)
 ans[i]=ans[i-1]; // left Shifting
 printbinary(ans,"Shift Left",num);
 binaryadd(ans,binary(m,num),num);
 printbinary(ans,"A <- A + M",num);
 }
 else{
 for(int i=2*num;i>0;i--)
 ans[i]=ans[i-1]; // left Shifting
 printbinary(ans,"Shift Left",num);
 binaryadd(ans,binary(-m,num),num);
 printbinary(ans,"A <- A - M",num);
 }

 if(ans[2*num-1]==1){
 ans[0]=0;
 printbinary(ans,"Qo = 0",num);
 }
 else{
 ans[0]=1;
 printbinary(ans,"Qo = 1",num);
 }
 }
 if(ans[2*num-1]==1){
 binaryadd(ans,binary(m,num),num);
 printbinary(ans,"A <- A + M",num);
 }
 printbinary(ans,"Final Answer",num);
}

Output:
[image:]
[image:]
Conclusion
Successfully executed and coded the algorithm for non-restoring division. In this experiment, Non-Restoring Division Algorithm is executed with the help of C++ programming.
The advantage of Non-Restoring Division over Restoring Division is better understood.
Post Lab Descriptive Questions

1. What are the advantages of non-restoring division over restoring division?

Non-restoring division uses the digit set {−1, 1} for the quotient digits instead
of {0, 1}. Non-Restoring Division when implemented in hardware, there is only one
decision and addition/subtraction per quotient bit; there is no restoring step after the
subtraction, which potentially cuts down the numbers of operations by up to half and
lets it be executed faster.
Restoring method: you add the divisor back, and put 0 as your next quotient digit
Non-restoring method: you don’t do that - you keep negative remainder and a digit
1, and basically correct things by a supplementary addition afterwards.

Date: _____________ Signature of faculty in-charge

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No. 5

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE: Implementation of IEEE-754 floating point representation

AIM: To demonstrate the single and double precision formats to represent floating point numbers.
__
Expected OUTCOME of Experiment: (Mention CO attained here)

Books/ Journals/ Websites referred:
1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, Fifth Edition, TataMcGraw-Hill.
2. William Stallings, “Computer Organization and Architecture: Designing for Performance”, Eighth Edition, Pearson.

Pre Lab/ Prior Concepts:
The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point computation established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating point implementations that made them difficult to use reliably and portably. Many hardware floating point units now use the IEEE 754 standard.
The standard defines:
· arithmetic formats: sets of binary and decimal floating-point data, which consist of finite numbers (including signed zeros and subnormal numbers), infinities, and special "not a number" values (NaNs)
· interchange formats: encodings (bit strings) that may be used to exchange floating-point data in an efficient and compact form
· rounding rules: properties to be satisfied when rounding numbers during arithmetic and conversions
· operations: arithmetic and other operations (such as trigonometric functions) on arithmetic formats
· exception handling: indications of exceptional conditions (such as division by zero, overflow, etc

Example (Single Precision- 32 bit representation)
Example (Double Precision- 64 bit representation)

[image:]

[image:]

Implementation:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int bi[11], f[23], sign[1], expo[8], frac[23];
int expo1[11], fract[52];
int m = 0, fl = 0, i;
// to convert decimal to binary
void binary(int n)
{
 while (n > 0)
 {
 bi[m] = n % 2;
 n = n / 2;
 m++;
 }
}
// to convert floating decimal to binary
void floating(float x)
{
 for (i = 0; i < 23; i++)
 {
 x = x * 2;
 f[i] = (int)x;
 x = x - f[i];
 }
}
// for finding single and double precision
void precision(int num)
{
 int e, ee, ee1, k = 0, j = 0, l, r = 0;

 while (m != 0)
 {
 if (bi[m] == 1)
 {
 e = m;
 ee = m + 127;
 ee1 = m + 1023;
 printf("\nSingle precision:\nBiased exponent:%d\n", ee);
 printf("\nDouble precision:\nBiased exponent:%d\n", ee1);

 while (ee1 > 0)
 {
 expo1[r] = ee1 % 2;
 ee1 = ee1 / 2;
 r++;
 }

 printf("\n");
 printf("%d.", bi[m]);
 m--;
 for (i = m; i >= 0; i--)
 {
 frac[k] = bi[i];
 fract[k] = bi[i];
 printf("%d", frac[k]);
 k++;
 }
 for (i = 0; i < 10; i++)
 {
 frac[k] = f[i];
 fract[k] = f[i];
 printf("%d", frac[k]);
 k++;
 }
 printf(" x 2^%d", e);
 printf("\n");
 if (num > 0)
 sign[0] = 0;
 else
 sign[0] = 1;
 while (ee > 0)
 {
 expo[j] = ee % 2;
 ee = ee / 2;
 j++;
 }
 // Display
 printf("\nSingle bit precision:\n");
 printf("\nSign bit Exponent\t \t \t Mantissa\n");
 printf("%d", sign[0]);
 printf("\t\t\t");
 for (i = j; i >= 0; i--)
 printf("%d", expo[i]);
 printf("\t\t\t");
 for (i = 0; i < 23; i++)
 printf("%d", frac[i]);
 printf("\n");
 // Display
 printf("\nDouble bit precision:\n");
 printf("\nSign bit Exponent\t \t \t Mantissa\n");
 printf("%d", sign[0]);
 printf("\t\t\t");
 for (i = r; i >= 0; i--)
 printf("%d", expo1[i]);
 printf("\t\t\t");
 for (i = 0; i < 52; i++)
 printf("%d", fract[i]);
 break;
 }
 else
 m--;
 }
}

int main(void)
{
 float num, x;
 int n;
 printf("Enter the no.: ");
 scanf("%f", &num);
 n = (int)fabs(num);
 x = fabs(num) - n;
 binary(n);
 floating(x);
 printf("\nIEEE Representation:\n");
 precision(num);
 return 0;
}

Output:

[image:]

Post Lab Descriptive Questions
1. Give the importance of IEEE-754 representation for floating point numbers?
· The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point computation which was established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE).
· The standard addressed many problems found in the diverse floating point implementations that made them difficult to use reliably and reduced their portability. IEEE Standard 754 floating point is the most common representation today for real numbers on computers, including Intel-based PC’s, Macs, and most Unix platforms.
· There are several ways to represent floating point number but IEEE 754 is the most efficient in most cases.

Conclusion : The code for single and double precision formats to represent floating point numbers was executed successfully.

Date: _____________ Signature of faculty in-charge

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No. 7

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE: Implementation of LRU Page Replacement Algorithm.

AIM: The LRU algorithm replaces the least recently used that is the last accessed memory block from user.
__
Expected OUTCOME of Experiment: (Mention CO/CO’s attained here)

Books/ Journals/ Websites referred:
3. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, Fifth Edition, TataMcGraw-Hill.
4. William Stallings, “Computer Organization and Architecture: Designing for Performance”, Eighth Edition, Pearson.

Pre Lab/ Prior Concepts:

It follows a simple logic, while replacing it will replace that page which has least recently used out of all.
a) A hit is said to be occurred when a memory location requested is already in the cache.
 b) When cache is not full, the number of blocks is added.
 c) When cache is full, the block is replaced which is recently used
Algorithm:

1. Start
2. Get input as memory block to be added to cache
3. Consider an element of the array
4. If cache is not full, add element to the cache array
5. If cache is full, check if element is already present
6. If it is hit is incremented
7. If not, element is added to cache removing least recently used element
8. Repeat step 3 to 7 for remaining elements
9. Display the cache at very instance of step 8
10. Print hit ratio
11. End

Example:
#include <stdio.h>
int main()
{
 int q[20], p[50], c = 0, c1, d, f, i, j, k = 0, n, r, t, b[20], c2[20], hit;
 float fh;
 printf("Enter number of frames:- ");
 scanf("%d", &f);
 printf("Enter number of pages:- ");
 scanf("%d", &n);
 printf("Enter the reference string:- ");
 for (i = 0; i < n; i++)
 scanf("%d", &p[i]);
 q[k] = p[k];
 printf("\n\t%d\n", q[k]);
 c++;
 k++;
 for (i = 1; i < n; i++)
 {
 c1 = 0;
 for (j = 0; j < f; j++)
 {
 if (p[i] != q[j])
 c1++;
 }
 if (c1 == f)
 {
 c++;
 if (k < f)
 {
 q[k] = p[i];
 k++;
 for (j = 0; j < k; j++)
 printf("\t%d", q[j]);
 printf("\n");
 }
 else
 {
 for (r = 0; r < f; r++)
 {
 c2[r] = 0;
 for (j = i - 1; j < n; j--)
 {
 if (q[r] != p[j])
 c2[r]++;
 else
 break;
 }
 }
 for (r = 0; r < f; r++)
 b[r] = c2[r];
 for (r = 0; r < f; r++)
 {
 for (j = r; j < f; j++)
 {
 if (b[r] < b[j])
 {
 t = b[r];
 b[r] = b[j];
 b[j] = t;
 }
 }
 }
 for (r = 0; r < f; r++)
 {
 if (c2[r] == b[0])
 q[r] = p[i];
 printf("\t%d", q[r]);
 }
 printf("\n");
 }
 }
 }
 printf("\nThe no of page faults is:- %d", c);

 hit = n - c;

 printf("\nThe no of page hits is:- %d", hit);
 return 0;
}

[image:]

Post Lab Descriptive Questions

1. Define hit rate and miss ratio?
A hit ratio is a calculation of cache hits, and comparing them with how many total content requests were received.
A miss ratio is the flip side of this where the cache misses are calculated and compared with the total number of content requests that were received.

2. What is the need for virtual memory?
Virtual memory serves two purposes. First, it allows us to extend the use of physical memory by using disk. Second, it allows us to have memory protection, because each virtual address is translated to a physical address.

Conclusion : Successfully executed the given program.

 Date: _____________ Signature of faculty in-charge

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No. 6

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE :Implementation of FIFO Page Replacement Algorithm

AIM: The FIFO algorithm uses the principle that the block in the set which has been in for the longest time will be replaced
__
Expected OUTCOME of Experiment: (Mention CO/CO’s attained here)

Books/ Journals/ Websites referred:
1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, Fifth Edition, TataMcGraw-Hill.
2. William Stallings, “Computer Organization and Architecture: Designing for Performance”, Eighth Edition, Pearson.
 3. Dr. M. Usha, T. S. Srikanth, “Computer System Architecture and Organization”, First Edition, Wiley-India.

Pre Lab/ Prior Concepts:

T he FIFO algorithm uses the principle that the block in the set which has been in the block for the longest time is replaced. FIFO is easily implemented as a round robin or criteria buffer technique. The data structure used for implementation is a queue. Assume that the number of cache pages is three. Let the request to this cache is shown alongside.

Algorithm:

1. A hit is said to be occurred when a memory location requested is already in the cache.
 2. When cache is not full, the number of blocks is added.
 3. When cache is full, the block is replaced which was added first
Design Steps:

1. Start
2. Get input as memory block to be added to cache
3. Consider an element of the array
4. If cache is not full, add element to the cache array
5. If cache is full, check if element is already present
6. If it is hit is incremented
7. If not, element is added to cache removing first element (which is in first).
8. Repeat step 3 to 7 for remaining elements
9. Display the cache at very instance of step 8
10. Print hit ratio
11. End.

Example:

#include <bits/stdc++.h>
using namespace std;
int c;
void fifo(string st)
{
 int arr[c], hit = 0, k = 0;
 bool p = 0;
 for (int i = 0; i < c; i++)
 {
 arr[i] = -1;
 }
 for (int i = 0; i < st.length(); i++)
 {
 if (k < c)
 {
 int ele = int(st[i] - '0');
 for (int j = 0; j < c; j++)
 {
 if (arr[j] == ele)
 {
 p = 1;
 break;
 }
 }
 if (p)
 {
 hit++;
 p = 0;
 continue;
 }
 else
 {
 arr[k] = ele;
 k = ++k % c;
 }
 }
 for (int j = 0; j < c; j++)
 {
 if (arr[j] != -1)
 cout << arr[j] << " ";
 else
 cout << "- ";
 }
 cout << endl;
 }
 cout << "The hit ratio:" << hit << "/" << st.length() << endl;
}
int main()
{
 string str;
 cout << "Enter the number of page frames: ";
 cin >> c;
 cout << "Enter string: ";
 cin >> str;
 fifo(str);
}
Output:

[image:]

Post Lab Descriptive Questions
1. What is meant by memory interleaving?	
Memory Interleaving is an abstraction technique which divides memory into a number
of modules such that successive words in the address space are placed in the different module.
2. Explain Paging Concept?
Paging is a storage mechanism that allows OS to retrieve processes from the secondary
storage into the main memory in the form of pages. In the Paging method, the main
memory is divided into small fixed-size blocks of physical memory, which is called
frames. The size of a frame should be kept the same as that of a page to have maximum
utilization of the main memory and to avoid external fragmentation. Paging is used for
faster access to data, and it is a logical concept.

Conclusion : We have successfully implemented FIFO Page Replacement Algorithm.

Date: _____________ Signature of faculty in-charge

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No. 8

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE : Implementation of Cache Mapping Techniques.

AIM: To study and implement concept of various mapping techniques designed for cache memory.
__
Expected OUTCOME of Experiment: (Mention CO/CO’s attained here)

Books/ Journals/ Websites referred:

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, Fifth Edition, TataMcGraw-Hill.
2. Dr. M. Usha, T. S. Srikanth, “Computer System Architecture and Organization”, First Edition, Wiley-India.

Pre Lab/ Prior Concepts:

Cache memory: The cache is a smaller, faster memory which stores copies of the data from the most frequently used main memory locations. As long as most memory accesses are cached memory locations, the average latency of memory accesses will be closer to the cache latency than to the latency of main memory.
2. Hit Ratio: You want to increase as much as possible the likelihood of the cache containing the memory addresses that the processor wants.
 Hit Ratio= No. of hits/ (No. of hits + No. of misses)
There are only fewer cache lines than the main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines. Further a means is needed for determining which main memory block currently occupies in a cache line. The choice of cache function dictates how the cache is organized. Three techniques can be used.
1. Direct mapping.
2. Associative mapping.
3. Set Associative mapping.
Direct Mapped Cache: The direct mapped cache is the simplest form of cache and the easiest to check for a hit. Since there is only one possible place that any memory location can be cached, there is nothing to search; the line either contains the memory information we are looking for, or it doesn't.
Unfortunately, the direct mapped cache also has the worst performance, because again there is only one place that any address can be stored. Let's look again at our 512 KB level 2 cache and 64 MB of system memory. As you recall this cache has 16,384 lines (assuming 32-byte cache lines) and so each one is shared by 4,096 memory addresses. In the absolute worst case, imagine that the processor needs 2 different addresses (call them X and Y) that both map to the same cache line, in alternating sequence (X, Y, X, Y). This could happen in a small loop if you were unlucky. The processor will load X from memory and store it in cache. Then it will look in the cache for Y, but Y uses the same cache line as X, so it won't be there. So Y is loaded from memory, and stored in the cache for future use. But then the processor requests X, and looks in the cache only to find Y. This conflict repeats over and over. The net result is that the hit ratio here is 0%. This is a worst case scenario, but in general the performance is worst for this type of mapping.

Fully Associative Cache: The fully associative cache has the best hit ratio because any line in the cache can hold any address that needs to be cached. This means the problem seen in the direct mapped cache disappears, because there is no dedicated single line that an address must use.However (you knew it was coming), this cache suffers from problems involving searching the cache. If a given address can be stored in any of 16,384 lines, how do you know where it is? Even with specialized hardware to do the searching, a performance penalty is incurred. And this penalty occurs for all accesses to memory, whether a cache hit occurs or not, because it is part of searching the cache to determine a hit. In addition, more logic must be added to determine which of the various lines to use when a new entry must be added (usually some form of a "least recently used" algorithm is employed to decide which cache line to use next). All this overhead adds cost, complexity and execution time.
Set Associative Cache (To be filled in by students)
After CPU generates a memory request,
· The set number field of the address is used to access the set of the cache.
· The tag field of the CPU address is then compared with the tags of all k lines
· within that set.
· If the CPU tag matches to the tag of any cache line, a cache hit occurs.
· If the CPU tag does not match to the tag of any cache line, a cache miss occurs.
· In case of a cache miss, the required word must be brought from the main
· memory.
· If the cache is full, a replacement is made in accordance with the employed
· replacement policy.

Direct Mapping Implementation:
The mapping is expressed as
 i=j modulo m
i=cache line number
j= main memory block number
m= number of lines in the cache
· Address length = (s+w) bits
· Number of addressable units = 2s+w words or bytes
· Block size = line size = 2w words or bytes
· Number of blocks in main memory = 2s+w / 2w = 2s
· Number of lines in cache = m = 2r
· Size of tag = (s-r) tags

Associative Mapping Implementation: (To be filled in by students)
· Address length =(s+w) bits
· Number of addressable units= 2 s+wwords or bytes
· Block size=line size = 2 wwords or bytes
· Number of blocks in main memory = 2 s
· Number of lines in cache = undefined
· size of tags = s bits

Set Associative Mapping Implementation:
m=v*k
i=j modulo n, where:
· i=cache line number
· j=main memory block number
· m=number of lines in the cache
· v=number of sets
· k=number of lines in each set
· Addressable length=(s+w) bits
· Number of addressable units= 2 𝑠+𝑤words or bytes
· Block size=line size=2 𝑤words or bytes
· Number of blocks in main memory=2 𝑠
· Number of lines in set=k
· Number of sets = v = 2 𝑑
· Number of lines in cache = m = kv = k*2 𝑑
· Size of cache = k * 2 𝑑+𝑤words or bytes
· Size of tag = (s-d) bits

Code:
#include <bits/stdc++.h>
using namespace std;

int main()
{
 int memory_lines, blocks;
 cout << "Enter number of main memory lines:";
 cin >> memory_lines;
 cout << "Enter number of blocks in the main memory:";
 cin >> blocks;
 int bmemory[blocks][4];
 int mmemory[memory_lines];
 cout << "\nEnter the main memory data:" << endl;
 for (int i = 0; i < memory_lines; i++)
 {
 cout << "Line no. " << i + 1 << ": ";
 cin >> mmemory[i];
 }
 int k = 0;

 for (int i = 0; i < blocks; i++)
 for (int j = 0; j < 4; j++)
 bmemory[i][j] = mmemory[k++];
 cout << "\nDirect mapped cache\n";
 for (int i = 0; i < blocks; i++)
 {
 cout << endl
 << "Block " << i << ": ";
 for (int j = 0; j < 4; j++)
 cout << bmemory[i][j] << " ";
 }
 cout << "\n\nSample cache:\n";
 for (int i = 0; i < blocks; i++)
 {
 int random = rand() % 5;
 cout << bmemory[i][random] << " ";
 }
}

[image: Text

Description automatically generated]

Post Lab Descriptive Questions
1. For a direct mapped cache, a main memory is viewed as consisting of 3 fields. List and define 3 fields.

· One field on the direct-mapped cache memory identifies a unique word or byte within a block of main memory
· The remaining two fields specify one of the blocks of main memory
· These two fields are a line field, which identifies one of the lines of the cache, and a tag field, which identifies one of the blocks that can fit into that line

2. What is the general relationship among access time, memory cost, and capacity?

· Faster access time is directly proportional to cost per bit, it means that as the access time speed increases the cost per bit also increases
· Memory capacity is inversely proportional to cost per bit, it means that as memory capacity increases, the cost per bit decreases
· Memory capacity is inversely proportional to access time, it means that as memory capacity increases the access time speed decreases

Conclusion : Therefore, with the help of the experiment the various mapping techniques are understood. The given task was implemented by writing programs to demonstrate them.

Date: _____________ Signature of faculty in-charge

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No. 9

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE: Implement simple addition, subtraction, multiplication and division instructions using TASM.

AIM: Implement simple addition, subtraction, multiplication and division instructions using TASM.

Expected OUTCOME of Experiment: (Mentions the CO/CO’s attained)

Understand the Central processing unit with addressing modes and working of control unit in depth.

__
Books/ Journals/ Websites referred:

1) Microprocessor architecture and applications with 8085: By Ramesh Gaonkar (Penram International Publication).

2) 8086/8088 family: Design Programming and Interfacing: By John Uffenbeck (Pearson Education).

Pre Lab/ Prior Concepts:
Assembler directives: These are statements that direct the assembler to do something

Definition:
Types of Assembler Directives:
ASSUME Directive - The ASSUME directive is used to tell the assembler that the name of the logical segment should be used for a specified segment. The 8086 works directly with only 4 physical segments: a Code segment, a data segment, a stack segment, and an extra segment.

Example:

ASUME CS:CODE ;This tells the assembler that the logical segment named CODE contains the instruction statements for the program and should be treated as a code segment.

ASUME DS:DATA ;This tells the assembler that for any instruction which refers to a data in the data segment, data will found in the logical segment DATA
Start:
It is entry point of the program. without this program won’t run.

END - END directive is placed after the last statement of a program to tell the assembler that this is the end of the program module. The assembler will ignore any statement after an END directive. Carriage return is required after the END directive.

ENDS - This ENDS directive is used with name ofthe segment to indicate the end of that logic segment.

Example:

CODE SEGMENT ;
Hear it Start the logic
;segment containing code
; Some instructions statements to perform the logical
;operation
CODE ENDS ;End of segment named as;CODE

Arithmetic instruction set:
ADD instruction:

	Mnemonic
	Meaning
	Format
	Operation
	Flags

	
	
	
	
	Affected

	
	
	
	
	

	ADD
	Addition
	ADD D, S
	(S) + (D)(D)
	All

	
	
	
	
	

	
	
	
	Carry(CF)
	

	
	
	
	
	

	
	
	
	
	

	ADC
	Add with
	ADC D, S
	(S) + (D) +(CF)
	All

	
	Carry
	
	 (D)
	

	
	
	
	Carry(CF)
	

	
	
	
	
	

	
	
	
	
	

Syntax: ADD destination,source
SUB instruction:
	Mnemonic
	Meaning
	Format
	Operation
	Flags Affected

	
	
	
	
	

	SUB
	Subtract
	SUB D, S
	(D) - (S)(D)
	All

	
	
	
	
	

	
	
	
	Borrow(CF)
	

	
	
	
	
	

	
	
	
	
	

	SBB
	Subtract with
	SBB D, S
	(D) - (S) –(CF)(D)
	All

	
	Borrow
	
	
	

	
	
	
	
	

MUL instruction:
Syntax: MUL source

	Multiplication
	Multiplicand
	Operand
	Result

	(MUL or IMUL)
	
	(Multiplier)
	

	
	
	
	

	Byte * Byte
	AL
	Register or
	AX

	
	
	Memory
	

	
	
	
	

	Word * Word
	AX
	Register or memory
	DX :AX

[bookmark: Pg6]
DIV instruction:
	Division
	Dividend
	Operand
	Quotient : Remainder

	(DIV or IDIV)
	
	(Divisor)
	

	
	
	
	

	Word / Byte
	AX
	Register or memory
	AL : AH

	
	
	
	

	Dword / Word
	DX:AX
	Register or memory
	AX : DX

	
	
	
	

The steps to execute a program in TASM are

ASSEMBLING AND EXECUTING THE ROGRAM
1) Writing an Assembly Language Program
Assembly level programs generally abbreviated as ALP are written in text editor EDIT.
Type EDIT in front of the command prompt (C:\TASM\BIN) to open an untitled text file.
EDIT<file name>
After typing the program save the file with appropriate file name with an extension .ASM
Ex:Add.ASM
2) Assembling an Assembly Language Program
To assumble an ALP we needed executable file called MASM.EXE. Only if this file is in current working directory we can assemble the program. The command is
TASM<filename.ASM>
If the program is free from all syntactical errors, this command will give the OBJECT file.In case of errors it list out the number of errors, warnings and kind of error.
Note: No object file is created until all errors are rectified.
3) Linking
After successful assembling of the program we have to link it to get Executable file.
The command is
TLINK<File name.OBJ>
This command results in <Filename.exe>which can be executed in front of the command prompt.
4) Executing the Program
Open the program in debugger by the command(note only exe files can be open)by the command.
<Filename.exe>
This will open the program in debugger screen where in you can view the assemble code with the CS and IP values at the left most side and the machine code. Register content,memory content also be viewed using TDoption of the debugger & to execute the program in single steps(F7)

Algorithm for adding the two 8-bit numbers:

1. Define a data segment and then define the two numbers on which the operation is to be performed in two memory locations(a, b)(as we can’t take input while running the code in assembly language)
2. Also define another memory location(c) to store the final answer of the two values on which the operation is to be performed
3. Then move the contents of data to AL
4. Move the contents of AL to DS
5. Move the first value(a) to AL
6. Move the second value(b) to BL
7. Then add both of them using ADD AL, BL wherein the memory gets stored in AL
8. Then move the value of the modified AL to c to store the answer
9. Then perform MOV ah,4ch and then int 21h to interrupt the code
10. Type “code ends” to end the execution of the code.

Algorithm for subtracting the two 8 bit numbers:

1. Define a data segment and then define the two numbers on which the operation is to be performed in two memory locations(a, b)(as we can’t take input while running the code in assembly language)
2. Also define another memory location(c) to store the final answer of the two values on which the operation is to be performed
3. Then move the contents of data to AL
4. Move the contents of AL to DS
5. Move the first value(a) to AL
6. Move the second value(b) to BL
7. Then subtract both of them using SUB AL, BL wherein the memory gets stored in AL
8. Then move the value of the modified AL to c to store the answer
9. Then perform MOV ah,4ch and then int 21h to interrupt the code
10. Type “code ends” to end the execution of the code.

Algorithm for multiplying the two 8 bit numbers:

1. Define a data segment and then define the two numbers on which the operation is to be performed in two memory locations(a, b)(as we can’t take input while running the code in assembly language)
2. Also define another memory location(c) to store the final answer of the two values on which the operation is to be performed
3. Then move the contents of data to AL
4. Move the contents of AL to DS
5. Move the first value(a) to AL
6. Move the second value(b) to BL
7. Then multiply both of them using MUL BL wherein the memory gets stored in AL
8. Then move the value of the modified AL to c to store the answer
9. Then perform MOV ah,4ch and then int 21h to interrupt the code
10. Type “code ends” to end the execution of the code.

Algorithm for dividing the two 8-bit numbers:

1. Define a data segment and then define the two numbers on which the operation is to be performed in two memory locations(a, b)(as we can’t take input while running the code in assembly language)
2. Also define another memory location(c) to store the final answer of the two values on which the operation is to be performed
3. Then move the contents of data to AL
4. Move the contents of AL to DS
5. Move the first value(a) to AL
6. Move the second value(b) to BL
7. Then divide both of them using DIV BL wherein the memory gets stored in AL
8. Then move the value of the modified AL to c to store the answer
9. Then perform MOV ah,4ch and then int 21h to interrupt the code
10. Type “code ends” to end the execution of the code.

CODE:
ADDITION:
DATA SEGMENT
NUM1 DW 1234H
NUM2 DW 1234H
RES DW ?
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE,DS:DATA
START:
MOV AX,DATA
MOV DS,AX
MOV AX,NUM1
MOV BX,NUM2
ADD AX,BX
MOV RES,AX
MOV AH,4CH
INT 21H
CODE ENDS
END START

SUBTRACTION:
DATA SEGMENT
NUM1 DW 1255
NUM2 DW 28
RES DW ?
DATA ENDS
CODE SEGMENT
START:
ASSUME CS:CODE,DS:DATA
MOV AX,DATA
MOV DS,AX
MOV AX,NUM1
MOV BX,NUM2
SUB AX,BX
MOV RES,AX
MOV AH,4CH
INT 21H
CODE ENDS
END START

MULTIPLICATION:
DATA SEGMENT
NUM1 DW 1234H
NUM2 DW 1234H
RES DW ?
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE,DS:DATA
START:MOV AX,DATA
MOV DS,AX
MOV AX,NUM1
MOV BX,NUM2
MUL BX
MOV RES,AX
MOV AH,4CH
INT 21H
CODE ENDS
END START

DIVISION:
DATA SEGMENT
NUM1 DW 1234H
NUM2 DW 1234H
RES DW ?
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE,DS:DATA
START:MOV AX,DATA
MOV DS,AX
MOV AX,NUM1
MOV BX,NUM2
DIV BX
MOV RES,AX
MOV AH,4CH
INT 21H
CODE ENDS
END START

OUTPUT:
ADDITION:
[image:]

SUBTRACTION:
[image:]
MULTIPLICATION:
[image:]
DIVISION:
[image:]

Conclusion: Successfully implemented the given experiment.

Post Lab Descriptive Questions (Add questions from examination point view)
Explain instructions ADC and SBB with example
Numbers larger than the register size on your processor can be added and subtracted with the ADC (Add with Carry) and SBB (Subtract with Borrow) instructions.
These instructions work as follows:
ADC Dest, Source	; Dest = Dest + Source + Carry Flag SBB Dest, Source	; Dest = Dest - Source - Carry Flag

[image:]If the operations prior to an ADC or SBB instruction do not set the carry flag, these instructions are identical to ADD and SUB. While operating on large values in more than one register, ADD and SUB are used for the least significant part of the number and ADC or SBB for the most significant part.

Date: _____________ Signature of faculty in-charge

Batch: A3 Roll No.: 16010121045

Experiment / assignment / tutorial No. 10

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

		

	TITLE: Study of multiprocessor configuration concepts through Virtual lab

AIM: Understanding Virtual Lab concepts

Expected OUTCOME of Experiment:
The objective of this experiment is to learn the fundamentals of Floating Point Representation of Numbers.
__
Books/ Journals/ Websites referred:

http://vlabs.iitb.ac.in/vlab/labscse.html
http://vlabs.iitb.ac.in/vlab/#
http://www.vlab.co.in/

Pre Lab/ Prior Concepts:
The main aim of this experiment is to provide remote-access to Labs in various disciplines of Science and Engineering. These Virtual Labs would cater to students at the undergraduate level, post graduate level as well as to research scholars. Also, to enthuse students to conduct experiments by arousing their curiosity. This would help them in learning basic and advanced concepts through remote experimentation. It also provides a complete Learning Management System around the Virtual Labs where the students can avail the various tools for learning, including additional web-resources, video-lectures, animated demonstrations and self-evaluation. We can share costly equipment and resources, which are otherwise available to limited number of users due to constraints on time and geographical distances

Salient Features:
. 1. Virtual Labs will provide to the students the result of an experiment by one of the following methods (or possibly a combination)
· Modeling the physical phenomenon by a set of equations and carrying out simulations to yield the result of the particular experiment. This can, at-the-best, provide an approximate version of the ‘real-world’ experiment.
· Providing measured data for virtual lab experiments corresponding to the data previously obtained by measurements on an actual system.
· Remotely triggering an experiment in an actual lab and providing the student the result of the experiment through the computer interface. This would entail carrying out the actual lab experiment remotely.
2. Virtual Labs will be made more effective and realistic by providing additional inputs to the students like accompanying audio and video streaming of an actual lab experiment and equipment.

Observations
Title of Study Experiment:
Floating Point Numbers Representation
Brief description of experiment under study:
Computers use computations with integers and real numbers. In computers we cannot precisely represent all the real numbers. Hence, there is a way to effectively represent them with only a little loss in precision.
Floating point numbers are numbers that contain floating decimal points. Computers recognize real numbers that contain fractions as floating point numbers. When a calculation includes a floating point number, it is called a "floating point calculation." Older computers used to have a separate floating point unit (FPU) that handled these calculations, but now the FPU is typically built into the computer's CPU.
This experiment is to understand the concept of Floating Point Numbers and how they are converted to and from decimal form.
Learning’s recorded:
[image:]
Exponent Field
8 - Bits Long
Determines The Range Of Numbers That Can be Represented
Increasing The Bits Will Increase The Range , Not Precision -> To Cover For -ve Numbers , exp = 127 + real exp

Sign Bit
1- Bit Long
Dtermines The +ve or -ve number -> 1 = -ve Number 0 = +ve Number

Mantissa Field
23 - Bits Long
Determines the precision of Numbers
Increasing bits Will Increase precision, not range.

Procedure for conversion:
· Convert the absolute value of the number to binary, perhaps with a fractional part after the binary point. This can be done by converting the integral and fractional parts seperately.
· Normalize the number. Move the binary point so that it is one bit from the left. Adjust the exponent of two so that the value does not change. Place the mantissa into the mantissa field of the number. Omit the leading one and fill with zeros on the right.
· Add the bias to the exponent of two, and place it in the exponent field. The bias is 2k-1-1, where k is the number of bits in the exponent field. 6.
· For the eight-bit format, k-3, so the bias is 23-1-1-3. For IEEE 32-bit, k-8, so the bias is 28-1-1-127.
· Set the sign bit, 1 for negative, 0 for positive, according to the sign of the original number.
[image:]
Knowledge gained / Inference Obtained :
The importance of Floating Point Representation was understood: Floating point representation makes numerical computation much easier.
The procedure to convert a decimal to floating point representation was also studied with the help of an example and verifying it manually as well.

Post Lab Descriptive Questions

1. What are the applications of the virtual lab case study / tool reviewed by you?
Tensor Processing Units (TPUs)
Besides the 64-bit float we explored at length, there are also 32-bit floats (single precision) and 16-bit floats (half-precision) commonly available.
Google’s Tensor Processing Units instead use a modified 16-bit format for multiplication as part of their many optimizations for deep-learning tasks.

HDR Images
HDR image uses floating point numbers to represent the pixels! This allows a high “dynamic” range (the exponent can be high or low) while still maintaining relative precision across all brightness scales. Perfect for keeping the data from scenes with high contrast.

Conclusion :
Successfully implemented the given experiment.

Date: _____________ Signature of faculty in-charge

Page No 39 COA sem III/Aug 2022
image1.png
Lemer |

A=0, Q=0
M=MULTIPLICAND
Q=MULTIPLIER
COUNT=n

119 QQ,

00
A= A-M 1 A= A+M

ARS AQQ-1
COUNT--

image2.jpeg
RMACINTI: olll -M dool
REIESE |10l '
| A
@ Q- Qp.Puco.h.o‘q
©000 [0} o ol Vodue .
100| 10| (0] AlGTAS M
1Moo 110 | thmelie, oughl St
001\ {110 I AERA+M
000! i o Prathmadie sught ikt
1010 (el o AEA-M
LY ol | Akl sagint S
1o 1011 I uhmdie sught whubt .

W NI - \1io 10l

! [2% comp-

e
oool olo| =-2!
e

image3.jpeg
M=5 : olol =~ie el

Q=5 : olol

A Q Q-1 opporalio .
0000 olo| o} Lrutal Vodue -
ol | olo| o AESA-M
1101 1010 | WWMW
OCING) (@1 I A A+M
000 | olol 0 Peub\lv\lﬁcouﬁ%{',
1100 olo| 0 A A-M
1110 oolo I WWW
0011 oolo | A A+M
000l) 001 1) me Ykt
Frnob asy: o©o0o0| 1001 = 25

image4.png
Enter

>

oo rrRrRoOSORrRRFRPe
oo rrooree
oo RrProOoSoORrRrSoRre

pargat@Pargats-MacBook-Air Programs % I

Mand Q: 55

Q
0 0
il 0
1 il
0 1
il 0
0 0
0 0
1 0
il il
1 il

o000 rrRroOSRR

oooRrProorroe

PO RRPROSORR

,

?
LK

oooRrProorroe

Operation

Initial Value
A<-A-M
Arithemetic Right
A<-A+M
Arithemetic Right
A<-A-M
Arithemetic Right
A<-A+M
Arithemetic Right
Final Answer

Shift

Shift

Shift

Shift

image5.png
Enter

PR ROORRPRRLROS
PRORRPRRLROSS
POROROROS

1

pargat@P

1

0
0
0
1
0
0
0
0
0
0
@

and Q: 11

Q
0 il
0 0
il 0
0 il
il 0
0 0
0 0
il 0
0 il
0 il
a

o000 RrRPRORPRFPSe

oo RrProorooRr

POSORRORRLR
OCORROORRLRRES

1

T
N

rProorrroeoee

!

rgats-MacBook-Air Programs % I

Operation

Initial Value
Arithemetic Right
A<-A-M
Arithemetic Right
Arithemetic Right
A<-A+M
Arithemetic Right
A<-A-M
Arithemetic Right
Final Answer

Shift

Shift
Shift

Shift

Shift

image6.png
START

v
=DIVISOR
IVIDEND
UNT=n

Shift left A, Q
¥
A=A-M

image7.jpeg
i

er00 00100

e o
) teltt [
Q=@ oot —TTo11 17 isen
oot
M= 1ol 1t o001 o
Ll et
S Q@ ooogo ! p
00000 tool !
oo001 cor1Q | bt SN AQ
14000 oortd | KvA-M
Sl oon o 20 AeRaM
A () ortod . bt Skt AQ
ol oo nEREA
Sk o140a Q0 ARIM
At s QLN
0ola0 1100 O cubt SHgt AQ
oy 11000 A-A-M 3
00 106 - o ’ -~
4 d‘:ihtno‘oh Qu=0; Ae At
RN bl
(odeick toco O

00000 \Mboy&u“ i,

ooool

00013

1000 'ﬁooID“"

(it

image8.jpg
M-17 olooor i

10q010 @isi0
ool
Tolill 01010
oL
So010 ©
A] ‘
000600 Igolo % \
ooeoor olo100 ‘
1100060 sioroD
ocooe sio160 pERIM, O
00010 Towom upe st AQ
Lis ook lotoo O - AehEM
1
LU {100 0 AERIM, Qo= O

— o SR N

000l0l o1000T | Lbt SRt A9
11oory orooo) K EREM
%0101 - 0[0000 . REAFM Qa0
cololt TooooD tept At A1
11100t ' joso0T] A ATH B,

o0lolo 100000 pepeM, Queo
D L 167 2

greler 00000 D wpt JKHL A Q
©00100 00000 O pe A-m

000100 00000 | @y,=1

001900 00000 D upr Wbl A/
tlot o000 1T AEA-M
1000 000610

Traind, b

image9.png
pargat@Router Programs % cd "/Users/pargat/Documents/COl
rograms/"exp3
Enter Q and M: 19 9

A Q Operation

Initial Value
Arithemetic Shift Left
A<-A-M
A<-A+M
Arithemetic Shift Left
A<-A-M
A<-A+M
Arithemetic Shift Left
A<-A-M
A<-A+M
Arithemetic Shift Left
A<-A-M
Arithemetic Shift Left
A<-A-M
A<-A+M

Final Answer

oo0oRroo0o0SOrooroore e
oo0oRrooOroroorooreee
OO0 roOoOroo0SDSSe e
o000 rRroOoRroOorooe e

PORrRPORPrOROORORLRORS®
o000 rRrRPPRPRPRPPRPROOOSOSSR
o000 RPRPPRPPRLPRLPROSOSS®
OO0 R RPRPRLPRLPPELPS
PRPPPRPOOOOOCOOORRPRPR
© 00 0O 0O 0O 0O 00 CO CO CO 0O CO O @ K

1
pargat@Router Programs % [I

image10.png
pargat@Router Programs % cd "/Users/pargat/Documents/COLLE
rograms/"exp3
Enter Q and M: 42 17

A Q Operation

000000 101010 Initial Value
000001 010108 Arithemetic Shift Left
110000 010108 A<-A-M

000001 010108 A<-A+M

000010 101008 Arithemetic Shift Left
1100061 101008 A<-A-M

000010 101008 A<-A+M

000101 010008 Arithemetic Shift Left
110100 010008 A<-A-M

000101 010008 A<-A+M

001010 100008 Arithemetic Shift Left
111001 100008 A<-A-M

001010 10000838 A<-A+M

010101 000008 Arithemetic Shift Left
000100 000008 A<-A-M

001000 000018 Arithemetic Shift Left
110111 000018 A<-A-M

001000 000018 A<-A+M

001000 000010 Final Answer

pargat@Router Programs % [|

image11.png
SHIfE 1eft A0
A< am

SRITE 1eft A0
A<amn

image12.jpeg
Alaupt AahL

A <~ A+M(Q°:O

Al bl

A&' &*M[QD:D

bt Ukt

AehAtM, Qo=0

Dbt b

Ae A+M

image13.jpeg
R- 42 101010
M= 17 0Vo00 |

-M 1011
K Q
000 000 \ol o010
000 001 ov0 1001
110000 oio10[0]
100 000 lo1000]
110001 yoi100[0)
10000 olooo [
Vloioo 01000 [0)
L K
101000 toooo [
111001 10000[0)
|
ool 00000 []
00000 00000 [1]
. - - . = &
oo01000 ooool T}
oty | 0000110}
L 3
001000 000010

| S| \
pamaunoley Quotunt

Wbt Japt
A(—k—M,Qo=o
Qb Jebb
A< AtM, Qo =0
Wit bt
ReATM Qo0
At Japt
AeRTM , Qo=0

St bt
AChEM | Qo= |

At Jept
AECA-M, Qo=

ACR+M

image14.png
Enter Q and M: 11

A

COORRPRORRLRORRLREOS

pargat@Router Programs % [I

PRRPRRPRRPRRPROOROSOSS
OCOOORRRPRLPRLPORRLRSES

i

oo roOoorRrrPrrRProoOoSoOrRrS

Q

COOORRRRRLRROSOSR

7

OO0 RPRRPRPRPLPES

[SESEUSIS IS IS IS S I SRSl

PRS00SO R

Operation

Initial Value
Shift Left
A<-A-M
Qo =0

Shift Left
A<-A+M
Qo =0

Shift Left
A<-A+M
Qo =0

Shift Left
A<-A+M
Qo =1

Final Answer

image15.png
pargat@Router Programs % cd "/Users/pargat/Docume

Enter Q and M: 42 17

Operation

Initial Value
Shift Left

S
[SIS
[SIS
[SIS
(SIS
[SIS

A<-A-M

Qo

ORIRORIRORO)
010100
101000
101000
101000
010000
010000
010000
100000
100000

110000
110000
100000
110001
110001
100011

Shift Left

A<-A+M

Qo

Shift Left

A<-A+M

Qo

1d01 060
14010600
101000
1a i@l
1 i@l

Shift Left

A<-A+M

Qo =0

A<-A+M
=1

Qo
Shift Left

Shift Left

(SRS]
o000«
oo
oo
oo
L B SIS IS IS

o0
o0
(S B B~
oo -
o0
o0

000011 A<-A-M

i d @l

1S
Qo
= =
w
%
S <
:
w0
vV ©
o 4
o<
[SIS
=l &
[SIS
[SIS
[SIS
[SIS
"o
o
"o
& & &
"o
L SIS

pargat@Router Programs % |

image16.jpeg
S

|EEE 15y

\2°45

Wap | LS due Je

|12 = @\\00

|12 25

OO = E P

Mg 2+ Newnalolon

ISRLODORl >

—

image17.jpeg
PP PP opprpp

r'(-)/——\ (00D 00 [O ‘1

| ok 8 but
ygy 0 Dsubi Praidis (6tesld)
\ o] | 000 000000 \

Vo o

image18.png
pargat@Router Programs % cd "/Users/pargat/Documents/COLLEGE/COA/Programs/" && gcc ieee.c -0 ieee && "/Users/p
Enter the no.: 12.25

IEEE Representation:

Single precision:
Biased exponent:130

Double precision:
Biased exponent:1026

1.1000100000000 x 2°3
Single bit precision:

Sign bit Exponent Mantissa
0 110000010 10001000000000000000000

Double bit precision:
Sign bit Exponent Mantissa

0 110000000010 10001000%
pargat@Router Programs % [I

image19.png
pargat@Router Programs % cd "/Users/
ams/"lru

Enter number of frames:- 3

Enter number of pages:- 10

Enter the reference string:-

4

NNNRPRONRE O

RN N
NN N NN
No oo

The no of page faults is:- 6
The no of page hits is:— 43
pargat@Router Programs % [|

image20.png
pargat@Router Programs % cd "/Users/pa
rograms/"fifo

Enter the number of page frames: 3
Enter string: 7012103042332418701
7__

OO, RFPFRPABRBRENNNNN
R OWOWONNNWWWeESe S
NNNwwwoeeooeorrR,RPI

The hit ratio:5/19
pargat@Router Programs % [I

image21.png
Ente} nuaber 6f méin aemory lines:10
Enter number of blocks in the main memory:2

Enter the main memory data:

Line no. 1: 11
Line no. 2: 2
Line no. 3: 42
Line no. 4: 12
Line no. 5: 51
Line no. 6: 09
Line no. 7: 11
Line no. 8: 33
Line no. 9: 22
Line no. 10: 23

Direct mapped cache

Block 0: 11 2 42 12
Block 1: 51 9 11 33

Sample cache:
42 1795061072 2
pargat@Router Programs % [|

image22.png
g
510000 BE?908 mou ax,0879
©s:0003 BEDS mov ds,ax
510005 AGOAOO mov al,[6000]
©s:0008 BA1EO100 mov b1,[6001]
cs:000C 02C3 add __al,bl
00OEMAZOZO0 mov [00021,a1
510011 B44C mov ah,4C
510013 CD21 int 21
510015 08C? add bh,al
cs:0017 46 e si
cs:0018 FA cli
cs add [bxssil,al
C746F40000 word ptr [bp-6C]|
2

File Edit Uiew Run Ereakpoints Data Options Window Help

F1-Help FZ-Bkpt F3-Mod F4-Here F5-Zoom Fo-Next F7—Trace F8-Step F9-Run F10-Menu

image23.png
-

™
Data Options Window N:lp

Cpu speect max 100% cycles, Frameskip 0, Program:

File Edit Uiew Run Breakpoints

[l poseox 0.

image24.png
File Edit Uiew Run Ereakpoints Data Options Window Help mx‘
g TIL4:
510000 BE?908 mov ax,0879
©s:0003 BEDS mov ds,ax
510005 AGOAOO mov al,[6000]
©s:0008 BA1EO100 mov b1,[60011
cs:000C F6E3 mal bl
:0QOEM 120200 mov [00021,a1
0011 B44C mov ah,4C
510013 CD21 int 21
510015 08C? add bh,al
cs:0017 46 inc si
cs:0018 FA cli
cs add [bxssil,al
C746F40000 word ptr [bp-6C]|
2

c=0

cs

10600 CD 20 7]

En FF FF = }¥ ¢

es)
€3 €5 6B 07 i s |oke
14
2

es
es:0010 14 €3
:0018 01 01 01

@3 92 01 Te(@iwAz 5510002
©4 FF FF GGG 8¢ :0000h 0000

Fi-Help F2-Bkpt F3-Mod F4-Here Fo-Zoom Fo-Next F7-Trace Fi

image25.png
™
Data Options Window Help

'DOSBox 0.74-3, Cpu speed max 100% cycles, Frameskip 0, Program:

d

= __ @@ |

File Edit Uiew Run Breakpoints

image26.png
mem32
mem32a
mem32b

.DaTA
DWORD
DWORD
DWORD

.CoDE

addition
sub
add
ade

subtraction
sub
sbb

the 808!

316423
316423

156739

ax, 43981

ax, dx

ax, WORD PTR mem32([0]
dx, WORD PTR mem32(2]
ax, WORD PTR mem32a[0]
dx, WORD PTR mem32a[2]
ax, WORD PTR mem32b[0]
dx, WORD PTR mem32b[2]

Zoad immediate 43581
into DX:AX

2dd to both + 316423
memory words ——--—-

Result in DX:AX 360404

Zoad mem32 316423
into DX:AX

subtract low - 156739
then high e

Result in DX:AX 159684

image27.png
Sign of the mantissa Sign of/the exponent
T 035790 x 10%

Location/NIantlssa BJse Exponent

of decimal
point

image28.png
Floating Point Numbers Representation

DECIMAL NUMBER
BITS FOR EXPONENT

.

RESULTS

&.bit binary

Binary Representation Of
Integeral Part

Binary Representation Of
Fractional Part

mon

oot

Binary Representation of the

Normalised Representation of the

Number Number
111011.001 1.X2powers
sign Bias

o 127

Mantiss Expone

153

image29.jpg
#3% SOMAIYA

o\

0 5 VIDYAVIHAR UNIVERSITY
Y A
Ya vie¥ K J Somaiya College of Engineering

image30.png
S

TRUST

