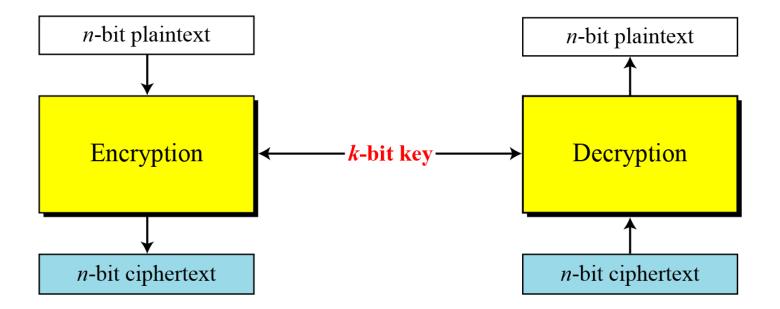
Mordern Block Ciphers

MODERN BLOCK CIPHERS

A symmetric-key modern block cipher encrypts an n-bit block of plaintext or decrypts an n-bit block of ciphertext. The encryption or decryption algorithm uses a k-bit key.

Figure 5.1 A modern block cipher



5.1.1 Substitution or Transposition

A modern block cipher can be designed to act as a substitution cipher or a transposition cipher.

To be resistant to exhaustive-search attack, a modern block cipher needs to be designed as a substitution cipher.

- Permutation Box parallels the traditional transposition cipher for characters
- It transposes bits

5.1.3 Continued Figure 5.4 Three types of P-boxes Straight P-box Compression Expansion P-box P-box

- A straight P-box is a P-box with n inputs and n outputs
- *n! possible mappings*
- P Box is normally Keyless
- Mapping is predetermined
- If implemented in Hardware, then Prewired
- IF implemented in software, Permutation table shows rule of mapping

Table 5.1 Example of a permutation table for a straight P-box

58	50	42	34	26	18	10	02	60	52	44	36	28	20	12	04
62	54	46	38	30	22	14	06	64	56	48	40	32	24	16	08
57	49	41	33	25	17	09	01	59	51	43	35	27	19	11	03
61	53	45	37	29	21	13	05	63	55	47	39	31	23	15	07

Straight P-Boxes

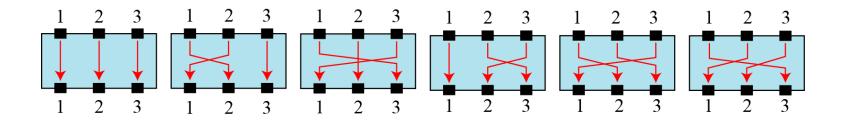
64 Inputs 64 Outputs The index of the entry corresponds with the output First entry is 58=>First Output comes from 58th Input Last Entry is 07=>64th Output comes from 7th Input

58504234261810026052443628201204625446383022140664564840322416085749413325170901595143352719110361534537292113056355473931231507

Example 5.5

Figure 5.5 shows all 6 possible mappings of a 3 × 3 P-box.

Figure 5.5 The possible mappings of a 3×3 P-box



Example 5.6

Design an 8×8 permutation table for a straight P-box that moves the two middle bits (bits 4 and 5) in the input word to the two ends (bits 1 and 8) in the output words. Relative positions of other bits should not be changed.

Solution

Example 5.6

Design an 8×8 permutation table for a straight P-box that moves the two middle bits (bits 4 and 5) in the input word to the two ends (bits 1 and 8) in the output words. Relative positions of other bits should not be changed.

Solution

We need a straight P-box with the table [4 1 2 3 6 7 8 5]. The relative positions of input bits 1, 2, 3, 6, 7, and 8 have not been changed, but the first output takes the fourth input and the eighth output takes the fifth input.

Compression P-Boxes

A compression P-box is a P-box with n inputs and m outputs where m < n. Some of the inputs are blocked and do not reach the output.

Table 5.2 *Example of a* 32×24 *permutation table*

01	02	03	21	22	26	27	28	29	13	14	17
18	19	20	04	05	06	10	11	12	30	31	32

Compression P-Boxes

Normally Keyless with permutation table showing the rule for transposing bits

Table 5.2 *Example of a* 32×24 *permutation table*

01	02	03	21	22	26	27	28	29	13	14	17
18	19	20	04	05	06	10	11	12	30	31	32

Compression P-Boxes

32 X 24 Compression P Box Inputs 7,8,9,15,16,23,24 and 25 are blocked

Used when we need to permute bits and the same time decrease the number of bits for next stage

Table 5.2Example of a 32×24 permutation table												
01	02	03	21	22	26	27	28	29	13	14	17	
18	19	20	04	05	06	10	11	12	30	31	32	

Expansion P-Boxes

An expansion P-box is a P-box with n inputs and m outputs where m > n.

Some of the inputs are connected to more than one output

Table 5.3 Example of a 12×16 permutation table

Expansion P-Boxes

Normally Keyless with permutation table showing the rule for transposing bits

Each of the inputs 1,3,9 and 12 are mapped to two outputs

Used when we need to permute bits and the same time increase the number of bits for next stage

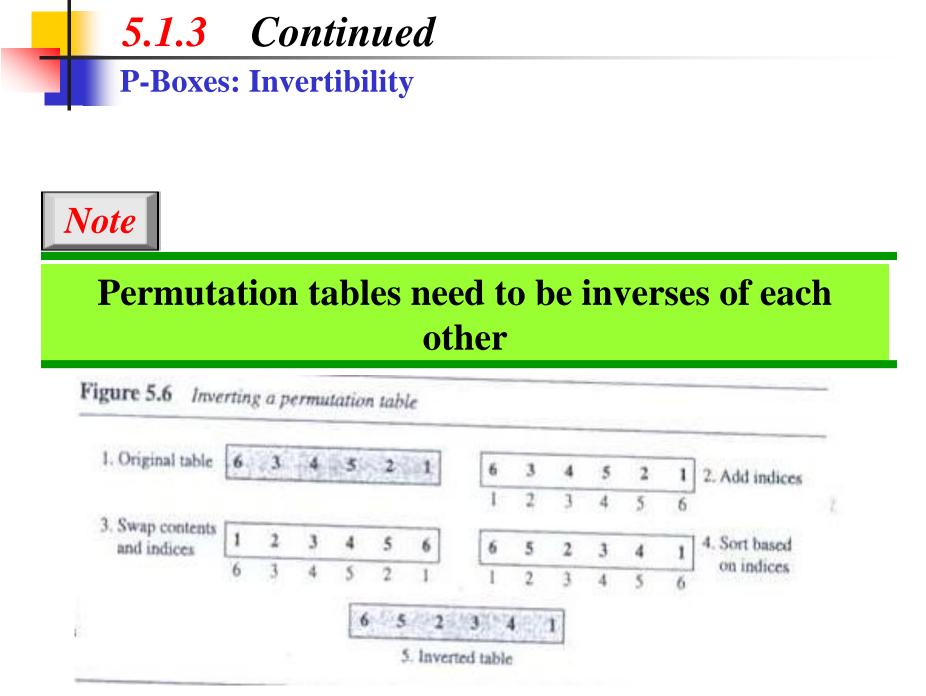
Table 5.3 *Example of a* 12×16 *permutation table*

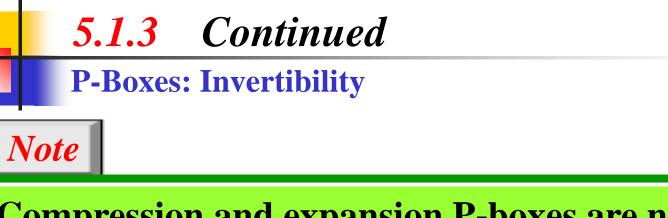
A straight P-box is invertible, but compression and expansion P-boxes are not.

P-Boxes: Invertibility

A straight P-box is invertible=>We can use Straight box in the encryption cipher and its inverse in the decryption cipher

Permutation tables need to be inverses of each other



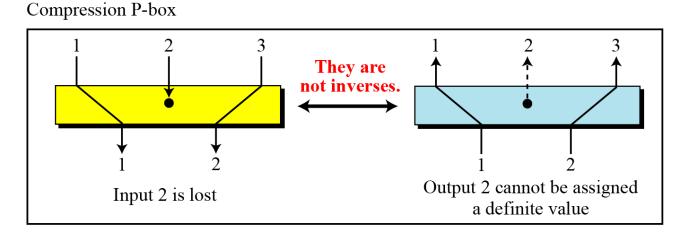


Compression and expansion P-boxes are not invertible.

P-Boxes: Invertibility

In Compression P Box-An input can be dropped Du

An input can be dropped During Encryption . The Decryption Algorithm doesn't have a clue how to replace the dropped bit.

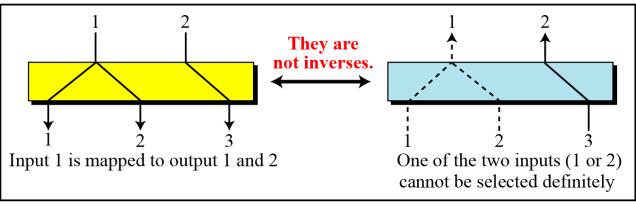


P-Boxes: Invertibility

Note

In Expansion P Box-

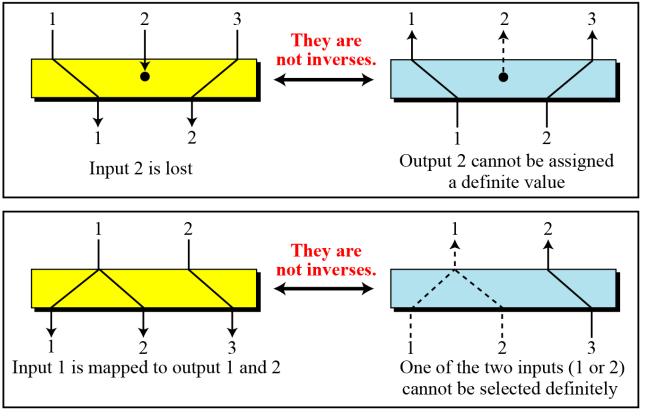
An input may be mapped to more than one output during Encryption. The Decryption algorithm does not have a clue which of the several inputs are mapped to an output.



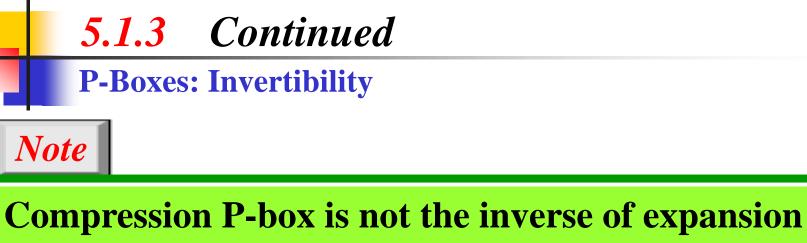
Expansion P-box

Figure 5.7 Compression and expansion P-boxes are non-invertible

Compression P-box



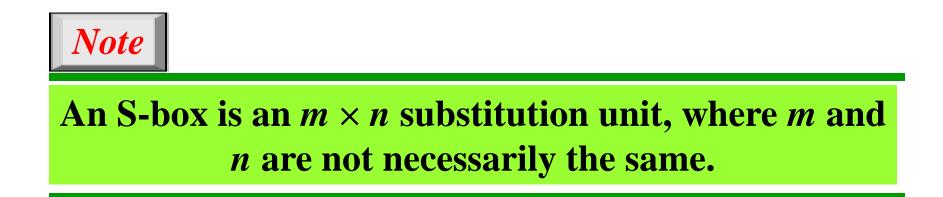
Expansion P-box



P-box or vice versa

S-Box

An S-box (substitution box) can be thought of as a miniature substitution cipher.



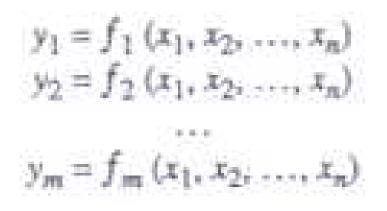
S-Box

- S Box can be keyed or keyless
- Modern Block ciphers normally use keyless S Box where the mapping from inputs to outputs is predetermined

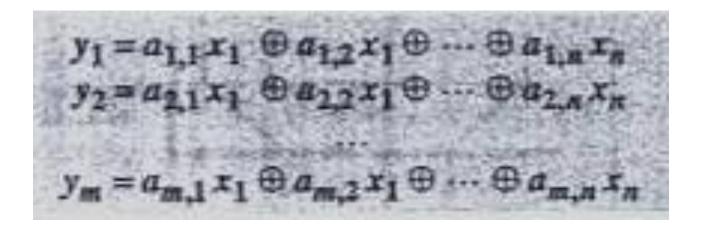
S-Box

- S Box are substitution ciphers in which relationship between input and output is defined by
 - a table or
 - mathematical relation

Linear vs Non-Linear S-Box S Box with n inputs and m outputs Inputs:x1,x2,....xn Outputs:y1,y2,.....ym Relationship between inputs and outputs can be expressed as



Linear S-Box The relations can be expressed as:



Non Linear S-Box We cannot have the above relations for every output

Linear Equations-

It **has only one degree**. Or we can also define it as an equation having the maximum degree 1.

Non Linear Equations-

A nonlinear equation **has the degree as 2 or more than 2**, but not less than 2.

In an S-box with three inputs and two outputs, we have

$$y_1 = x_1 \oplus x_2 \oplus x_3 \qquad y_2 = x_1$$

- The S-box is linear as we have equation for every output
- Because $a_{1,1} = a_{1,2} = a_{1,3} = a_{2,1} = 1$ and $a_{2,2} = a_{2,3} = 0$. The relationship can be represented by matrices, as shown below:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

In an S-box with three inputs and two outputs, we have

$$y_1 = x_1 \oplus x_2 \oplus x_3 \qquad y_2 = x_1$$

If the input is 110 then the output $y_1 = 0$ and $y_2 = 1$ If the input is 001 then the output $y_1 = 1$ and $y_2 = 0$.

In an S-box with three inputs and two outputs, we have

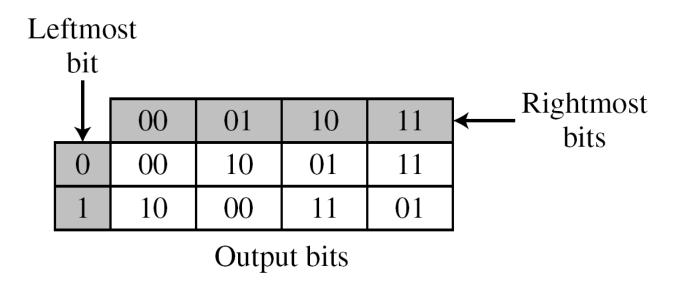
$$y_1 = (x_1)^3 + x_2$$
 $y_2 = (x_1)^2 + x_1x_2 + x_3$

The S-box is nonlinear because there is no linear relationship between the inputs and the outputs.

Example 5.10

The following table defines the input/output relationship for an S-box of size 3×2 .

- The leftmost bit of the input defines the row;
- The two rightmost bits of the input define the column.
- The two output bits are values on the cross section of the selected row and column.



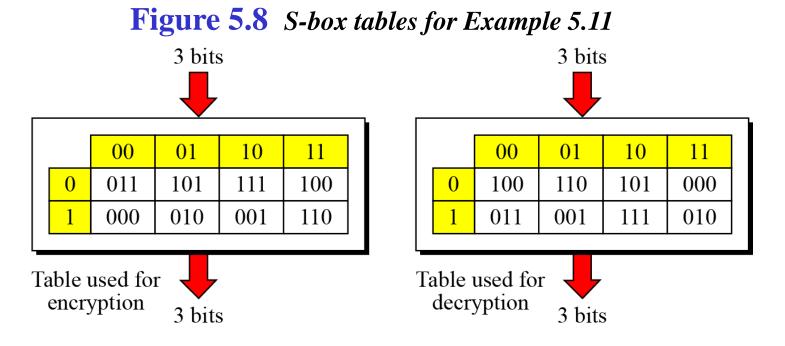
Based on the table, an input of 010 yields the output 01. An input of 101 yields the output of 00.

S-Boxes: Invertibility

An S-box may or may not be invertible. In an invertible S-box, the number of input bits should be the same as the number of output bits.

Example 5.11

Figure 5.8 shows an example of an invertible S-box. For example, if the input to the left box is 001, the output is 101. The input 101 in the right table creates the output 001, which shows that the two tables are inverses of each other.



Exclusive-Or

An important component in most block ciphers is the exclusive-or operation.

Figure 5.9 Invertibility of the exclusive-or operation

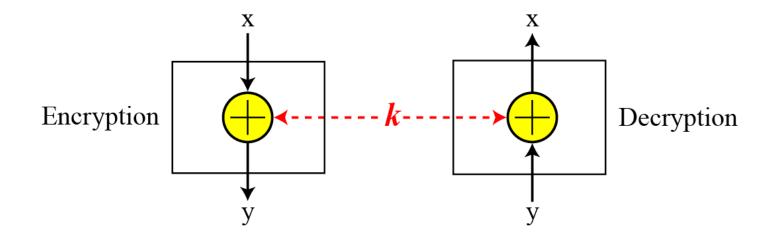


Figure 5.9 Invertibility of the exclusive-or operation

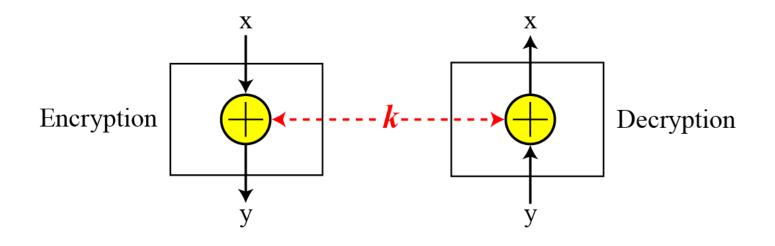


Figure 5.9 Invertibility of the exclusive-or operation

5 Properties of EXOR Operation which makes this operation important

- 1) Closure
- 2) Associativity
- 3) Commutativity
- 4) Existence of identity
- 5) Existence of inverse

Figure 5.9 Invertibility of the exclusive-or operation

Closure-Result of EXORing two n bit words is another n bit word

Associativity-Allows to use EXOR operator in any order

$x \oplus (y \oplus z) \leftrightarrow (x \oplus y) \oplus z$

Commutativity-Allows to swap the inputs without affecting the output

 $x \oplus y \leftrightarrow y \oplus x$

Figure 5.9 Invertibility of the exclusive-or operation

Existence of identity-N bit word containing all O's Exclusive ORing of a word with the identity element does not change that word

 $x \oplus (00...0) = x$

Existence of inverse-Each word is additive inverse of itself. EXORing a word with itself yeilds the identity element

$$x \oplus x = (00...0)$$

Another component found in some modern block ciphers is the circular shift operation.

Mixes bits in a word and helps hide the patterns in the original word

Circular left shift operation shifts each bit in a n bit word ,k positions left. The leftmost k bits are removed from the left and become the rightmost bits

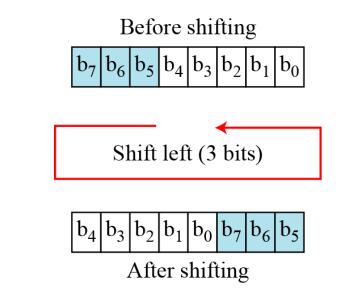
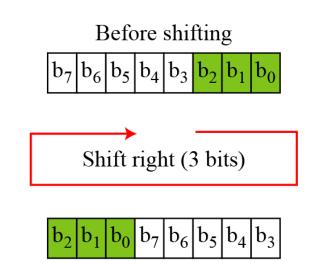


Figure 5.10 Circular shifting an 8-bit word to the left or right

Circular right shift operation shifts each bit in a n bit word ,k positions right. The rightmost k bits are removed from the right and become the leftmost bits



After shifting

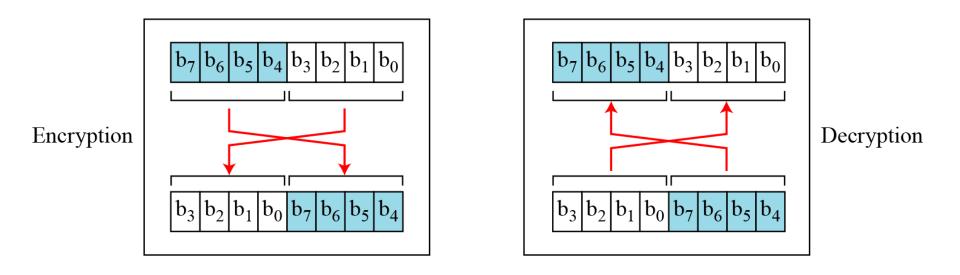
Figure 5.10 Circular shifting an 8-bit word to the left or right

Invertibility- A circular left shift operation is the inverse of the circular right shift operation

If one is used in encryption cipher, The other can be used in the Decryption cipher Swap

The swap operation is a special case of the circular shift operation where k = n/2.

Figure 5.11 Swap operation on an 8-bit word



Swap

Operation is valid only if n is an even number Self Invertible-A swap operation in Encryption cipher can be totally cancelled by a swap operation in the decryption cipher

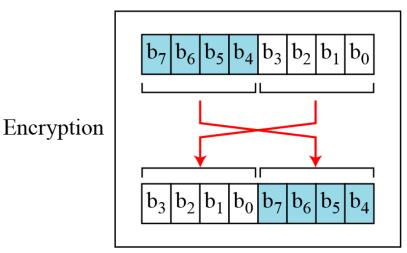
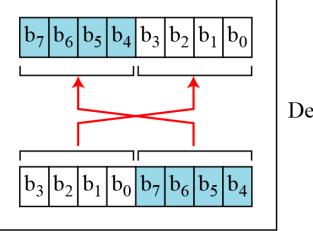


Figure 5.11 Swap operation on an 8-bit word



Decryption

Split and Combine

Two other operations found in some block ciphers are split and combine.

Figure 5.12 Split and combine operations on an 8-bit word

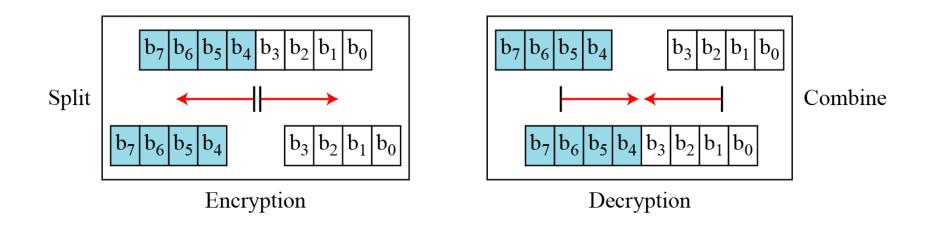
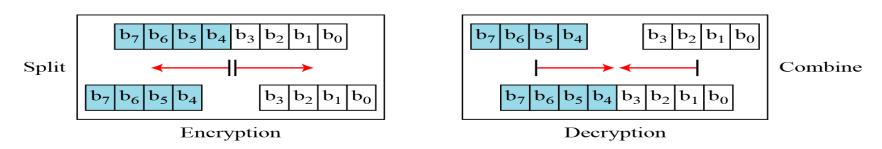


Figure 5.12 Split and combine operations on an 8-bit word

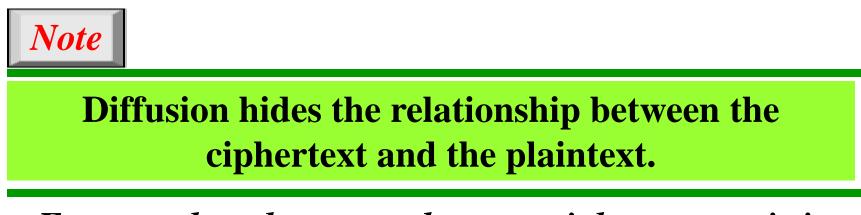
- Split operation splits an n-bit word in the middle creating two equal length words
- Combine operation normally concatenates two equal length words to create an n bit word.
- Inverse of each other
- Used as a pair to cancel each other out.



Shannon introduced the concept of a product cipher. A product cipher is a complex cipher combining substitution, permutation, and other components discussed in previous sections.

Diffusion

• The idea of diffusion is to hide the relationship between the ciphertext and the plaintext.



- Frustate the adversary who uses ciphertext statistics to find plaintext
- If a single symbol in plaintext is changes, several or all symbols in the ciphertext will also be changed

Confusion

Note

5

• The idea of confusion is to hide the relationship between the ciphertext and the key.

- Frustate the adversary who uses ciphertext statistics to find key
- If a single bit in the key is changed, most or all bits in the ciphertext will also be changed

Rounds

Diffusion and confusion can be achieved using iterated product ciphers where each iteration is a combination of S-boxes, P-boxes, and other components.

Rounds

The block cipher uses a Key schedule or Key generator that creates different keys for each round.

In a N-round cipher, the plaintext is encrypted N times to create the ciphertext.

The ciphertext is decrypted N times to create the plaintext

Figure 5.13 A product cipher made of two rounds

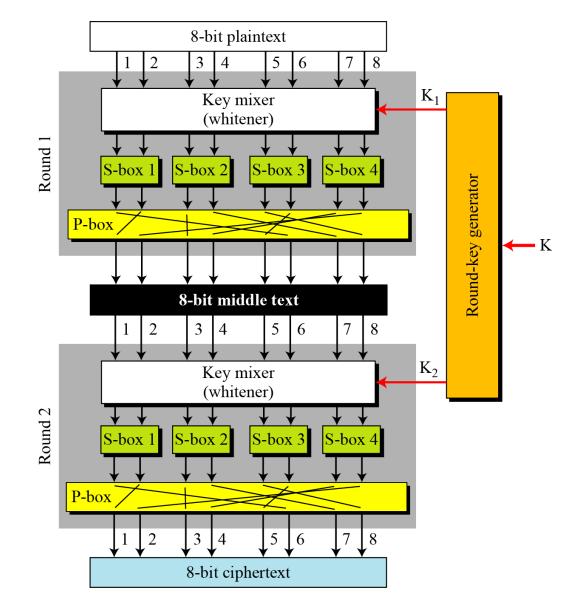


Figure 5.13 A product cipher made of two rounds

Rounds

Key Mixer-

- 8 bit text is mixed with Key to whiten the text
- Done by EXORing 8 bit word with 8 bit key

Sbox-

- Output organized as 4 groups of 2 bits, Fed into 4 S box
- Values of Bits change based on Structure of S Box

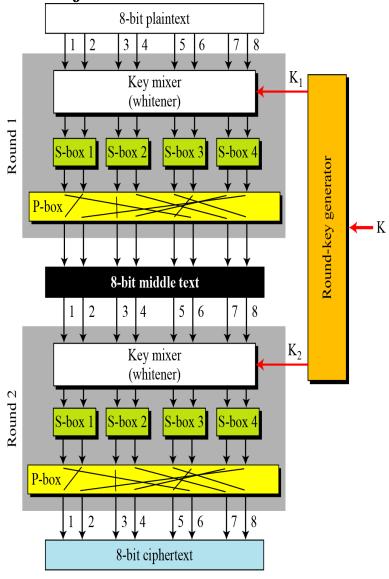


Figure 5.13 A product cipher made of two rounds

Rounds

Pbox-

• O/P of S Box sent to P Box to permute the bits

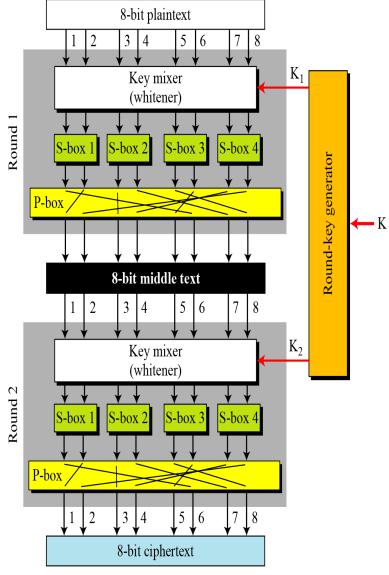
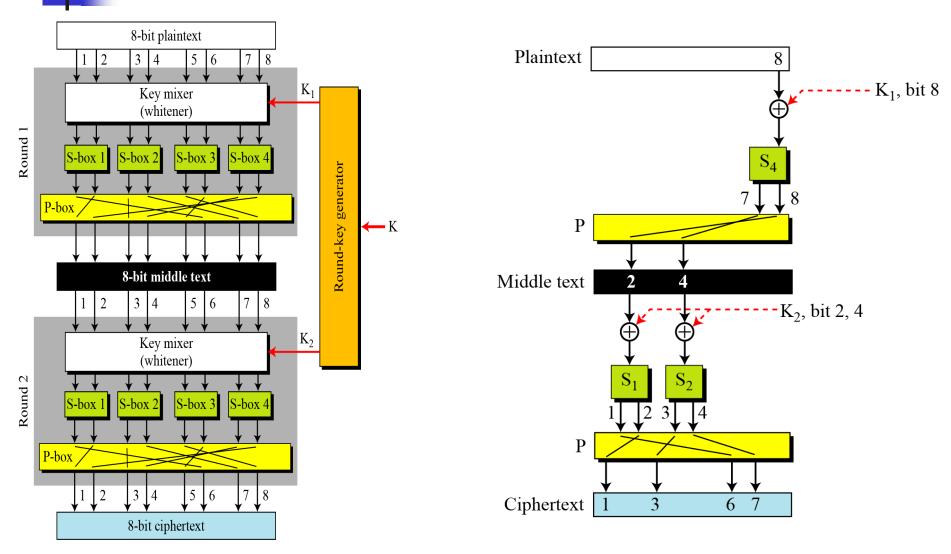


Figure 5.14 *Diffusion and confusion in a block cipher*

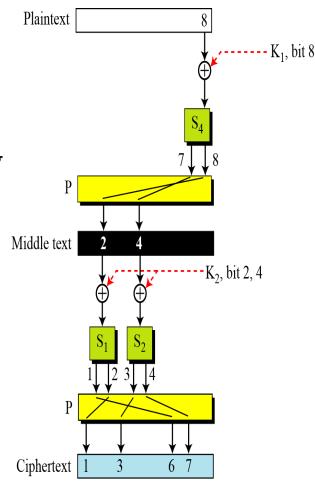


How Changing a single bit in the plain text affects many bits in the ciphertext

Diffusion:

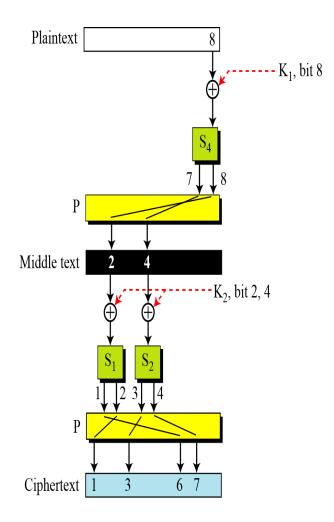
1st Round-

- Bit 8 after EXORing with corresponding bit of K1 affects 2 bits i.e. Bit7 and Bit 8 through S Box
- After permutation-Bit 7 becomes Bit 2, Bit 8 becomes Bit 4
- After 1st round, Bit 8 has affected Bits 2 and 4



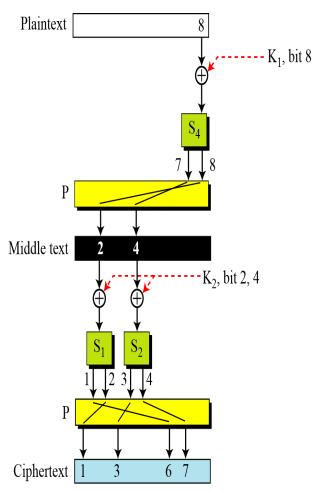
2nd Round-

- Bit 2 and Bit 4 are EXORed with corresponding bits of Key K2
- Bit 2 affects Bits 1,2 through S Box 1
- Bits 4 affects Bits 3,4 through S Box2
- After Permutation, Bit 1 becomes Bit 6, Bit 2 becomes Bit 1.
- Bit 4 becomes Bit 7, Bit 3 remains same
- After 2nd round, Bit 8 has affected Bits 1,3,6,7



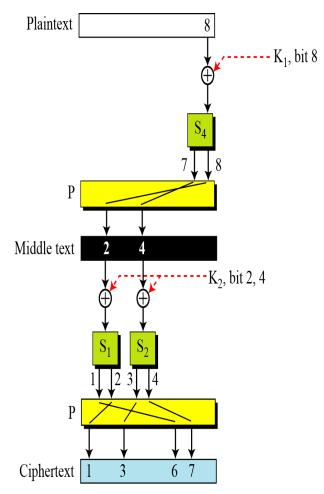
Diffusion:

- One bit in plain text has affected several bits in ciphertext
- Bit 8 has affected Bits 1,3,6,7



Confusion:

- 4 bits of ciphertext bits 1,3,6,7 are affected by 3 bits in the Key
- i.e. Bit 8 in Key1, Bits 2 and 4 in K2
- Each bit in each round key affects several bits in the ciphertext.
- The Relationship between ciphertext and key is obscured



5.1.5 Two Classes of Product Ciphers

Modern block ciphers are all product ciphers, but they are divided into two classes.

1. Feistel ciphers

2. Non-Feistel ciphers

5.1.5 Two Classes of Product Ciphers

1. Feistel ciphers- Uses both invertible and non-invertible components

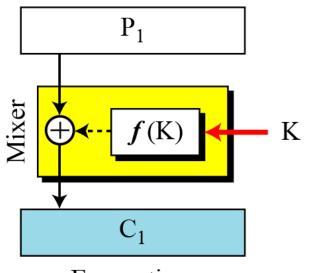
2. Non-Feistel ciphers-Uses only invertible components

Feistel Ciphers

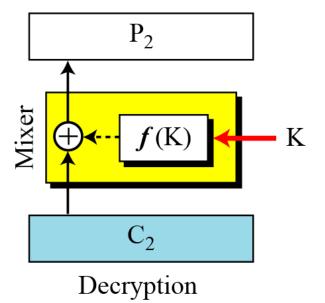
Feistel designed a very intelligent and interesting cipher that has been used for decades.

A Feistel cipher can have three types of components: self-invertible, invertible, and noninvertible.

Figure 5.15 The first thought in Feistel cipher design

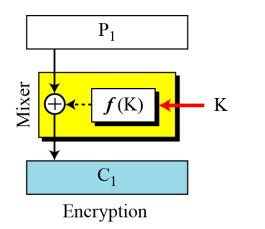


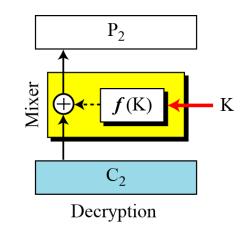
Encryption



Encryption-

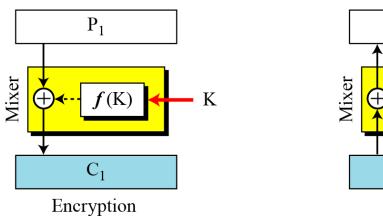
- A non invertible function f(K) accepts the key as the input
- The Output is EXORed with the plain text to give Ciphertext
- Combination of Function and EXOR =MIXER

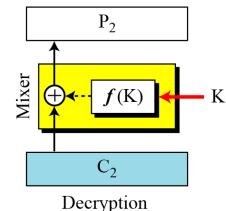




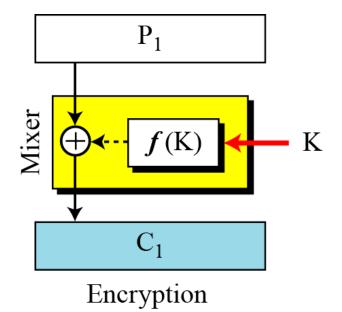
Encryption-

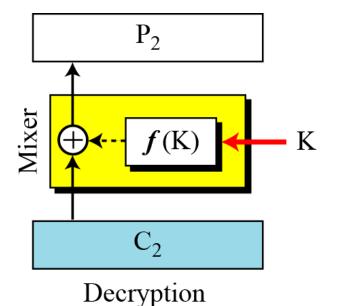
- Because the Key is the same in Encryption and Decryption
- The Two algorithms are inverses of each other
- If C2=C1, No change in the ciphertext then P2=P1
- Encryption: C1=P1 \bigcirc f(K)
- Decryption: $P2=C2 \bigoplus f(K)=C1 \bigoplus f(K)$
- =P1 $\bigoplus f(K) \bigoplus f(K)$
- =P1





- Although the Mixer has a non-invertible element f(K), The Mixer is self-invertible
- The Mixer is Feistel Design is Self Invertible



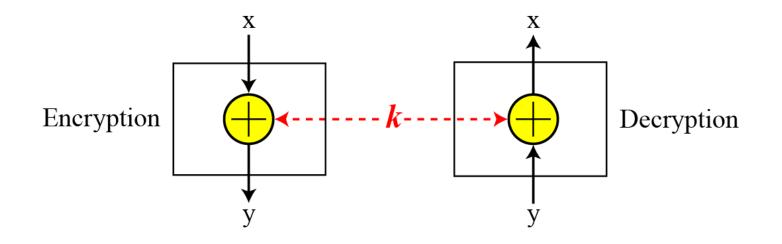


Inverse property of EXOR

The inverse of EXOR makes sense only if one of the inputs is fixed,

Example- If one of the input is key, which is normally same in Encryption and Decryption, EXOR is self invertible

y=x EXOR k x=y EXOR k



The plaintext and ciphertext are each 4 bits long and the key is 3 bits long. Assume that the function takes the first and third bits of the key, interprets these two bits as a decimal number, squares the number, and interprets the result as a 4-bit binary pattern. Show the results of encryption and decryption if the original plaintext is 0111 and the key is 101.

Example 5.12

This is a trivial example. The plaintext and ciphertext are each 4 bits long and the key is 3 bits long. Assume that the function takes the first and third bits of the key, interprets these two bits as a decimal number, squares the number, and interprets the result as a 4-bit binary pattern. Show the results of encryption and decryption if the original plaintext is 0111 and the key is 101.

Solution

Key=101

Encryption-

The function extracts the first and second bits to get 11 in binary or 3 in decimal. The result of squaring is 9, which is 1001 in binary. **B3 B2** f(K)=1001

B1 1 1 0

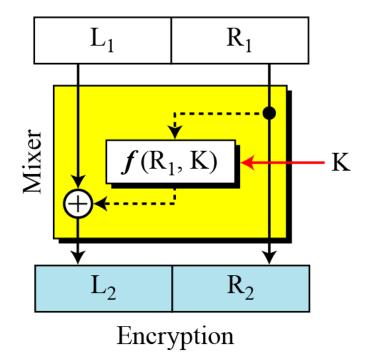
Decryption-

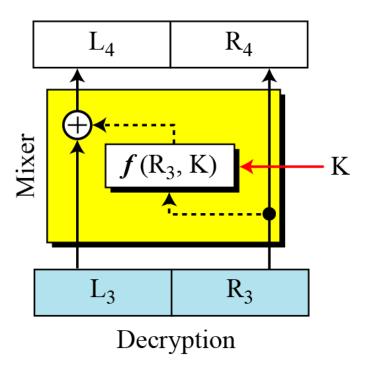
The same function can be used

Encryption: $C = P \oplus f(K) = 0111 \oplus 1001 = 1110$

Decryption: $P = C \oplus f(K) = 1110 \oplus 1001 = 0111$

Improvement of the previous Feistel design

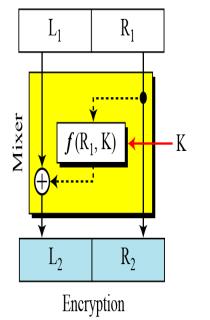


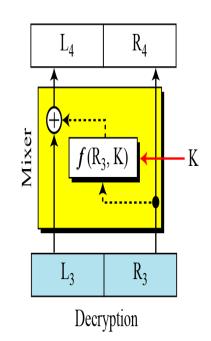


Improvement of the previous Feistel design

Encryption-

- Input to the non-invertible element i.e. function should be same
- In addition to Key
- Input of fn to also be part of the plaintext in the encryption and part of ciphertext in the decryption

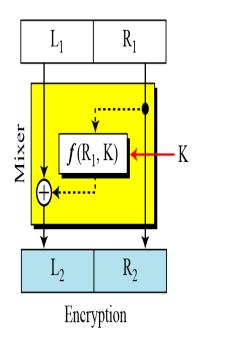


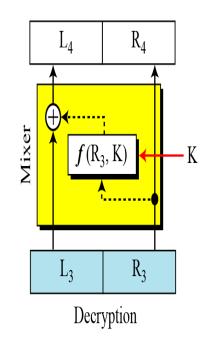


Improvement of the previous Feistel design

Encryption-

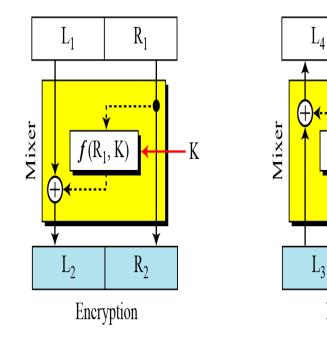
- Divide plain text into two equal length blocks,
- Left Block and Right Block
- Right Block be the input to the function
- Left block be EXOred with the function ouput





Improvement of the previous Feistel design

- Input to the function must be exactly the same in Encryption and Decryption
- Right section of the plain text in Encryption and right section of the ciphertext in decryption must be same.
- Right section must go into and out of the encryption and decryption process unchanged



 R_{4}

R₃

K

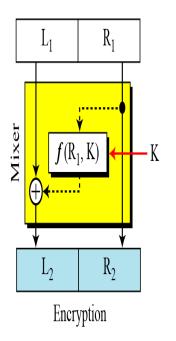
 $f(\mathbf{R}_3, \mathbf{K})$

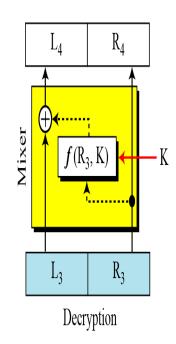
Decryption

Improvement of the previous Feistel design

Assume L3=L2 and R3=R2 No change in the ciphertext during transmission

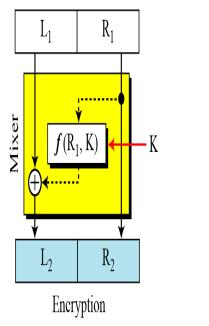
R4=R3=R2=R1 $L4=L3 \bigoplus f(R3,K)$ $=L2 \bigoplus f(R2,K)$ $=L1 \bigoplus f(R1,K) \bigoplus f(R1,K)$ =L1

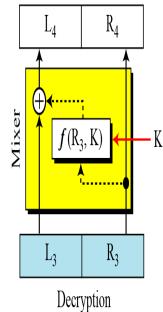




Improvement of the previous Feistel design

- Plaintext used in encryption is correctly regenerated
- Encryption and Decryption are Inverses of each other

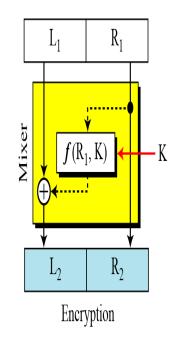


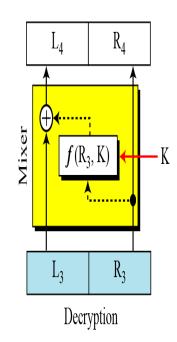


Improvement of the previous Feistel design

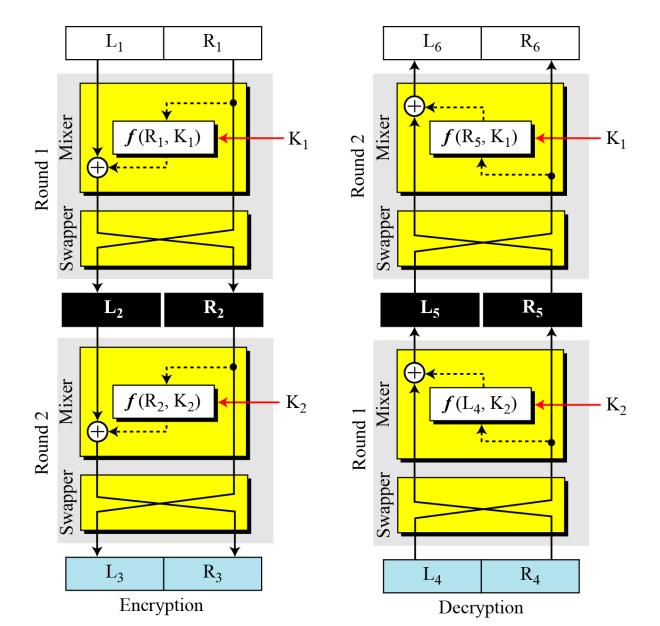
Drawback-

- Right half of the plaintext never changes
- Cryptanalyst can find the Right half of the plaintext by intercepting the cipher text and extracting the right half of it.





Final design of a Feistel cipher with two rounds



Final design of a Feistel cipher with two rounds

Improvement done-

- Increase the Number of Rounds
- Add Swapper to each Round
- Effect of swapper in encryption is cancelled by the effect of the swapper in decryption round
- Two keys K1 and K2
- Used in Reverse order in the encryption and decryption

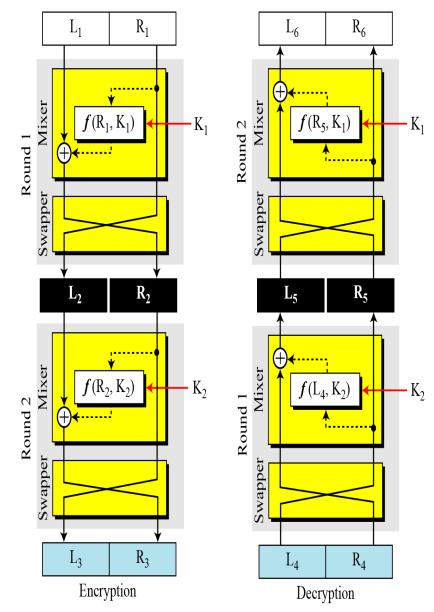
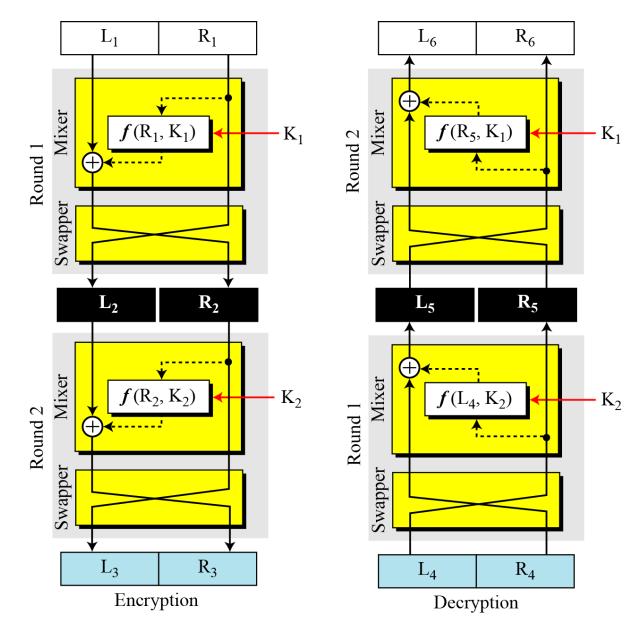


Figure 5.17 Final design of a Feistel cipher with two rounds



Non-Feistel Ciphers

A non-Feistel cipher uses only invertible components. A component in the encryption cipher has the corresponding component in the decryption cipher.

Non-Feistel Ciphers

Example-

S Boxes need to have equal number of inputs and outputs No Compression or Expansion P Box allowed as they are not invertible

A 2 X 2 S Box can be designed to be invertible

A straight P Box can be designed to be invertible by using the appropriate permutation table.

The Data Encryption Standard (DES)

The Data Encryption Standard (DES) is a symmetrickey block cipher published by the National Institute of Standards and Technology (NIST).

6.1.1 History

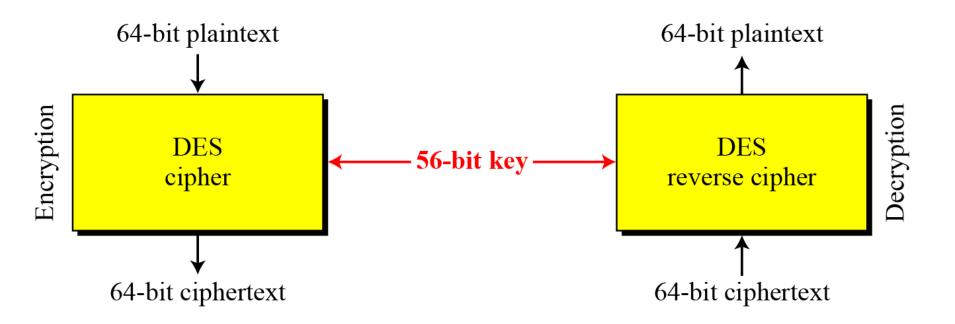
In 1973, NIST published a request for proposals for a national symmetric-key cryptosystem. A proposal from IBM, a modification of a project called Lucifer, was accepted as DES. DES was published in the Federal Register in March 1975 as a draft of the Federal Information Processing Standard (FIPS).

- Finally published as FIPS 46 in the Federal Register in January 1977
- A new standard FIPS 46-3 recommended the use of Triple DES- repeated DES cipher three times
- AES, The recent standard is supposed to replace DES in the long run

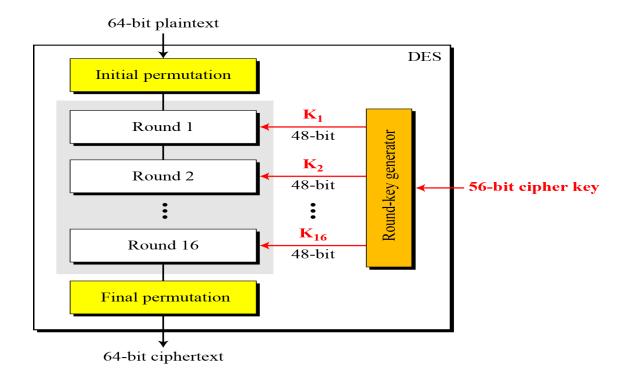
6.1.2 Overview

DES is a block cipher, as shown in Figure 6.1.

Figure 6.1 Encryption and decryption with DES



The encryption process is made of two permutations (*P*-boxes), which we call initial and final permutations, and sixteen Feistel rounds.



Each round uses a different 48 bit round key generated from the cipher key according to a predefined algorithm

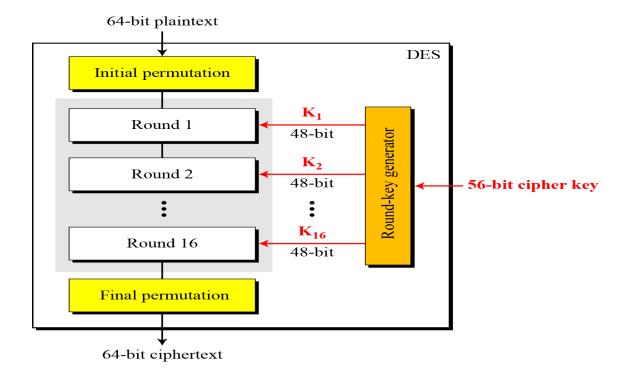
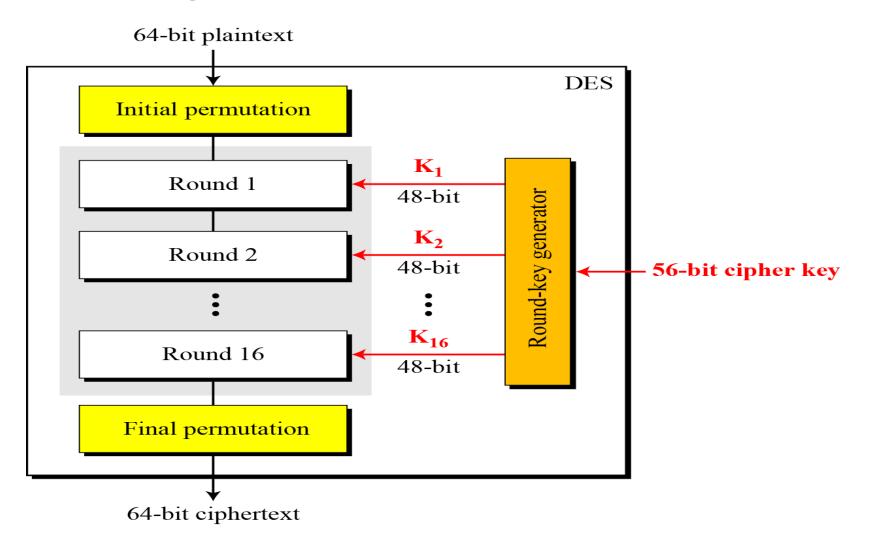


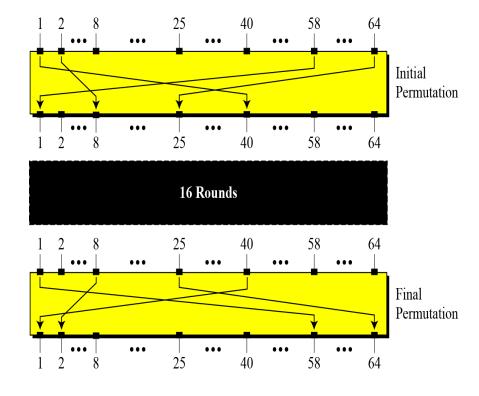
Figure 6.2 General structure of DES



6.2.1 Initial and Final Permutations

Figure 6.3 Initial and final permutation steps in DES

- Takes 64 bit input
- *Permutes them according to a predefined rule*
- If the rounds between these two permutations do not exist, the 58th bit entering the initial permutation is the same as 58th bit leaving the final permutation



6.2.1 Continue

Table 6.1 Initial and final permutation tables

Permutation Rules for these P Boxes

6.2.1 Continued

The initial and final permutations are keyless straight P-boxes that are inverses of each other. They have no cryptography significance in DES.

6.2.1 Continued

Find the output of the initial permutation box when the input is given in hexadecimal as:

0x0002 0000 0000 0001

6.2.1 Continued

Example 6.1

Find the output of the initial permutation box when the input is given in hexadecimal as:

Solution 0x0002 0000 0000 0001

Bit 15 Bit 64

The input has only two 1's (Bit 15 and 64), The output may also have only two 1s (Straight Permutation)

Bit 15 in input becomes Bit 63 in output Bit 64 in Input Becomes Bit 25 in output The output has only two 1's in Bit 25 and 63 Result-

 $0x0000\ 0080\ 0000\ 0002$

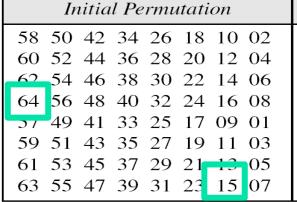
Initial Permutation									
58	50	42	34	26	18	10	02		
60	52	44	36	28	20	12	04		
62	54	46	38	30	22	14	06		
64	56	48	40	32	24	16	08		
57	49	41	33	25	17	09	01		
59	51	43	35	27	19	11	03		
61	53	45	37	29	21	13	05		
63	55	47	39	31	23	15	07		

Example 6.1

$0x0002\ 0000\ 0000\ 0001$

The input has only two 1's (Bit 15 and 64), The output may also have
only two 1s (Straight Permutation)Initial Permutation

Bit 15 in input becomes Bit 63 in output Bit 64 in Input Becomes Bit 25 in output The output has only two 1's in Bit 25 and 63 Result-



 $0x0000\ 0080\ 0000\ 0002$

Example 6.2

Prove that the initial and final permutations are the inverse of each other by finding the output of the final permutation if the input is

0x0000 0080 0000 0002

Example 6.2

Prove that the initial and final permutations are the inverse of each other by finding the output of the final permutation if the input is

0x0000 0080 0000 0002

Solution

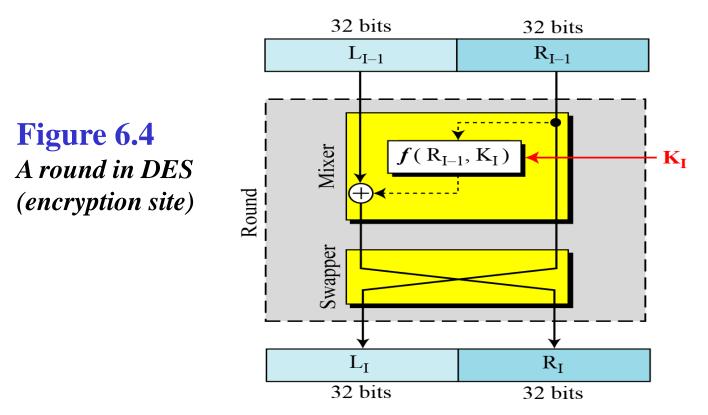
Only Bit 25 and Bit 63 are 1s In the final permutation , Bit 25 becomes Bit 64 and Bit 63 becomes Bit 15 The result in hexadecimal is

Final Permutation										
40 08	48 1	6 56	24	64	32					
39 07	47 1	5 55	23	63	31					
38 06	46 1	4 54	22	62	30					
37 05	45 1	3 53	21	61	29					
36 04	44 1	2 52	20	60	28					
35 03	43 1	1 51	19	59	27					
34 02	42 1	0 50	18	58	26					
33 01	41 0	9 49	17	57	25					

0x0002 0000 0000 0001

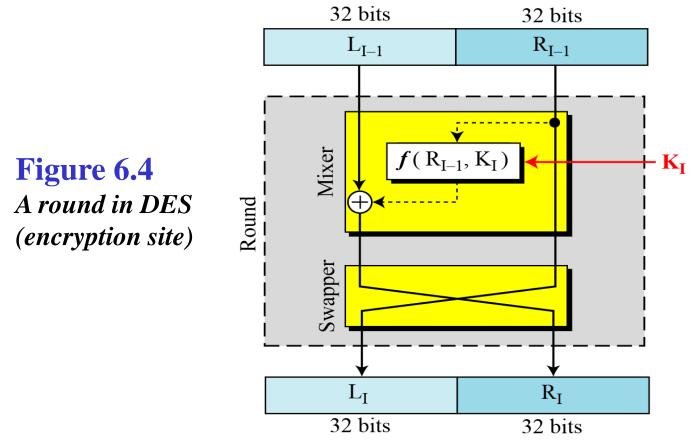
6.2.2 Rounds

- DES uses 16 rounds.
- Each round of DES is a Feistel cipher.
- $(I-1)^{th}$ Input from previous round, Creates $L_{IP}R_{I}$ to go to next round



6.2.2 Rounds

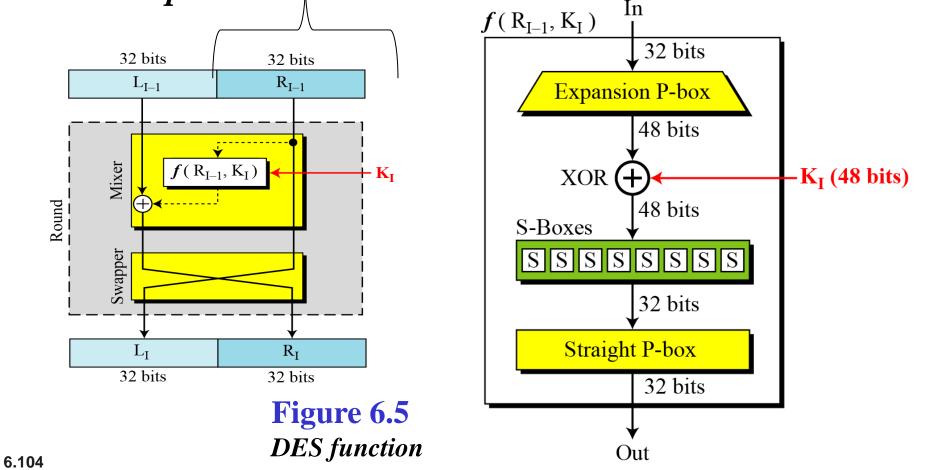
- Swapper is invertible
- Mixer is invertible because of EXOR operation
- All non invertible elements are collected inside the function f



6.2.2 Continued

DES Function

The heart of DES is the DES function. The DES function applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output.

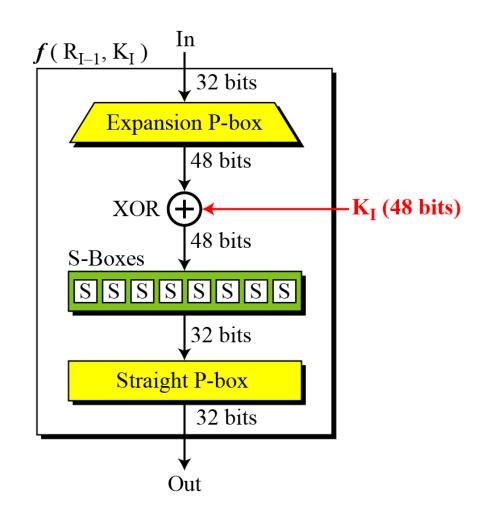


6.2.2 Continued

DES Function

Made of four sections:

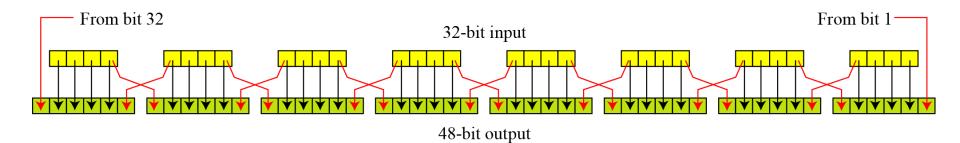
- Expansion P Box
- A whitener
- Group of S Boxes
- Straight P Box



Expansion P-box

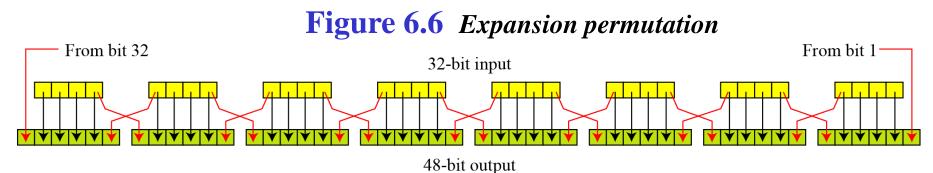
Since R_{I-1} is a 32-bit input and K_I is a 48-bit key, we first need to expand R_{I-1} to 48 bits.

Figure 6.6 Expansion permutation



Expansion P-box

- Each R_{I-1} is divided into eight 4-Bit sections
- Each 4 Bit section is then expanded to 6 bits
- Predetermined Rule used



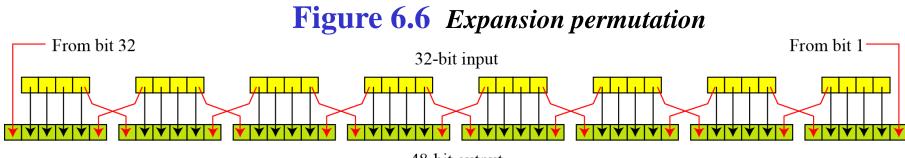
Expansion P-box

For each section, I/P bits 1,2,3 and 4 are copied to O/P bits 2,3,4 and 5 respectively.

Output Bit 1 comes from bit 4 of previous section

Output bit 6 comes from bit 4 of next section

Sections 1 and 8 are considered adjacent, Same rule applies to bits 1 and 32



48-bit output

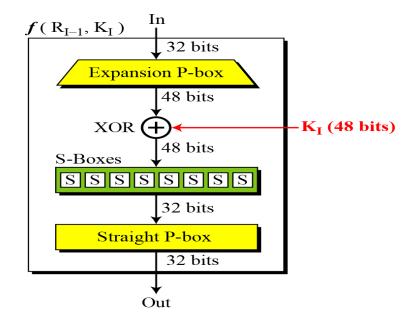
Although the relationship between the input and output can be defined mathematically, DES uses Table 6.2 to define this P-box. A 6 X 8 Table

32	01	02	03	04	05
04	05	06	07	08	09
08	09	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	31	31	32	01

Table 6.6Expansion P-box table

Whitener (XOR)

- After the expansion permutation, DES uses the XOR operation on the expanded right section and the round key.
- Note that both the right section and the key are 48-bits in length.
- Also note that the round key is used only in this operation.



S-Boxes

- The S-boxes do the real mixing (confusion).
- 48 bit output from Whitener is divided into Eight 6-bit chunks
- DES uses 8 S-boxes,
- Each 6-bit chunk as input and a 4-bit output.

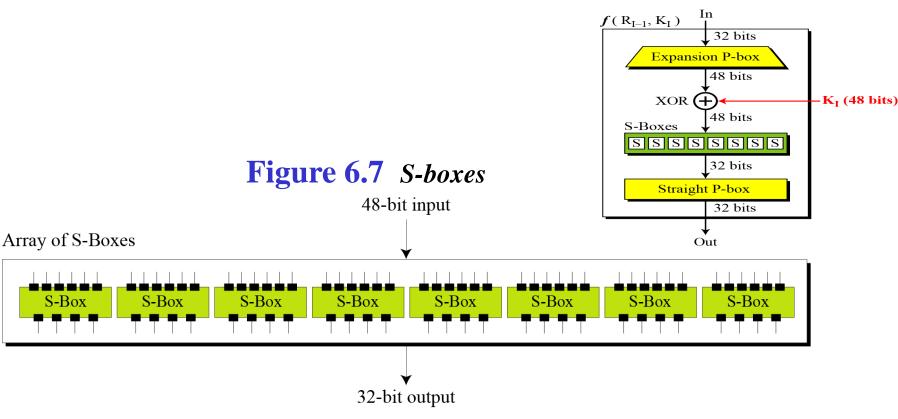


Figure 6.8 S-box rule

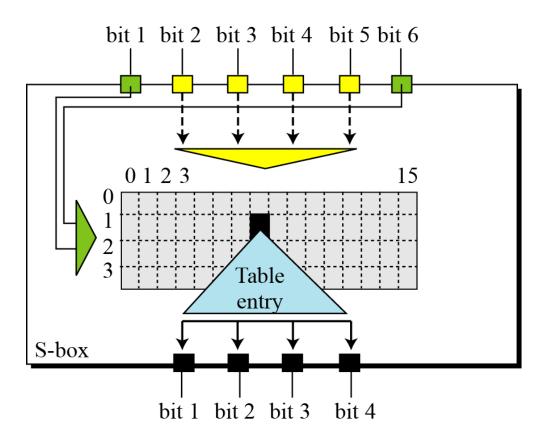


Figure 6.8 S-box rule

S-Boxes

- The substitution in each box follows a predetermined rule
- Based on a 4 row by 16 column table
- Combination of bits 1 and 6 of the input defines one of the rows
- Combination of bits 2 through 5 defines one of the sixteen columns

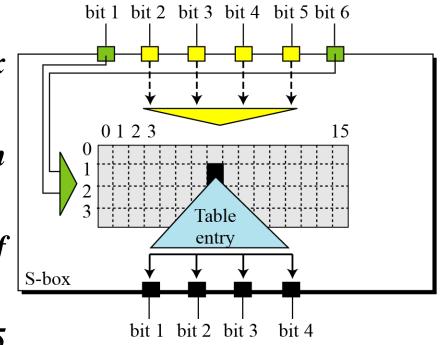
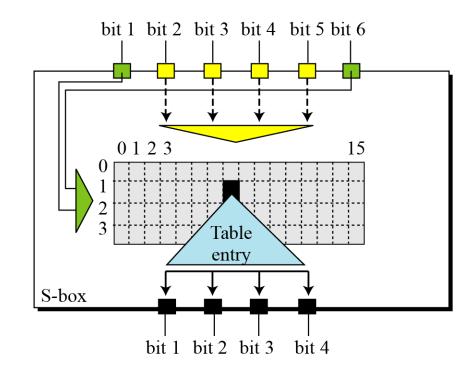


Figure 6.8 S-box rule

S-Boxes

- Each S Box has its own table
- We need 8 tables



- Table 6.3 shows the permutation for S-box 1.
- For the rest of the boxes see the textbook.
- The row number and column no, output are given as decimal to save space
- These need to be changed to binary

 Table 6.3
 S-box 1

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
1	00	15	07	04	14	02	13	10	03	06	12	11	09	05	03	08
2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

Example 6.3

The input to S-box 1 is 100011. What is the output?

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
1	00	15	07	04	14	02	13	10	03	06	12	11	09	05	03	08
2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

Solution

- If we write the first and the sixth bits together, we get 11 in binary, which is 3 in decimal.
- The remaining bits are 0001 in binary, which is 1 in decimal.
- We look for the value in row 3, column 1, in Table (S-box 1).
- The result is 12 in decimal, which in binary is 1100. So the input 100011 yields the output 1100.

The input to S-box 8 is 000000. What is the output?

Table 6.10 S-box 8

	0	1	2	3	4	5	6	7	8	9	10	11	12	.13	14.	15
0	13	02	08	04	06	15	11	10	10	09	03	14	05	00	12	07
I	01	15	13							05						
2	07	11	04							06			15			
3	02	01	14	07	04	10	8	13	15	12	09					11

Solution

If we write the first and the sixth bits together, we get 00 in binary, which is 0 in decimal. The remaining bits are 0000 in binary, which is 0 in decimal. We look for the value in row 0, column 0, in Table 6.10 (S-box 8). The result is 13 in decimal, which is 1101 in binary. So the input 000000 yields the output 1101.

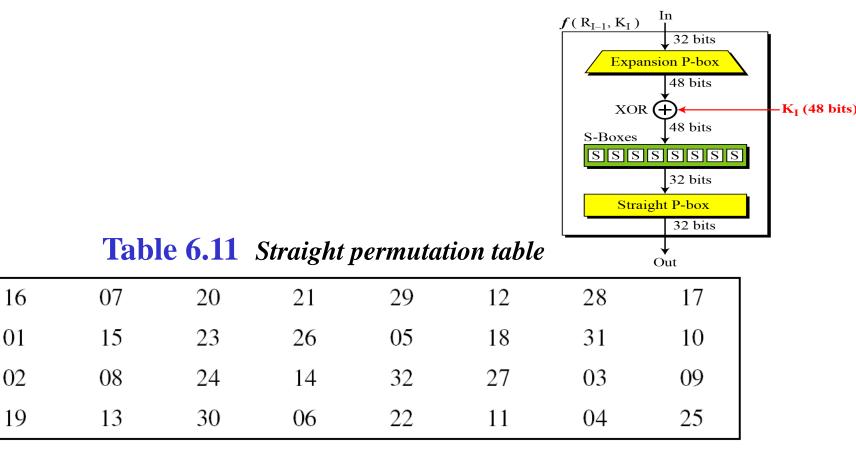
Straight Permutation

16	07	20	21	29	12	28	17
01							
02	08	24	14	32	27	03	09
19	13	30	06	22	11	04	25

Table 6.11 Straight permutation table

Straight Permutation

- Last operation in DES function
- *Permutation with 32 bit input and 32 bit output*



6.2.3 Cipher and Reverse Cipher

Using mixers and swappers, we can create the cipher and reverse cipher, each having 16 rounds.

First Approach

To achieve this goal, one approach is to make the last round (round 16) different from the others; it has only a mixer and no swapper.

In the first approach, there is no swapper in the last round.

Figure 6.9 DES cipher and reverse cipher for the first approach

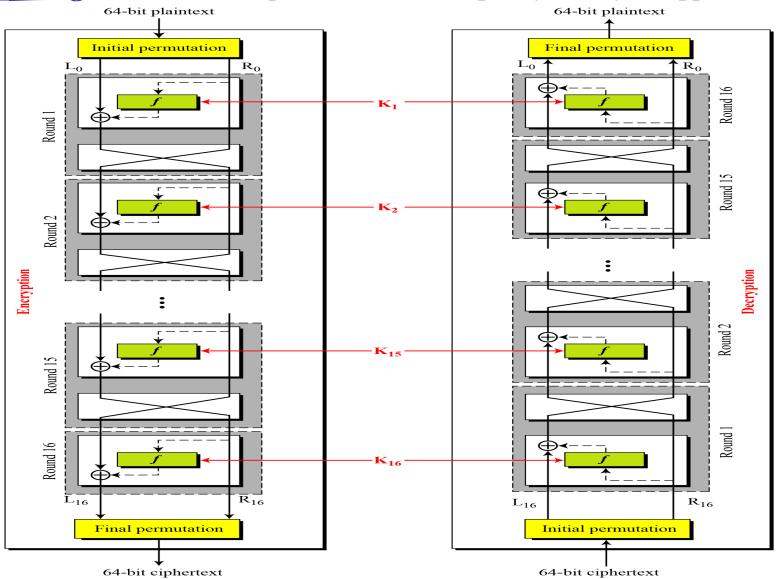
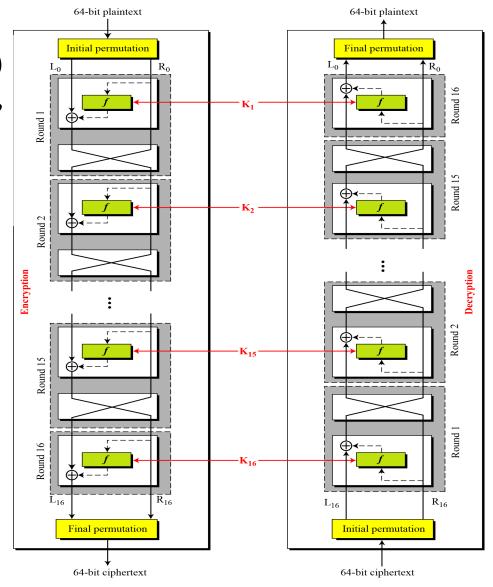
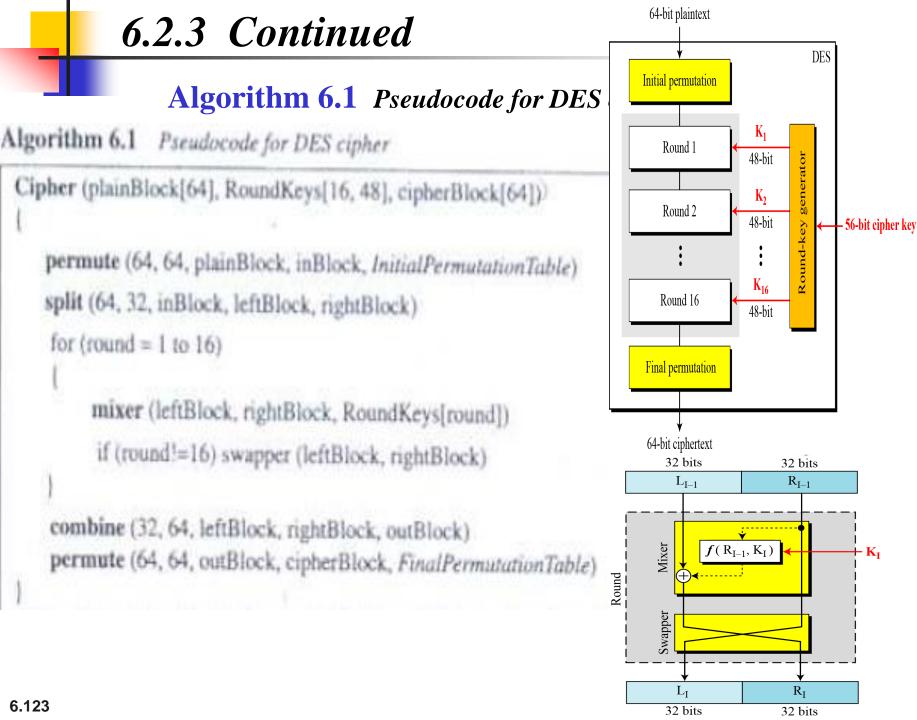


Figure 6.9 DES cipher and reverse cipher for the first approach

Round Keys(K1 to K16) should be applied in the reverse order in Decryption





Algorithm 6.1 *Pseudocode for DES cipher* (Continued)

mixer (leftBlock[48], rightBlock[48], RoundKey[48])

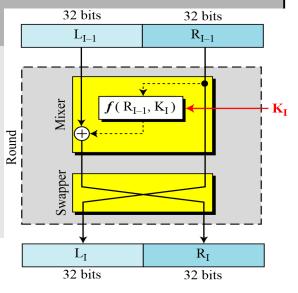
copy (32, rightBlock, T1) **function** (T1, RoundKey, T2) **exclusiveOr** (32, leftBlock, T2, T3) **copy** (32, T3, rightBlock)

- Copy rightblock in T1
 - Apply fn to T1,RoundKey, Store Output in T2
 - Exor of leftblock and T2,O/P=T3

swapper (leftBlock[32], rigthBlock[32])

copy (32, leftBlock, T)
copy (32, rightBlock, leftBlock)
copy (32, T, rightBlock)

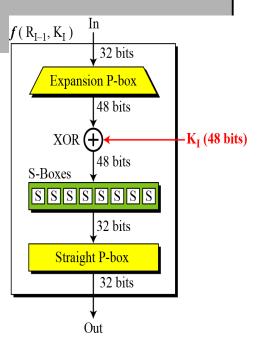
- Copy leftblock in T
 Copy rightblock in leftblock
- Copy T in rightblock



Algorithm 6.1 *Pseudocode for DES cipher* (Continued)

function (inBlock[32], RoundKey[48], outBlock[32])

permute (32, 48, inBlock, T1, ExpansionPermutationTable)
exclusiveOr (48, T1, RoundKey, T2)
substitute (T2, T3, SubstituteTables)
permute (32, 32, T3, outBlock, StraightPermutationTable)



Algorithm 6.1 *Pseudocode for DES cipher* (Continued)

```
substitute (inBlock[32], outBlock[48], SubstitutionTables[8, 4, 16])
     for (i = 1 \text{ to } 8)
         row \leftarrow 2 \times \text{inBlock}[i \times 6 + 1] + \text{inBlock}[i \times 6 + 6]
          col \leftarrow 8 \times inBlock[i \times 6 + 2] + 4 \times inBlock[i \times 6 + 3] +
                  2 \times inBlock[i \times 6 + 4] + inBlock[i \times 6 + 5]
          value = SubstitutionTables [i][row][col]
          outBlock[[i \times 4 + 1] \leftarrow value / 8;
                                                                    value \leftarrow value mod 8
           outBlock[[i \times 4 + 2] \leftarrow value / 4;
                                                                    value \leftarrow value mod 4
           outBlock[[i \times 4 + 3] \leftarrow value / 2;
                                                                    value \leftarrow value mod 2
          outBlock[[i \times 4 + 4] \leftarrow value
```

Alternative Approach

We can make all 16 rounds the same by including one swapper to the 16th round and add an extra swapper after that (two swappers cancel the effect of each other).

Key Generation

The round-key generator creates sixteen 48-bit keys out of a 56-bit cipher key.

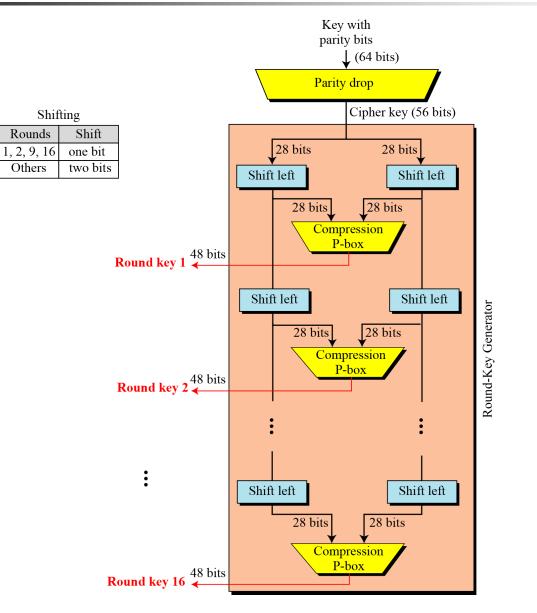
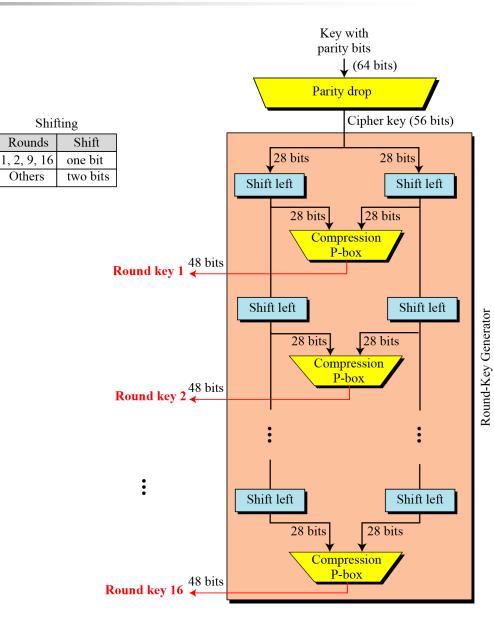


Figure 6.10 *Key generation*

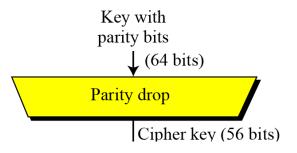
Key Generation

Cipher key is normally given as a 64bit key in which 8 extra bits are parity bits, which are dropped of before the actual key generation process.



Parity Drop

- Drops the parity bits
- Bits 8,16,24,32,.....,64 from the 64 bit key
- Permutes the remaining bits according to table
- The remaining 56 bit value is the actual cipher key which is used to generate round keys.

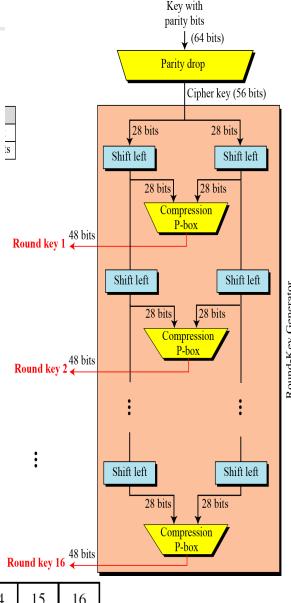


57	49	41	33	25	17	09	01
58	50	42	34	26	18	10	02
59	51	43	35	27	19	11	03
60	52	44	36	63	55	47	39
31	23	15	07	62	54	46	38
30	22	14	06	61	53	45	37
29	21	13	05	28	20	12	04

Shift Left

- After permutation, Key is divided into two 28 bit parts
- Each part is shifted left one or two bits
- In round 1,2,9 and 16 shifting is One bit
- In Other rounds, its Two bits
- Two parts are then combined to form a 56 bit part
- No of bit shifts is shown in table below:

Round	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bit shifts	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1



Compression P Box

• Changes 58 bits to 48 bits which are used as a key for a round

14	17	11	24	01	05	03	28
15	06	21	10	23	19	12	04
26	08	16	07	27	20	13	02
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

Table 6.14Key-compression table

Algorithm 6.2 Algorithm for round-key generation

```
28 bits
                                                                                                                                    28 bits
Key_Generator (keyWithParities[64], RoundKeys[16, 48], ShiftTable[16])
                                                                                                                                      Compression
                                                                                                                                         P-box
                                                                                                            Round key 1 48 bits
    permute (64, 56, keyWithParities, cipherKey, ParityDropTable)
                                                                                                                              Shift left
                                                                                                                                                  Shift left
    split (56, 28, cipherKey, leftKey, rightKey)
                                                                                    Shifting
                                                                                             Shift
                                                                             Rounds
                                                                                                                                            28 bits
    for (round = 1 to 16)
                                                                                                                                    28 bits
                                                                            1, 2, 9, 16
                                                                                           one bit
                                                                                                                                      Compression
                                                                                                                                         P-box
                                                                              Others
                                                                                           two bits
                                                                                                             Round key 2 48 bits
          shiftLeft (leftKey, ShiftTable[round])
          shiftLeft (rightKey, ShiftTable[round])
          combine (28, 56, leftKey, rightKey, preRoundKey)
                                                                                                                 :
          permute (56, 48, preRoundKey, RoundKeys[round], KeyCompressionTable)
                                                                                                                              Shift left
                                                                                                                                                  Shift left
                                                                                                                                    28 bits
                                                                                                                                              28 bits
                                                                                                                                      Compression
                                                                                                                                         P-box
```

Round-Key Generate

Key with parity bits

Parity drop

28 bits

Shift left

48 bits

Round key 16

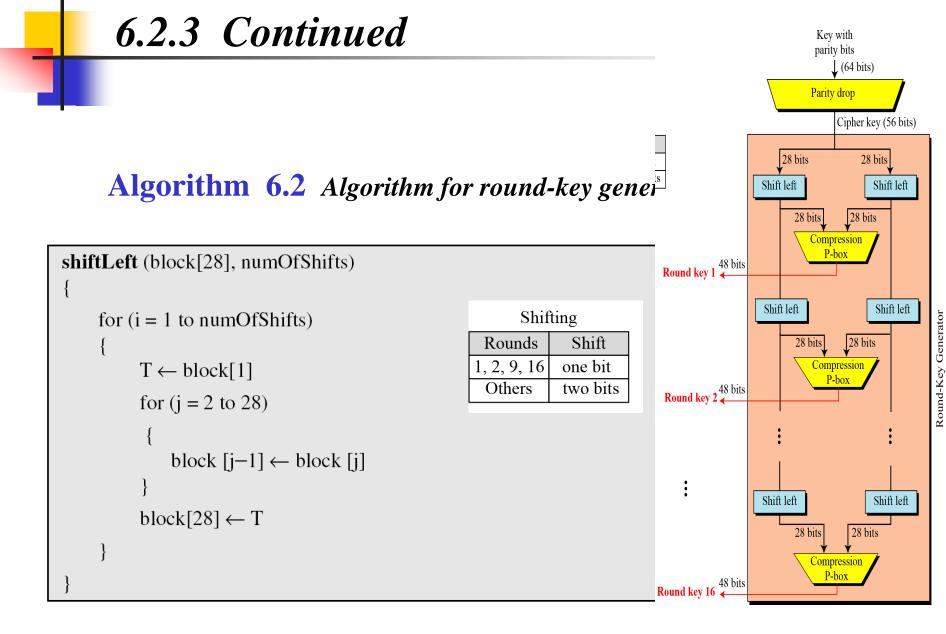
ts

(64 bits)

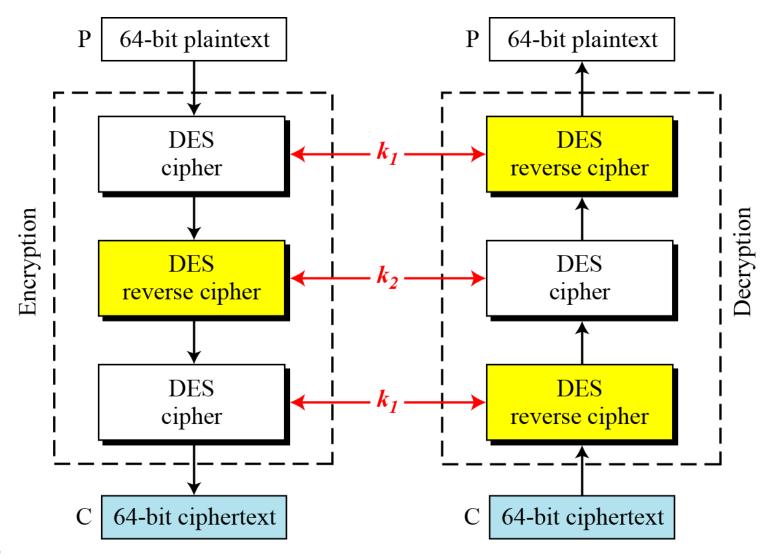
Cipher key (56 bits)

28 bits

Shift left



The major criticism of DES regards its key length. Fortunately DES is not a group. This means that we can use double or triple DES to increase the key size. **Figure 6.16** *Triple DES with two keys*



Triple DES with Three Keys

The possibility of known-plaintext attacks on triple DES with two keys has enticed some applications to use triple DES with three keys. Triple DES with three keys is used by many applications such as PGP