
Mordern Block Ciphers 



5.2 

MODERN BLOCK CIPHERS 

A symmetric-key modern block cipher encrypts an  
n-bit block of plaintext or decrypts an n-bit block of 
ciphertext. The encryption or decryption algorithm uses 
a k-bit key.  



5.3 

Figure 5.1  A modern block cipher 

5.1   Continued 



5.4 

A modern block cipher can be designed to act as a 

substitution cipher or a transposition cipher.  

5.1.1  Substitution or Transposition 

To be resistant to exhaustive-search attack,  

a modern block cipher needs to be 

designed as a substitution cipher. 

Note 



5.5 

5.1.2    P Box 

• Permutation Box parallels the traditional transposition 

cipher for characters  

 

• It transposes bits 
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Figure 5.4  Three types of P-boxes 

5.1.3  Continued 
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Straight P-Boxes 

5.1.3    Continued 

• A straight P-box is a P-box with n inputs and n 

outputs 

 

• n! possible mappings 

 

• P Box is normally Keyless 

 

• Mapping is predetermined 

 

• If implemented in Hardware, then Prewired 

• IF implemented in software, Permutation table shows 

rule of mapping 
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5.1.3    Continued 

Table  5.1  Example of a permutation table for a straight P-box 

Straight P-Boxes 
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5.1.3    Continued 
Straight P-Boxes 

64 Inputs 

64 Outputs 

The index of the entry corresponds with the output 

First entry is 58=>First Output comes from 58th Input 

Last Entry is 07=>64th Output comes from 7th Input 
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Example 5.5 

5.1.3    Continued 

Figure 5.5  The possible mappings of a 3 × 3 P-box 

Figure 5.5 shows all 6 possible mappings of a 3 × 3 P-box. 
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Example 5.6 

5.1.2    Continued 

Design an 8 × 8 permutation table for a straight P-box that 

moves the two middle bits (bits 4 and 5) in the input word to 

the two ends (bits 1 and 8) in the output words. Relative 

positions of other bits should not be changed. 

Solution 
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Example 5.6 

5.1.2    Continued 

Design an 8 × 8 permutation table for a straight P-box that 

moves the two middle bits (bits 4 and 5) in the input word to 

the two ends (bits 1 and 8) in the output words. Relative 

positions of other bits should not be changed. 

Solution 

We need a straight P-box with the table [4  1  2  3  6  7  8  5]. 

The relative positions of input bits 1, 2, 3, 6, 7, and 8 have not 

been changed, but the first output takes the fourth input and 

the eighth output takes the fifth input. 
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Compression P-Boxes 

5.1.3    Continued 

A compression P-box is a P-box with n inputs and m 

outputs where m < n.  

Some of the inputs are blocked and do not reach the 

output. 

 

 
Table  5.2  Example of a 32 × 24 permutation table 
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Compression P-Boxes 

5.1.3    Continued 

Normally Keyless with permutation table showing the rule 

for transposing bits 

Table  5.2  Example of a 32 × 24 permutation table 
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Compression P-Boxes 

5.1.3    Continued 

32 X 24 Compression P Box 

Inputs 7,8,9,15,16,23,24 and 25 are blocked 

 

Used when we need to permute bits and the same time 

decrease the number of bits for next stage 

Table  5.2  Example of a 32 × 24 permutation table 
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Expansion P-Boxes 

5.1.3    Continued 

An expansion P-box is a P-box with n inputs and m 

outputs where m > n.  

 

Some of the inputs are connected to more than one output 

Table  5.3  Example of a 12 × 16 permutation table 
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Expansion P-Boxes 

5.1.3    Continued 

Normally Keyless with permutation table showing the rule 

for transposing bits 

 

Each of the inputs 1,3,9 and 12 are mapped to two 

outputs 

 

Used when we need to permute bits and the same time 

increase the number of bits for next stage 

 

Table  5.3  Example of a 12 × 16 permutation table 
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5.1.3    Continued 
P-Boxes: Invertibility 

A straight P-box is invertible, but compression and 

expansion P-boxes are not. 

Note 
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5.1.3    Continued 
P-Boxes: Invertibility 

A straight P-box is invertible=>We can use Straight 

box in the encryption cipher and its inverse in the 

decryption cipher 

 

Permutation tables need to be inverses of each 

other 

Note 
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5.1.3    Continued 
P-Boxes: Invertibility 

Permutation tables need to be inverses of each 

other 

Note 
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5.1.3    Continued 
P-Boxes: Invertibility 

Compression and expansion P-boxes are not 

invertible. 

Note 
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5.1.3    Continued 
P-Boxes: Invertibility 

In Compression P Box- 

An input can be dropped During Encryption . 

The Decryption Algorithm doesn’t have a clue how 

to replace the dropped bit. 

Note 
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5.1.3    Continued 
P-Boxes: Invertibility 

In Expansion P Box- 

An input may be mapped to more than one output 

during Encryption. The Decryption algorithm does 

not have a clue which of the several inputs are 

mapped to an output. 

Note 
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Figure 5.7  Compression and expansion P-boxes are non-invertible 

5.1.3  Continued 
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5.1.3    Continued 
P-Boxes: Invertibility 

Compression P-box is not the inverse of expansion 

P-box or vice versa 

Note 



5.26 

5.1.3    Continued 

S-Box 

An S-box (substitution box) can be thought of as a 

miniature substitution cipher.  

An S-box is an m × n substitution unit, where m and 

n are not necessarily the same. 

Note 
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5.1.3    Continued 

S-Box 

• S Box can be keyed or keyless 

 

• Modern Block ciphers normally use keyless S Box 

where the mapping from inputs to outputs is 

predetermined 
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5.1.3    Continued 

S-Box 

• S Box are substitution ciphers in which relationship 

between input and output is defined by  

• a table or  

• mathematical relation 
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5.1.3    Continued 

Linear vs Non-Linear S-Box 

S Box with n inputs and m outputs 

Inputs:x1,x2,…..xn 

Outputs:y1,y2,……..ym 

Relationship between inputs and outputs can be expressed 

as  
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5.1.3    Continued 

Linear S-Box 

The relations can be expressed as: 

Non Linear S-Box 

We cannot have the above relations for every output 



5.31 

Example 5.9 

5.1.3    Continued 

Linear Equations- 
It has only one degree. Or we can also define it as an equation having the 
maximum degree 1. 
 
Non Linear Equations- 
A nonlinear equation has the degree as 2 or more than 2, but not less than 
2. 
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Example 5.8 

5.1.3    Continued 

In an S-box with three inputs and two outputs, we have 

• The S-box is linear as we have equation for every output 
 

• Because a1,1 = a1,2 = a1,3 = a2,1 = 1 and  
a2,2 = a2,3 = 0. The relationship can be represented by matrices, as shown 
below: 
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Example 5.8 

5.1.3    Continued 

In an S-box with three inputs and two outputs, we have 

If the input is 110 then the output y1= 0 and y2= 1 
If the input is 001 then the output y1= 1 and y2= 0. 
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Example 5.9 

5.1.3    Continued 

In an S-box with three inputs and two outputs, we have 

The S-box is nonlinear because there is no linear relationship between the 
inputs and the outputs. 
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Example 5.10 

5.1.3    Continued 

The following table defines the input/output relationship for an S-box of size 3 
× 2. 
• The leftmost bit of the input defines the row;  
• The two rightmost bits of the input define the column.  
• The two output bits are values on the cross section of the selected row and 

column. 

Based on the table, an input of 010 yields the output 01. An input of 101 yields 
the output of 00. 
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5.1.3    Continued 
S-Boxes: Invertibility 

An S-box may or may not be invertible. In an invertible  

S-box, the number of input bits should be the same as the 

number of output bits. 
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Example 5.11 

5.1.3    Continued 

Figure 5.8 shows an example of an invertible S-box.   
For example, if the input to the left box is 001, the output is 101.  
The input 101 in the right table creates the output 001, which shows 
that the two tables are inverses of each other. 

Figure 5.8  S-box tables for Example 5.11 
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5.1.3    Continued 

Exclusive-Or 

An important component in most block ciphers is the 

exclusive-or operation.  

Figure 5.9  Invertibility of the exclusive-or operation 
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Figure 5.9  Invertibility of the exclusive-or operation 

5.1.1  Continued 
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Figure 5.9  Invertibility of the exclusive-or operation 

5.1.1  Continued 

5 Properties of EXOR Operation which makes this 

operation important 

1) Closure 

2) Associativity 

3) Commutativity 

4) Existence of identity 

5) Existence of inverse 
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Figure 5.9  Invertibility of the exclusive-or operation 

5.1.1  Continued 

Closure-Result of EXORing two n bit words is another n 

bit word 

 

 

Associativity-Allows to use EXOR operator in any order 

 

 

 

Commutativity-Allows to swap the inputs without 

affecting the output 
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Figure 5.9  Invertibility of the exclusive-or operation 

5.1.1  Continued 

Existence of identity- 

N bit word containing all O’s  

Exclusive ORing of a word with the identity element does 

not change that word 

 

 

Existence of inverse- 

Each word is additive inverse of itself. 

EXORing a word with itself yeilds the identity element 

 



5.43 

5.1.3    Continued 

Circular Shift 

Another component found in some modern block ciphers 

is the circular shift operation.  

 

Mixes bits in a word and helps hide the patterns in the 

original word 
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5.1.3    Continued 

Circular Shift 

Circular left shift operation 

shifts each bit in a n bit word 

,k positions left. 

The leftmost k bits are 

removed from the left and 

become the rightmost bits 

 

Figure 5.10  Circular shifting an 8-bit word to the left or right 
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5.1.3    Continued 

Circular Shift 

Circular right shift operation 

shifts each bit in a n bit word ,k 

positions right. 

The rightmost k bits are removed 

from the right and become the 

leftmost bits 

 

Figure 5.10  Circular shifting an 8-bit word to the left or right 
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5.1.3    Continued 

Circular Shift 

Invertibility- A circular left shift operation is the 

inverse of the circular right shift operation 

 

If one is used in encryption cipher, The other can be 

used in the Decryption cipher 
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5.1.3    Continued 

Swap 

The swap operation is a special case of the circular shift 

operation where k = n/2.  

Figure 5.11  Swap operation on an 8-bit word 



5.48 

5.1.3    Continued 

Swap 

Operation is valid only if n is an even number 

Self Invertible-A swap operation in Encryption cipher can 

be totally cancelled by a swap operation in the decryption 

cipher 

Figure 5.11  Swap operation on an 8-bit word 
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5.1.3    Continued 
Split and Combine 

Two other operations found in some block ciphers are 

split and combine.  

Figure 5.12  Split and combine operations on an 8-bit word 
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Figure 5.12  Split and combine operations on an 8-bit word 

5.1.3  Continued 

• Split operation splits an n-bit word in the middle 

creating two equal length words 

 

• Combine operation normally concatenates two equal 

length words to create an n bit word. 

 

• Inverse of each other 

 

• Used as a pair to cancel each other out. 
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Shannon introduced the concept of a product cipher. A 

product cipher is a complex cipher combining 

substitution, permutation, and other components 

discussed in previous sections. 

5.1.4  Product Ciphers 
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Diffusion 

• The idea of diffusion is to hide the relationship 

between the ciphertext and the plaintext.  

 

 

 

 

 

 

• Frustate the adversary who uses ciphertext statistics to 

find plaintext 

• If a single symbol in plaintext is changes, several or all 

symbols in the ciphertext will also be changed 

5.1.4  Continued 

Diffusion hides the relationship between the 

ciphertext and the plaintext. 

Note 
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Confusion 

• The idea of confusion is to hide the relationship 

between the ciphertext and the key. 

 

 

 

 

 

 

• Frustate the adversary who uses ciphertext statistics to 

find key 

• If a single bit in the key is changed, most or all bits in 

the ciphertext will also be changed 

5.1.4  Continued 

Confusion hides the relationship between the 

ciphertext and the key. 

Note 
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Rounds 

Diffusion and confusion can be achieved using iterated 

product ciphers where each iteration is a combination of 

S-boxes, P-boxes, and other components.  

5.1.4  Continued 
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Rounds 

The block cipher uses a Key schedule or Key generator 

that creates different keys for each round. 

 

In a N-round cipher, the plaintext is encrypted N times to 

create the ciphertext. 

 

The ciphertext is decrypted N times to create the plaintext 

5.1.4  Continued 
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Figure 5.13  A product cipher made of two rounds 

5.1.4  Continued 
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Figure 5.13  A product cipher made of two rounds 

5.1.4  Continued 

Rounds 

Key Mixer- 

• 8 bit text is mixed with Key to 

whiten the text 

• Done by EXORing 8 bit word with 

8 bit key 

 

Sbox- 

• Output organized as 4 groups of 2 

bits, Fed into 4 S box 

• Values of Bits change based on 

Structure of S Box  
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Figure 5.13  A product cipher made of two rounds 

5.1.4  Continued 

Rounds 

Pbox- 

• O/P of S Box sent to P Box to 

permute the bits 
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Figure 5.14  Diffusion and confusion in a block cipher 

5.1.4  Continued 

How Changing a single bit in the plain text affects many bits in the ciphertext 
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Diffusion: 

 

1st Round- 

• Bit 8 after EXORing with corresponding 

bit of K1 affects 2 bits i.e. Bit7 and Bit 8 

through S Box 

 

• After permutation-Bit 7 becomes Bit 2, 

Bit 8 becomes Bit 4 

 

• After 1st round, Bit 8 has affected Bits 2 

and 4 

5.1.4  Continued 
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2nd Round- 

• Bit 2 and Bit 4 are EXORed with 

corresponding bits of Key K2 

• Bit 2 affects Bits 1,2 through S Box 1 

• Bits 4 affects Bits 3,4 through S Box2 

 

• After Permutation, Bit 1 becomes Bit 6,  

Bit 2 becomes Bit 1. 

 

• Bit 4 becomes Bit 7, Bit 3 remains same 

 

• After 2nd round, Bit 8 has affected Bits 

1,3,6,7 

5.1.4  Continued 
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Diffusion: 

 

• One bit in plain text has affected several 

bits in ciphertext  

 

• Bit 8 has affected Bits 1,3,6,7 

5.1.4  Continued 
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Confusion: 

 

• 4 bits of ciphertext bits 1,3,6,7 are 

affected by 3 bits in the Key  

 

• i.e. Bit 8 in Key1, Bits 2 and 4 in K2 

 

• Each bit in each round key affects 

several bits in the ciphertext. 

 

• The Relationship between ciphertext and 

key is obscured  

5.1.4  Continued 
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Modern block ciphers are all product ciphers, but they 

are divided into two classes.  

 

1. Feistel ciphers 

 

2. Non-Feistel ciphers 

5.1.5  Two Classes of Product Ciphers 
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1. Feistel ciphers- Uses both invertible and non-invertible 

components 

 

2. Non-Feistel ciphers-Uses only invertible components 

5.1.5  Two Classes of Product Ciphers 
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Feistel Ciphers 

Feistel designed a very intelligent and interesting cipher 

that has been used for decades.  

 

A Feistel cipher can have three types of components:  

self-invertible, invertible, and noninvertible.  

5.1.5  Continued 
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Figure 5.15  The first thought in Feistel cipher design 

5.1.5  Continued 
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Encryption-  

• A non invertible function f(K) accepts the key as the input 

 

• The Output is EXORed with the plain text to give 

Ciphertext 

 

• Combination of Function and EXOR =MIXER  

5.1.5  Continued 
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Encryption-  

• Because the Key is the same in Encryption and Decryption 

• The Two algorithms are inverses of each other 

• If C2=C1, No change in the ciphertext then P2=P1 

 

• Encryption: C1=P1  f(K) 

• Decryption: P2=C2 f(K)=C1  f(K) 

• =P1  f(K)   f(K) 

• =P1 

 

5.1.5  Continued 
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• Although the Mixer has a non-invertible element f(K), The 

Mixer is self-invertible 

 

• The Mixer is Feistel Design is Self Invertible 

5.1.5  Continued 
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Inverse property of EXOR  

5.1.3    Continued 

The inverse of EXOR makes sense only if one of the inputs is fixed, 
 
Example- If one of the input is key, which is normally same in Encryption and 
Decryption, EXOR is self invertible 
 
 
y=x EXOR k  
x=y EXOR k 
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Example 5.12 

5.1.3    Continued 

The plaintext and ciphertext are each 4 bits long and the key is 3 bits long. 
Assume that the function takes the first and third bits of the key, interprets 
these two bits as a decimal number, squares the number, and interprets the 
result as a 4-bit binary pattern. Show the results of encryption and decryption 
if the original plaintext is 0111 and the key is 101. 
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Example 5.12 

5.1.3    Continued 

This is a trivial example. The plaintext and ciphertext are each 4 bits long and 
the key is 3 bits long. Assume that the function takes the first and third bits of 
the key, interprets these two bits as a decimal number, squares the number, 
and interprets the result as a 4-bit binary pattern. Show the results of 
encryption and decryption if the original plaintext is 0111 and the key is 101. 

Key=101 
Encryption- 
The function extracts the first and second bits to get 11 in binary or 3 in 
decimal. The result of squaring is 9, which is 1001 in binary. 
f(K)=1001 
 
Decryption- 
The same function can be used 
 

Solution 

B3 B2 B1 

1 0 1 
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Improvement of the previous Feistel design 

5.1.5  Continued 
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Improvement of the previous Feistel design 

5.1.5  Continued 

Encryption-  

• Input to the non-invertible 

element i.e. function should 

be same 

 

• In addition to Key 

 

• Input of fn to also be part of 

the plaintext in the encryption 

and part of ciphertext in the 

decryption 
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Improvement of the previous Feistel design 

5.1.5  Continued 

Encryption-  

• Divide plain text into two 

equal length blocks, 

 

• Left Block and Right Block 

 

• Right Block be the input to 

the function 

 

• Left block be EXOred with 

the function ouput 
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Improvement of the previous Feistel design 

5.1.5  Continued 

• Input to the function must be 

exactly the same in 

Encryption and Decryption 

 

• Right section of the plain text 

in Encryption and right 

section of the ciphertext in 

decryption must be same. 

 

• Right section must go into 

and out of the encryption and 

decryption process 

unchanged 
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Improvement of the previous Feistel design 

5.1.5  Continued 

Assume  

L3=L2 and R3=R2  

No change in the ciphertext during 

transmission 

 

R4=R3=R2=R1 

L4=L3  f(R3,K) 

    =L2  f(R2,K) 

    =L1  f(R1,K) f(R1,K) 

    =L1 
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Improvement of the previous Feistel design 

5.1.5  Continued 

• Plaintext used in encryption is 

correctly regenerated 

 

• Encryption and Decryption are 

Inverses of each other 
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Improvement of the previous Feistel design 

5.1.5  Continued 

Drawback- 

• Right half of the plaintext never 

changes 

 

• Cryptanalyst can find the Right 

half of the plaintext by intercepting 

the cipher text and extracting the 

right half of it. 
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Final design of a Feistel cipher with two rounds 

5.1.5 Continued 
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Final design of a Feistel cipher with two rounds 

5.1.5 Continued 

Improvement done- 

 

• Increase the Number of Rounds 

 

• Add Swapper to each Round 

 

• Effect of swapper in encryption is 

cancelled by the effect of the 

swapper in decryption round 

 

• Two keys K1 and K2  

 

• Used in Reverse order in the 

encryption and decryption 
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Figure 5.17  Final design of a Feistel cipher with two rounds 

5.1.5 Continued 
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Non-Feistel Ciphers 

A non-Feistel cipher uses only invertible components. A 

component in the encryption cipher has the 

corresponding component in the decryption cipher.   

5.1.5  Continued 
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Non-Feistel Ciphers 

 

Example- 

S Boxes need to have equal number of inputs and outputs  

No Compression or Expansion P Box allowed as they are 

not invertible 

A 2 X 2 S Box can be designed to be invertible 

 

A straight P Box can be designed to be invertible by using 

the appropriate permutation table. 

 

5.1.5  Continued 
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The Data Encryption Standard (DES) 
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6-1   INTRODUCTION 

The Data Encryption Standard (DES) is a symmetric-

key block cipher published by the National Institute of 

Standards and Technology (NIST). 



6.88 

In 1973, NIST published a request for proposals for a 

national symmetric-key cryptosystem. A proposal from 

IBM, a modification of a project called Lucifer, was 

accepted as DES. DES was published in the Federal 

Register in March 1975 as a draft of the Federal 

Information Processing Standard (FIPS). 

6.1.1  History 
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• Finally published as FIPS 46 in the Federal Register 

in January 1977 

 

• A new standard FIPS 46-3 recommended the use of  

Triple DES- repeated DES cipher three times 

 

• AES, The recent standard is supposed to replace DES 

in the long run 

6.1.1  History 
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DES is a block cipher, as shown in Figure 6.1. 

6.1.2  Overview 

Figure 6.1  Encryption and decryption with DES 
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6-2   DES STRUCTURE 

The encryption process is made of two permutations (P-

boxes), which we call initial and final permutations, and 

sixteen Feistel rounds.  
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6-2   DES STRUCTURE 

Each round uses a different 48 bit round key generated 

from the cipher key according to a predefined algorithm 
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6-2   Continue 

Figure 6.2  General structure of DES 
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6.2.1  Initial and Final Permutations 

Figure 6.3  Initial and final permutation steps in DES 

• Takes 64 bit input  

 

• Permutes them according to a 

predefined rule 

 

• If the rounds between these two 

permutations do not exist, the 

58th bit entering the initial 

permutation is the same as 58th 

bit leaving the final 

permutation 
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6.2.1  Continue 

Table 6.1  Initial and final permutation tables 

Permutation Rules for these P Boxes 



6.96 

6.2.1    Continued 

The initial and final permutations are keyless 

straight P-boxes that are inverses  

of each other. 

They have no cryptography significance in 

DES. 

Note 
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Example 6.1 

6.2.1   Continued 

Find the output of the initial permutation box when the input is 

given in hexadecimal as: 
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Example 6.1 

6.2.1   Continued 

Find the output of the initial permutation box when the input is 

given in hexadecimal as: 

The input has only two 1’s (Bit 15 and 64), The output may also 

have only two 1s (Straight Permutation) 

 

Bit 15 in input becomes Bit 63 in output 

Bit 64 in Input Becomes Bit 25 in output 

The output has only two 1’s in Bit 25 and 63 

Result- 

Solution 

Bit 15 Bit 64 
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Example 6.1 

6.2.1   Continued 

0000 0000 0000 0010     0000 0000 0000 0000   0000 0000 0000 0000     

0000 0000 0000 0001 

The input has only two 1’s (Bit 15 and 64), The output may also have 

only two 1s (Straight Permutation) 

 

Bit 15 in input becomes Bit 63 in output 

Bit 64 in Input Becomes Bit 25 in output 

The output has only two 1’s in Bit 25 and 63 

Result- 

0000 0000 0000 0010     0000 0000 1000 0000   0000 0000 0000 0000     

0000 0000 0000 0010 
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Example 6.2 

6.2.1   Continued 

Prove that the initial and final permutations are the inverse of 

each other by finding the output of the final permutation if the 

input is 
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Example 6.2 

6.2.1   Continued 

Prove that the initial and final permutations are the inverse of 

each other by finding the output of the final permutation if the 

input is 

Only Bit 25 and Bit 63 are 1s 

In the final permutation ,  

Bit 25 becomes Bit 64 and Bit 63 becomes Bit 15 

The result in hexadecimal is 

Solution 
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• DES uses 16 rounds.  

• Each round of DES is a Feistel cipher. 

• (I-1)th Input from previous round, Creates LI,RI to go to next 

round 

6.2.2 Rounds 

Figure 6.4   
A round in DES  

(encryption site) 
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• Swapper is invertible 

• Mixer is invertible because of EXOR operation 

• All non invertible elements are collected inside the 

function f 

6.2.2 Rounds 

Figure 6.4   
A round in DES  

(encryption site) 



6.104 

The heart of DES is the DES function. The DES function 

applies a 48-bit key to the rightmost 32 bits to produce a 

32-bit output.  

6.2.2  Continued 
DES Function   

Figure 6.5   
DES function 
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Made of four sections: 

• Expansion P Box 

• A whitener 

• Group of S Boxes 

• Straight  P Box 

6.2.2  Continued 
DES Function   

Figure 6.5   
DES function 
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Expansion P-box 

Since RI−1 is a 32-bit input and KI is a 48-bit key, we first 

need to expand RI−1 to 48 bits.  

6.2.2  Continue 

Figure 6.6  Expansion permutation 
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Expansion P-box 

• Each RI−1 is divided into eight 4-Bit sections 

• Each 4 Bit section is then expanded to 6 bits 

• Predetermined Rule used 

 

6.2.2  Continue 

Figure 6.6  Expansion permutation 



6.108 

Expansion P-box 

For each section, I/P bits 1,2,3 and 4 are copied to O/P bits 2,3,4 

and 5 respectively. 

Output Bit 1 comes from bit 4 of previous section 

Output bit 6 comes from  bit 4 of next section 

Sections 1 and 8 are considered adjacent, Same rule applies to bits 

1 and 32 

 

6.2.2  Continue 

Figure 6.6  Expansion permutation 
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Although the relationship between the input and output can be 

defined mathematically, DES uses Table 6.2 to define this P-box. 

A 6 X 8 Table 

6.2.2  Continue 

Table 6.6  Expansion P-box table 



6.110 

Whitener (XOR) 

• After the expansion permutation, DES uses the XOR operation 

on the expanded right section and the round key.  

• Note that both the right section and the key are 48-bits in length.  

• Also note that the round key is used only in this operation. 

6.2.2  Continue 
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S-Boxes 

• The S-boxes do the real mixing (confusion).  

• 48 bit output from Whitener is divided into Eight 6-bit chunks 

• DES uses 8 S-boxes, 

• Each 6-bit chunk as input and a 4-bit output.  

6.2.2  Continue 

Figure 6.7  S-boxes 
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6.2.2  Continue 

Figure 6.8  S-box rule 
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6.2.2  Continue 

Figure 6.8  S-box rule 

S-Boxes 

• The substitution in each box 

follows a predetermined rule  

• Based on a 4 row by 16 column 

table 

• Combination of bits 1 and 6 of 

the input defines one of the rows 

• Combination of bits 2 through 5 

defines one of the sixteen 

columns 
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6.2.2  Continue 

Figure 6.8  S-box rule 

S-Boxes 

• Each S Box has its own table 

• We need 8 tables 
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• Table 6.3 shows the permutation for S-box 1.  

• For the rest of the boxes see the textbook.   

• The row number and column no, output are given as decimal to 

save space 

• These need to be changed to binary 

6.2.2  Continue 

Table 6.3  S-box 1 
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Example 6.3 

6.2.2   Continued 

The input to S-box 1 is 100011. What is the output? 

• If we write the first and the sixth bits together, we get 11 in 

binary, which is 3 in decimal.  

• The remaining bits are 0001 in binary, which is 1 in decimal.  

• We look for the value in row 3, column 1, in Table (S-box 1).  

• The result is 12 in decimal, which in binary is 1100. So the 

input 100011 yields the output 1100. 

Solution 
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Example 6.4 

6.2.2   Continued 

The input to S-box 8 is 000000. What is the output? 

If we write the first and the sixth bits together, we get 00 in 

binary, which is 0 in decimal. The remaining bits are 0000 in 

binary, which is 0 in decimal. We look for the value in row 0, 

column 0, in Table 6.10 (S-box 8). The result is 13 in decimal, 

which is 1101 in binary. So the input 000000 yields the output 

1101. 

Solution 
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Straight Permutation 

 

6.2.2  Continue 

Table 6.11  Straight permutation table 
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Straight Permutation 

 

6.2.2  Continue 

Table 6.11  Straight permutation table 

• Last operation in DES function 

• Permutation with 32 bit input and 32 bit output 
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Using mixers and swappers, we can create the cipher and 

reverse cipher, each having 16 rounds.  

6.2.3  Cipher and Reverse Cipher 

First Approach 

To achieve this goal, one approach is to make the last 

round (round 16) different from the others; it has only a 

mixer and no swapper.  

In the first approach, there is no swapper in 

the last round. 

Note 
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6.2.3  Continued 

Figure 6.9  DES cipher and reverse cipher for the first approach 
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6.2.3  Continued 

Figure 6.9  DES cipher and reverse cipher for the first approach 

Round Keys(K1 to K16) 

should be applied in the 

reverse order 

in Decryption 
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6.2.3  Continued 

Algorithm 6.1  Pseudocode for DES cipher 
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6.2.3  Continued 

Algorithm 6.1  Pseudocode for DES cipher (Continued) 

• Copy leftblock in T 
• Copy rightblock in 

leftblock 
• Copy T in rightblock 

• Copy rightblock in T1 
• Apply fn to T1,RoundKey, Store Output in T2  
• Exor of leftblock and T2,O/P=T3 
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6.2.3  Continued 

Algorithm 6.1  Pseudocode for DES cipher (Continued) 
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6.2.3  Continued 

Algorithm 6.1  Pseudocode for DES cipher (Continued) 
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Alternative Approach 

6.2.3  Continued 

We can make all 16 rounds the same by including one 

swapper to the 16th round and add an extra swapper after 

that (two swappers cancel the effect of each other).  

Key Generation 

The round-key generator creates sixteen 48-bit keys out 

of a 56-bit cipher key.  
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6.2.3  Continued 

Figure 6.10 
Key generation 
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6.2.3  Continued 

Key Generation 

Cipher key is normally given 

as a  64bit key in which 8 

extra bits are parity bits, 

which are dropped of before 

the actual key generation 

process. 
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6.2.3  Continued 

Parity Drop 

• Drops the parity bits 

 

• Bits 8,16,24,32,……,64 

from the 64 bit key 

 

• Permutes the remaining 

bits according to table 

 

• The remaining 56 bit 

value is the actual cipher 

key which is used to 

generate round  keys. 



6.131 

6.2.3  Continued 

Shift Left 

• After permutation , Key is divided into two 28 

bit parts 

• Each part is shifted left one or two bits 

 

• In round 1,2,9 and 16 shifting is One bit 

• In Other rounds, its Two bits 

• Two parts are then combined to form a 56 bit 

part 

 

• No of bit shifts is shown in table below: 
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6.2.3  Continued 

Table 6.14  Key-compression table 

• Changes 58 bits to 48 bits which are  used as a key for a 

round 

Compression P Box 
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6.2.3  Continued 

Algorithm  6.2  Algorithm for round-key generation  



6.134 

6.2.3  Continued 

Algorithm  6.2  Algorithm for round-key generation (Continue)  
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6-4   Multiple DES 

The major criticism of DES regards its key length. 

Fortunately DES is not a group. This means that we can 

use double or triple DES to increase the key size. 
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6.4.2  Triple DES 

Figure 6.16  Triple DES with two keys 
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6.4.2  Continuous 

Triple DES with Three Keys 

The possibility of known-plaintext attacks on triple DES 

with two keys has enticed some applications to use triple 

DES with three keys. Triple DES with three keys is used 

by many applications such as PGP  


