

Advanced Encryption Standard

(AES)

7.1

7.2

Objectives

❏ To review a short history of AES

❏ To define the basic structure of AES

❏ To define the transformations used by AES

❏ To define the key expansion process

❏ To discuss different implementations

Chapter 7

7.3

7-1 INTRODUCTION

The Advanced Encryption Standard (AES) is a

symmetric-key block cipher published by the National

Institute of Standards and Technology (NIST) in

December 2001.

7.4

7.1.1 History.

In February 2001, NIST announced that a draft of the

Federal Information Processing Standard (FIPS) was

available for public review and comment. Finally, AES

was published as FIPS 197 in the Federal Register in

December 2001.

7.5

7.1.2 Criteria

The criteria defined by NIST for selecting AES fall

into three areas:

1. Security

2. Cost

3. Implementation

7.6

7.1.2 Criteria

The criteria defined by NIST for selecting AES fall into three areas:

1. Security

• Emphasis was on security, resistance to cryptanalysis.

• NIST explicitly demanded a 128 bit key to focus on resistance to

cryptanalysis attacks other than brute force attack

7.7

7.1.2 Criteria

The criteria defined by NIST for selecting AES fall into three areas:

2. Cost

• Second criterion was cost which covers computational efficiency

and storage requirements

• for different implementations such as hardware, software or

smart cards

7.8

7.1.2 Criteria

The criteria defined by NIST for selecting AES fall into three areas:

3. Implementation

• Platform flexibility-algorithm must be implementable on any

platform

• Simplicity

5.9

1. Feistel ciphers- Uses both invertible and non-invertible

components

2. Non-Feistel ciphers-Uses only invertible components

7.10

7.1.3 Rounds.

AES is a non-Feistel cipher that encrypts and decrypts

a data block of 128 bits. It uses 10, 12, or 14 rounds.

The key size, which can be 128, 192, or 256 bits,

depends on the number of rounds.

AES has defined three versions, with 10, 12,

and 14 rounds.

Each version uses a different cipher key size

(128, 192, or 256), but the round keys are

always 128 bits.

Note

7.11

7.1.3 Continue

Figure 7.1 General design of AES encryption cipher

7.12

7.1.3 Continue
• AES encryption algorithm is called Cipher

• The Decryption algorithm called Inverse Cipher is similar

but round keys are applied in reverse order

7.13

7.1.3 Continue
• Round Keys created by the Key expansion algorithm are

always 128 bits , the same size as the plaintext or ciphertext

• The number of round keys generated by the key expansion

algorithm is always one more than the number of rounds

• Number of Round Keys=Nr+1

• Round Keys are K0,K1,K2,……………….KNr

7.14

7.1.4 Data Units.

Figure 7.2 Data units used in AES

7.15

7.1.4 Data Units.

Data units used in AES

AES uses 5 units of measurement to refer to data:

• Bits-Smallest and atomic unit

Other units can be expressed in terms of smaller ones

• Bytes

• Words

• Blocks

• State

7.16

7.1.4 Data Units.

Data units used in AES

Bytes-

• Group of 8 bits,

• Row Matrix (1X8) or

• Column Matrix (8X1),

• Row Matrix –bits are inserted from into the matrix left to right,

• Column Matrix-bits are inserted into the matrix from top to

bottom

• Represented with lowercase bold letter “b”

7.17

7.1.4 Data Units.

Data units used in AES

Words

• Group of 32 bits

• Row Matrix of 4 Bytes

• Column Matrix of 4 Bytes

• Row Matrix-Bytes are inserted from into the matrix left to right,

• Column Matrix-Bytes are inserted into the matrix from top to

bottom

7.18

7.1.4 Data Units.

Data units used in AES

Block

• Group of 128 bits

• Row Matrix of 16 bytes

• AES encrypts and decrypts data block

7.19

7.1.4 Data Units.

Data units used in AES

State

• AES uses several rounds

• Each Round is made of several stages

• Data block is transformed from one stage to other

• At the beginning and end of the cipher, AES uses the term data

block

• Before and after each stage, the data block is referred to as

state

• Represented as Bold letter S

• Bold Letter T=Temporary State

7.20

7.1.4 Data Units.

Data units used in AES

State

• Like Blocks, States are made of 16 bytes

• Normally treated as matrix of 4X4 bytes

• Each element of a state is referred to as Sr,c where

• r(0 to3) defines the row and

• c (0 to 3) defines the column

• Occasionally, a state is treated as a row matrix (1X4) of words

where words are column matrix

7.21

7.1.4 Continue
Figure 7.3 Block-to-state and state-to-block transformation

At the beginning of the cipher, the bytes are inserted into a state,

column by column and in each column from top to bottom

At the end of cipher, the bytes in data block are extracted in the same way

7.22

7.1.5 Structure of Each Round

Figure 7.5 Structure of each round at the encryption site

7.23

7.1.5 Structure of Each Round

• Structure of each round at the

encryption site

• Each round except the last uses 4

transformations that are invertible

• The last round has only three

transformations

• Each transformation takes a state

and creates another state to be used

for the next transformation or the

next round

7.24

7.1.5 Structure of Each Round

• The pre-round section uses only

one transformation(AddRoundKey)

• In the last round, MixColumns

transformation is missing

• At the Decryption site, The inverse

transformations are used –

• InvSubByte,

• InvShiftRows,

• InvMixColumns

• AddRoundKey(self invertible)

7.25

7-2 TRANSFORMATIONS

To provide security, AES uses four types of

transformations: substitution, permutation, mixing,

and key-adding.

7.2.1 Substitution

7.2.2 Permutation

7.2.3 Mixing

7.2.4 Key Adding

Topics discussed in this section:

Substitution

 Like DES , AES also uses Substitution

 The Mechanism is different

 First Substitution is done for every byte

 Only one table is used for transformation of every byte,
i.e., if two bytes are same, transformation is also same.

 Transformation is defined by a lookup table or
mathematical calculation

7.26

7.27

7.2.1 Substitution

AES uses two invertible transformations.

SubBytes
• The first transformation, SubBytes, is used at the encryption

site.

• To substitute a byte, we interpret the byte as two

hexadecimal digits.

• Left digit defines row while right digit defines column in

substitution table.

• The two Hexadecimal digits at the junction of the row and

the column are the new byte

7.28

7.2.1 Continue

Figure 7.6 SubBytes transformation

7.29

7.2.1 SubBytes transformation

• State is treated as 4X4 matrix of bytes

• Transformation is done one byte at a time

• The content of each byte is changed but the arrangement of

the bytes in the matrix remains the same

• Each byte is transformed independently

The SubBytes operation involves 16

independent byte-to-byte transformations.

7.30

7.2.1 Continue

• The Substitution Table (S Box) for SubBytes transformation

• Provides confusion effect

• Two bytes 5A16 and 5B16 which differ only in one bit are

transformed to BE16 and 3916 which differ in four bits

7.31

7.2.1 Continue

7.32

7.2.1 Continue

InvSubBytes

• Inverse of SubBytes

7.33

7.2.1 Continue

InvSubBytes (Continued)

7.34

7.2.1 Continue
Example 7.2

Figure 7.7 shows how a state is transformed using the

SubBytes transformation. The figure also shows that the

InvSubBytes transformation creates the original one. Note

that if the two bytes have the same values, their

transformation is also the same.

Figure 7.7 SubBytes transformation for Example 7.2

7.35

7.2.1 Continue
Example 7.2

Figure 7.7 SubBytes transformation for Example 7.2

7.36

7.2.1 Continue
Example 7.2

Figure 7.7 SubBytes transformation for Example 7.2

7.37

7.2.2 Permutation

• Another transformation found in a round is shifting,

which permutes the bytes.

• In DES, Permutation is done at the bit level,

• Shifting transformation in AES is done at the byte

level

• The order of the bits in the byte is not changed

7.38

7.2.2 Permutation

ShiftRows
• In the encryption, the transformation is called ShiftRows.

• Shifting is to the left

• The no of shifts depends on the row number(0,1,2,3) of the state

matrix

• Shift row transformation operates one row at a time

Figure 7.9 ShiftRows transformation

7.39

InvShiftRows
• In the decryption, the transformation is called InvShiftRows

and the shifting is to the right.

• The number of shifts is the same as the row number (0,1,2 and

3) of the state matrix

• ShiftRows and InvShiftRows transformations are inverses of

each other

7.2.2 Continue

7.40

Algorithm for ShiftRows-
• Function called shift row that shifts byte in a single row

• This function is called three times

• Function copies the row into a temporary row matrix t and then

shift row

7.2.2 Continue

7.41

7.2.2 Continue
Example 7.4

Figure 7.10 shows how a state is transformed using ShiftRows

transformation. The figure also shows that InvShiftRows

transformation creates the original state.

Figure 7.10 ShiftRows transformation in Example 7.4

7.42

7.2.3 Mixing

We need an interbyte transformation that changes the

bits inside a byte, based on the bits inside the

neighboring bytes.

We need to mix bytes to provide diffusion at the bit

level.

Figure 7.11 Mixing bytes using matrix multiplication

7.43

7.2.3 Mixing

• Takes 4 bytes at a time, combining them to recreate four

new bytes

• Each new byte is different, even if all 4 bytes are the same

• Multiplies each byte with a different constant and mixes

them

Figure 7.11 Mixing bytes using matrix multiplication

7.44

7.2.3 Continue

• AES defines a transformation called Mix columns to acheive this goal

• There is also an inverse transformation called InvMixColumns

Constant matrices used by MixColumns and InvMixColumns

7.45

MixColumns

The MixColumns transformation operates at the column

level; it transforms each column of the state to a new

column.

Matrix multiplication of a state column by a constant

square matrix

7.2.3 Continue

Figure 7.13 MixColumns transformation

7.46

InvMixColumns

The InvMixColumns transformation is basically the same

as the MixColumns transformation.

7.2.3 Continue

The two column matrices are inverses of each

other,

Thus, The MixColumns and InvMixColumns

transformations are inverses of each other.

Note

7.47

7.48

7.2.3 Continue
Example 7.5

Figure 7.14 shows how a state is transformed using the

MixColumns transformation. The figure also shows that the

InvMixColumns transformation creates the original one.

Figure 7.14 The MixColumns transformation in Example 7.5

7.49

7.2.4 Key Adding

• Most important transformation

• Its the one that includes the cipher key

• If the cipher key is not added to the state at each round, it is

very easy for the adversary to find the plaintext, given the

ciphertext.

• The cipher key is the only secret between Alice and Bob

7.50

7.2.4 Key Adding

AddRoundKey
• Each Round key is 128 bits long

• Treated as Four 32 bit words

• For adding the key to the state , each word is considered as a

column matrix

• AddRoundKey proceeds one column at a time.

• AddRoundKey adds a round key word with each state column

matrix;

• The operation in AddRoundKey is matrix addition.

The AddRoundKey transformation is the

inverse of itself.

Note

7.51

7.2.4 Continue

Figure 7.15 AddRoundKey transformation

7.52

7.2.4 Continue

Algorithm-

• XORing of each column of the state with the corresponding keyword

• Cipherkey is expanded into a set of keywords

• Sc and wround are 4X1 column matrices

• XORing of two column matrices , each of 4 bytes

7.53

7-3 KEY EXPANSION

To create round keys for each round, AES uses a key-

expansion process. If the number of rounds is Nr , the

key-expansion routine creates Nr + 1 128-bit round

keys from one single 128-bit cipher key.

7.3.1 Key Expansion in AES-128

7.3.2 Key Expansion in AES-192 and AES-256

7.3.3 Key-Expansion Analysis

Topics discussed in this section:

7.54

7-3 KEY EXPANSION

The 1st Round key is used for pre-round transformation

The remaining round keys are used for the last

transformation(AddRoundKey) at the end of each round

7.55

7-3 KEY EXPANSION

The Key expansion routine creates round keys word by word,

where word is an array of four bytes

The routine creates 4X(Nr+1) words called

w0,w1,w2…………..w4

In AES-128 version with 10 rounds=>11X4=44 words

In AES-192 version with 12 rounds=>13X4=52 words

In AES-256 version with 14 rounds=>15X4=60 words

7.56

7-3 Continued

In AES-128 version with 10 rounds=>11X4=44 words

W40 W41 W42 W43

7.57

7.3.1 Key Expansion in AES-128

Figure 7.16 Key expansion in AES

7.58

7.3.1 Key Expansion in AES-128

Figure 7.16 Key expansion in AES

• The First 4 words are made from the cipher key

• Cipher key=array of 16 bytes (ko to k15)

• ko,k1,k2,k3=wo

• k4,k5,k6,k7=w1

• k8,k9,k10,k11=w3

• k12,k13,k14,k15=w4

7.59

7.3.1 Key Expansion in AES-128

• Remaining words are calculated as follows:-

• For i=4 to 43

• If imod4!=0, wi=wi-1 EXOR wi-4,

• Each word is made from one at the left and one at the top

7.60

7.3.1 Key Expansion in AES-128

• If imod4=0,

• wi=t EXOR wi-4,

• t=temporary word=Result of applying two Routines

Subword and Rot Word on wi-1 and EXORing the result

with a round constants RCon

7.61

7.3.1 Key Expansion in AES-128

• t=temporary word=Result of applying two Routines

Subword and Rot Word on wi-1 and EXORing the result

with a round constants Rcon

• t=SubWord(RotWord(wi-1))EXOR RConi/4

7.62

7.3.1 Key Expansion in AES-128

• RotWord-

• Rotate Word

• Takes a word as an array of 4 bytes

• Shifts each byte to the left with wrapping

• SubWord-

• Substitute Word

• Takes each byte in the word and substitute another byte

for it

• Round Constants-

• Rcon=4 byte value, Rightmost three bytes are always

Zero

7.63

7.3.1 Continue

• Key Expansion can use the above table for Rcon constants

7.64

7.3.1 Continue

7.65

7.3.1 Continue
Example 7.6

Table 7.5 shows how the keys for each round are calculated

assuming that the 128-bit cipher key agreed upon by Alice

and Bob is (24 75 A2 B3 34 75 56 88 31 E2 12 00 13 AA 54

87)16.

7.66

7.3.1 Continue
Example 7.6

• In each Round, The calculation of the last three words is

very simple

• For first word, we need to calculate the value of temporary

word

7.67

7.3.1 Continue
Example 7.7

Each round key in AES depends on the previous round key.

The dependency, however, is nonlinear because of SubWord

transformation. The addition of the round constants also

guarantees that each round key will be different from the

previous one.

7.68

7.3.1 Continue

Example 7.8

The two sets of round keys can be created from two cipher

keys that are different only in one bit.

7.69

7.3.1 Continue
Example 7.8 Continue

There are significant differences between the two

corresponding round keys

R=Round

BD=Bit Difference

7.70

7.3.1 Continue
Example 7.9

The concept of weak keys, as we discussed for DES in

Chapter 6, does not apply to AES. Assume that all bits in the

cipher key are 0s. The following shows the words for some

rounds:

• The words in the pre-round and the first round are all the same.

• In the second round, the first word matches with the third; the second

word matches with the fourth.

• However, after the second round the pattern disappears; every word is

different.

7.71

7.3.2 Key Expansion in AES-192 and AES-256

Key-expansion algorithms in the AES-192 and AES-256

versions are very similar to the key expansion algorithm

in AES-128, but with few differences

7.72

7.3.2 Key Expansion in AES-192 and AES-256

Differences:

• In AES-192,

• The words are generated in groups of six instead of four

• The Cipher key creates the first six words (wo to w5)

• If imod6!=0,wi=wi-1+wi-6, else wi=t+wi-6

• In AES-256,

• The words are generated in groups of eight instead of four

• The Cipher key creates the first eight words (w0 to w7)

• If imod8!=0, wi=wi-1+wi-8, else wi=t+wi-8

• If imod4=0 but imod8!=0, then wi=SubWord(wi-1)+wi-8

7.73

7.3.3 Key-Expansion Analysis

The key-expansion mechanism in AES has been designed to

provide several features that thwart the cryptanalyst.

• Two different Cipher keys, no matter how similar to each

other, produce two expansions that differ in atleast a few

rounds

• Each bit of cipher key is diffused into several rounds.

Changing a single bit in the cipher key, will change some bits

in several rounds

• No serious weak keys in AES

7.74

7.3.3 Key-Expansion Analysis

• Key expansion can be easily implemented on all platforms

• Even if Eve knows only part of the cipher key or the values

of the words in some round keys, she still needs to find the

rest of the cipher key before she can find all round keys. Its

because of the Non-Linearity produced by SubWord

transformation in the key expansion process

7.75

7-4 CIPHERS

AES uses four types of transformations for encryption

and decryption.

In the standard, the encryption algorithm is referred to

as the cipher and the decryption algorithm as the

inverse cipher.

7.4.1 Original Design

7.4.2 Alternative Design

Topics discussed in this section:

7.76

7.4.1 Original Design

Figure 7.17 Ciphers and inverse ciphers of the original design

The order of transformations in each round is not the same in the

cipher and reverse cipher

7.77

7.1.5 Structure of Each Round

Figure 7.5 Structure of each round at the encryption site

7.78

7.4.1 Original Design

In the Reverse Cipher-

• The Order of SubBytes

and ShiftRows is

changed

• The Order of

MixColumns and

AddRoundKey is

changed

• Decryption Algorithm as

a whole is inverse of the

encryption algorithm

• Round Keys are used in

the reverse order

7.79

Algorithm

The code for the AES-128 version of this design is shown

in Algorithm 7.6.

7.4.1 Continue

7.80

7.4.2 Alternate Design

Figure 7.20 Cipher and reverse cipher in alternate design

7.81

7.4.2 Alternate Design

• A different Inverse cipher was

developed

• Transformations in the reverse

cipher are rearranged to make

the order of transformations the

same in the cipher and reverse

cipher

7.82

7.4.2 Alternate Design

Original design Alternate design

7.83

7.4.2 Alternative Design

Invertibility is provided for a pair of transformations and not for

each single transformation.

Figure 7.18 Invertibility of SubBytes and ShiftRows

combinations

SubBytes change contents without changing order

ShiftRows change order without changing contents

7.84

7.4.2 Continue

Figure 7.19 Invertibility of MixColumns and AddRoundKey combination

The pair operation becomes inverses of each other if

we multiply the key matrix by inverse of constant

matrix used in MixColumns transformation

7.85

7-6 ANALYSIS OF AES

This section is a brief review of the three

characteristics of AES.

7.6.1 Security

7.6.2 Implementation

7.6.3 Simplicity and Cost

Topics discussed in this section:

7.86

7.6.1 Security

AES was designed after DES. Most of the known

attacks on DES were already tested on AES.

Brute-Force Attack

AES is definitely more secure than DES due to the

larger-size key.

Statistical Attacks

Numerous tests have failed to do statistical analysis of

the ciphertext.

Differential and Linear Attacks

There are no differential and linear attacks on AES as

yet.

7.87

7.6.1 Security

Brute-Force Attack
• AES is definitely more secure than DES due to the larger-

size key.

• DES had 56 bit cipher key and AES had 128 bit cipher key

• For DES , we need 256 tests to find the key, For AES, we

need 2128 tests to find the key

• If we break DES in t seconds, we need 272 X t seconds to

break AES

• Almost Impossible to break

• AES has 2 other versions with longer cipher keys

• Lack of weak keys is another advantage of AES over DES

7.88

7.6.1 Security

Statistical Attacks
• Strong Diffusion and Confusion provided by the

combination of SubBytes, ShiftRows and MixColumns

transformation removes any frequency pattern in the plain

text

7.89

7.6.1 Security

Differential and Linear Attacks

AES was designed after DES, Differential and Linear

cryptanalysis attacks were no doubt taken into

consideration

7.90

7.6.2 Implementation

AES can be implemented in software, hardware, and

firmware. The implementation can use table lookup

process or routines that use a well-defined algebraic

structure.

7.91

7.6.3 Simplicity and Cost

The algorithms used in AES are so simple that they

can be easily implemented using cheap processors and

a minimum amount of memory.

