SHA -1

SHA1: Secure Hash Algorithm 1
Designed by the United States National Security Agency
Produces hash value known as Message Digest

Works for any input message that is less than 294 bits
produces160 bits length message digest
Infeasible to retain the original message from the message digest

Same message digest to be produced from both sender and
receiver

Purpose: Authentication , not Encryption

widely used in security applications and protocols, including TLS,
SSL, PGP, SSH, IPSec and S/IMIME

SHA-1 Steps

X (X1, X2,Xn)

[

Append padding bits
Append Length

Initialize hash bufffer
SHA processing
Output

Compression
Function

-

I
1
)
1
!
I
I
1
1
f
I
1
:
I 1
1
1
I
I
!
H
1
I
1
I
i
1
I
I
i
I
1
I
I
I

SHA-1 Steps

padding bits are added to the original message to make the original message equal to a value

Step 1: Append Padding bits

divisible by 512.

Example —

* The massage padding is applied to the last data block such that SHA-1 can process the data
of nx512 bits.

* The last two words (64 bits) of padded message are reserved of the original message length
(in bits).

* Input message — ‘abcde’ — 40 bits

01100001 0110001001100011 01100100 01100101.

« After ‘1” is appended, 407 ‘0’ are required to complete 448 bits. In Hex, this can be written
as:

61626364 65800000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000

SHA-1 Steps

Step 2: Append length

The rest two words are preserved for the original message

length.

As per example, length of msg = 40 = “00000000 00000028” (Hexadecimal Value).
As a result, the passed massage is

61626364 65800000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000028.

SHA-1 Steps

X (X1[X2, ...Xn) « This 512 bits input to the
compression function
: 160 bits
ANG The message divided into 16

words.
 Each word consists of 32 bits.
« 512/32 =16 words

Compression
Function

I
]
1
I
i
I
I
I
]
]
i
]
|
—
I
'
]
]
I
I
I
]
I
I
i
]
]
I
]
i
I
]
]
L

SHA-1 Steps

Step 3: Initialize the hash buffer

Initial values of Ho are predefined
and stored in registers ABCDE

H [Hexvalues |
Ho(A) 01234567
Ho(B) 89ABCDEF
Ho(C) FEDCBA9S
Ho(D) 76543210
Ho(E) C3D2E1FO

These initial values are used in
Round 0.

SHA-1 Steps

Step 4: SHA Processing

Mmessage (m)

Round Intialize ‘_
v ABCDadE
Message
Padding
—— K, v
(A ::‘ Round 0 - 19
£ I .
5 %] \ 4
= . Round 20 - 39
BB cm—
2 '
S Kx ! v
| ® | Round 40- 59 :
: —» ;
B[] elp—E—
2 ; Round60-79 | !
1—4-_", J E
Final Round ‘_
Addtion

Word assigning to rounds:

SHA1 has 80 rounds defined.

The Message Scheduler Algorithm
schedules each word to rounds as:

W,=> Round 0

W,-> Round 1

W,s=> Round 15

W,s=> Round 16

1Wt 5
W79 > Round 79 — calculated

Each round = 20 iterations. Total iterations = 80 .

SHA-1 Steps

Step 4: SHA Processing

wessage —— Word assigning to other rounds:
v ABCDadE [€]
Message
Padding
N — : i o
v | [e | For others (i.e round 16- 79)
3 i ::] Round20-39 | !
é Kx iy, Rmto = For example: when round is 16,
F— P —g— |
5 : :
é 3 Round 60 - 79 * W“G] - S1(W[16-16] XOR W[16-14] XOR W[16-8] XOR W[16-3])
Final Round (gt * Here W,, W,, Wy and W, are XORed.
v

T | * The output is the new word for round 16.

SHA-1 Steps

Step 4: SHA Processing

—— Division of stages:
« fowd e |g— g
Message
Padding
- Stages |Round
% t=1 0 to19
E t=2 20 to 39
§ t=3 40 to 59
= t=4 60 to 79

Each stage has 20 rounds.

SHA-1 Steps

Step 4: SHA Processing

e e e Constant values:
Message
e E: ' : At each stage:
2 P T p—— Predefined value of k
§ e =al £ K,=0X5A827999
|] | t, K,= OX6ED9EBAL
I e | f K,=0X8F1BBCDC
— :
o o 5 K,=OXCA62C1D6
v

10

SHA-1 Steps

Step 4: SHA Processing

— —— Process in each round:
v ABCDadE (€]
Pacang
oY L o Each round takes 3 inputs:
~or —— + 32 bit word form 512 bit block
: — (i.,e.W,)
1Y — =t « The values from register
3 >y ABCDE
“aon €
« ConstantK,

11

SHA-1 Steps

Step 4: SHA Processing

F, at different stages:

o I —

F(B.C,D) = (B anp C) or ((NoT B)
AND D)

F(B.C,D) = BxorC xorD

W,

-,

oR(C anp D)

t,
L
ty F(B.C,D) = (B axp C) or (B Anp D)
t,

F(B.C,D) = BxorC xorD

12

SHA-1 Steps

Step 4: SHA Processing

i At each Round:

* Output of F, and E are added

» Value in register A is 5 bit circular-left

shifted.
— « This then added to previous sum.
e « W,is added
P |

« K, introduced

« B s circular-left shifted by 30 bits.

A B C | D I E — New values for next round

Source: hipsi/en. wikipediaorg'wik ¥SHA-1

“Hpenotes addition module 222

13

s
o
g

SHA-1 Steps

Step 4: The Output

at ABCDE

v

H(X)
160 bits

After Final Round:

* The 160 bit output from the final
round is modulo added to the initial

predefined values of Ho at registers
ABCDE.

* Output obtained thus is a 160 bit
hash code.

14

Let’s recall MAC ..

Key, K

Becavar

Key, K

v

.

Message

MAC
Algorithm

Message

MAC

MAC
Algorithm

MAC |

» Equal?

15

Hash based Message
Authentication Code (HMAC)

* Hash-based message authentication code (HMAC) is a mechanism
for calculating a message authentication code involving a hash
function in combination with a secret key. This can be used to

verify the integrity and authenticity of a message.

* HMAC s are almost similar to digital signatures. They both enforce

integrity and authenticity. They both use cryptography keys. And

they both employ hash functions.

* The main difference is that digital signatures use asymmetric

keys, while HMACs use symmetric keys (no public key).

16

HMAC Authentication

J

N

%’
@ Message U Message & MAC U Message @

Sender

Client

Create MAC

Verifty MAC

Same key is used to
create and verify MAC

\ /7
S

Shared Secret Key

Vel

Recipient

Server

How does HMAC Work ?

A data integrity check on a file transfer.

e Let's say a client application downloads a file from a remote server. It's
assumed that the client and server have already agreed on a common

hash function, for example SHA2.

B———— N

i Cer
Server

Y Y
ZRvmCKHoede... _Muﬂlhaﬁhﬂi?ﬁ ZRvmCKHoeds...

18

How does HMAC Work ?

* Before the server sends out the file, it first obtains a hash of that file using the
SHA2 hash function. It then sends that hash (ex. a message digest) along with

the file itself.

* Upon receiving the two items (ex. the downloaded file and the hash), the client
obtains the SHA2 hash of the downloaded file and then compares it with the
downloaded hash.

* |f the two match, then that would mean the file was not tampered with.

E Download b EI

Server

Y b4
FRvmCKHoede... _Mmlhﬁms?ﬁ ZRvmCKHoeds... 19

How does HMAC Work ?

e If an attacker manages to intercept the downloaded file, alter the file's contents,

and then forward the altered file to the recipient, that malicious act won't go

unnoticed.

* That's because, once the client runs the tampered file through the agreed hash

algorithm, the resulting hash won't match the downloaded hash.

e This will let the receiver know the file was tampered with during transmission.

]

SHA2

1

Server

Download

g

Client

Y b4
FRvmCKHoede... _equalhaﬁhes?ﬁ ZRvmCKHoeds... 20

How does HMAC Work ?

Authenticity Check
 An HMAC employs both a hash function and a shared secret key.

* A shared secret key provides exchanging parties a way to establish the

authenticity of the message.

* That is, it provides the two parties a way of verifying whether both the
message and MAC (more specifically, an HMAC) they receive really came

from the party they're supposed to be transacting with.

21

How does HMAC Work ?

Suitable for File Transfers

Efficiency - hash functions can take a message of arbitrary
length and transform it into a fixed-length digest. That means,
even if you have relatively long messages, their corresponding

message digests can remain short, allowing you to maximize

bandwidth.

22

HMAC Structure

K 1pad

| _.._
b bils b bits
5,

v —bt f Hash
K f ﬂpad ' n hits
L J [H(S, Il M)
F b bils Pad io b bits
¥ ¥

]

Y
i bils

IV ——{ Hash

n hits
| HMAC(K, M)
Figure 21,4 HMAC Structure

23

HMAC Structure

K ipad Figure 21.4 illustrates the overall operation of HMAC. Define the following terms:
L J II' = cmbedded hash function (c.g., SILA)
M = message mput to HMAC (including the padding specified in the
bbits _ bhits b bits
e — embedded hash function)
LS [h [v | eee [N Y, = ithblockof M0 =i = (L — 1)
+ L. = number of blocks in M
IV —=2% Hash b = number of bits in a block
K opad i n = length of hash code produced by embedded hash function
[HS, M) K = secret key; if key length is greater than b, the key is input to the hash
L J function to produce an n-bit key: recommended length is = n
& Pad 1o b birs K* = K padded with zeros on the left so that the result is b bits in length
ipad = 00110110 (36 in hexadecimal) repeated b/8 times
‘ So | I opad = 01011100 (5C in hexadecimal) repeated b/8 times

Then HMAC can be expressed as follows:
HMAC(K, M) = H[(K™ @ opad) | H[K " @ ipad] || M]]

Y
m hits

IV ———— Hash

n bits
HMAC(K, M)
Figure 21,4 HMAC Structure

In words,
1. Append zeros to the left end of K to create a b-bit string K™ (e.g., if K is of
length 160 bits and b = 512, then K will be appended with 44 zero bytes 0x00).
XOR (bitwise exclusive-OR) K™ with ipad to produce the b-bit block S;.

Append M to 5,
Apply H to the stream generated in step 3.

XOR K™ with opad to produce the b-bit block S,,.

Append the hash result from step 4 to §,,.
. Apply H to the stream generated in step 6 and output the result.

R R

b |

Reference - Stallings 24

MAC and HMAC reference

e Stalling

