Chapter 4
Message Authentication
and Digital Signatures

- By
Jyoti Tryambake

Message Authentication

* A message, file, document, or other collection of data is said to

be authentic when it is genuine and came from its alleged source.

* Message authentication is a procedure that allows
communicating parties to verify that received message is

authentic.

 The important aspects are
* To verify that the contents of the message have not been altered
* The source is authentic.

 To verify a message’s timeliness and sequence relative to other

messages flowing between two parties.

Message Authentication
Technigues

* Encryption
* MAC — Message Authentication Code - fixed length code

* Hash Function — H(M) — fixed length code

Message Authentication lechniqgues
(cont.)

* Authentication using Conventional Encryption

Symmetric Encryption -
* Assume only sender and receiver share a key
* Single key for both encryption and decryption

* the sender encrypts plaintext using the receiver’s secret key, which

can be later used by the receiver to decrypt the ciphertext.

secret key shared by

sender a;;l\ recipient - - Source A - Dcstination B—»
M :
P ~ transmitted ciphertext A == E > D M
= 8 | B =
plaintext o cryption algorithm e K A :
input) N

(a) Symmetric encryption: confidentiality and authentication

Message Authentication lechniqgues
(cont.)

* Authentication using Conventional Encryption

Asymmetric Encryption

* Public and private keys

Message Authentication Techniques (cont.)

* Authentication using Conventional Encryption

Asymmetric

i. (A-sender) Message -> E (Public key of B)-> Cipher-> D(Private key of B) ->
(B - receiver) Message —
Authentication - X, Confidentiality -

ii. (A-sender) Message -> E (Private key of A)-> Cipher-> D(Public key of A) ->
(B - receiver) Message
Authentication - , Confidentiality - X

iii. (A-sender) Message -> E (Private key of A)-> Cipher1-> E(Public key of B) -
> Cipher2-> D(Private key of B)-> Decipher 1 -> D(Public key of A)-> (B -

receiver) Message

Authentication - [, Confidentiality -

Message Authentication Techniques
(cont.)

* Authentication without Message Encryption
* An authentication tag is generated and appended to each message

* The algorithm uses it to verify whether or not the ciphertext and/or associated data

have been modified.

* If either the ciphertext or associated data has been modified, then the procedure
that re-computes the validation tag on the receiving end will end up generating a
different tag. The algorithm will check the re-computed tag against the tag that was
bundled with the ciphertext and associated data (which collectively can be referred

to as a "cryptogram").

* If the tags don't match, that means some part of the ciphertext and/or associated

Alice Messenger Bob

‘ ‘ how are you? [£17 do you even lift? =1

—_—

data have been modified.

A

Message Authentication Techniques (cont.)

Message Authentication Code(MAC)

« MAC algorithm is a symmetric key cryptographic technique to provide message

authentication.

» For establishing MAC process, the sender and receiver share a Symmetric key K,

« Essentially, a MAC is an encrypted checksum generated on the underlying

message that is sent along with a message to ensure message authentication.

Source A > <«——— Destination B —

K y K Compare
/ }
B C(K, M)

Y

I > M @
f

(a) Message authentication 8

Message Authentication Code(MAC) Process:

The sender uses MAC algorithm, inputs the message and the secret key K and produces a
MAC value.

Similar to hash, MAC function also compresses an arbitrary long input into a fixed length
output.

The sender forwards the message along with the MAC.

On receipt of the message and the MAC, the receiver feeds the received message and the
shared secret key K into the MAC algorithm and re-computes the MAC value.

The receiver now checks equality of freshly computed MAC with the MAC received from the
sender. If they match, then the receiver accepts the message and assures himself that the
message has been sent by the intended sender.

If the computed MAC does not match the MAC sent by the sender, the receiver cannot
determine whether it is the message that has been altered or it is the origin that has been
falsified.

As a bottom-line, a receiver safely assumes that the message is not the genuine.

No confidentiality but assures message origin authentication.

MAC with Confidentiality and
Authentication

* /I? >@ > _—?—‘ M ? l
K, f PR C

ompare

;’F‘Q.\; Kl
»é K E(Ky [MICK, M) K ¢ t
/
C

C(K,, M)

(b) Message authentication and confidentiality; authentication tied to plaintext

E(Ky, M)
\
» M
? *
,4_ Compare k>
K, f
— C(K,, E(K;, M))

(c) Message authentication and confidentiality; authentication tied to ciphertext

10

Hash Function

« A hash function is a mathematical function that converts a

numerical input value into another compressed numerical value.

* The input to the hash function is of arbitrary length but output is

always of fixed length.

» Values returned by a hash function are called message digest or

simply hash values

I Message M (arbitrary length)

Hash Value h
(fixed length)

11

Hash Function

 When hash function provides security , is called as cryptographic
hash functions.

» Hash function protects integrity of the message.

« If the encryption process is applied on message with hash

function, it provides authentication and confidentiality.

12

« Example

hello

Message

cello

Message

Hash Function

Hashing Algorithm

8+5+12+12+15

Hashing Algorithm
3+5+12+12+15

v

v

52

Digest

47

Digest

13

Features of Hash Functions

Fixed Length Output (Hash Value)

Hash function coverts data of arbitrary length to a fixed length. This

process is often referred to as hashing the data.

In general, the hash is much smaller than the input data, hence

hash functions are sometimes called compression functions.

Since a hash is a smaller representation of a larger data, it is also

referred to as a digest.

Hash function with n bit output is referred to as an n-bit hash

function.

Popular hash functions generate values between 160 and 512 bits.

Features of Hash Functions

Efficiency of Operation

 Generally for any hash function h with input x,

computation of h(x) is a fast operation.

 Computationally hash functions are much faster than a

symmetric encryption.

Hash Function Properties

It is mathematically impossible to extract the original

message from the digest.

* Hashing is sometimes referred to as one-way encryption:
the message can be encrypted but is impossible to decrypt.
This is accomplished using one-way functions within the

hashing algorithm.

* It is impossible to derive ‘hello” knowing only a resulting
digest of '52°. Mostly because there could be thousands of
messages that result in the identical digest.

hello Hashing Algorithm - 52
Message 8+5+12+12+ 15 Digest 16

Hash Function Properties (cont.)

A slight change to the original message causes a drastic change in the

resulting digest.

* Any minor modification — even as small as changing a single character — to the
original Message should greatly alter the computed digest. This is sometimes

referred to as the Avalanche effect.

* If for two different messages, message digest in case is similar then this term is

known as Collision.

Hash
__’ function [—~[52ED879E
-_’ uncti ~l 46042541
function

17

Hash Function Properties (cont.)

The result of the hashing algorithm is always the same

length.

* |t is vital for the resulting Digest to not provide any hints or
clues about the original Message — including its length. A
digest should not grow in size as the length of the Message

increases.

IFSIN—| runction | [DFCD34sa

rash | — R

18

Hash Function Properties (cont.)

It is infeasible to construct a message which generates a

given digest.

* As per example below, if given the digest of 52, it would not
be overly difficult to generate a list of words that might have

been the original message.

hello Hashing Algorithm 52
Message 8+5+12+12+15 Digest

19

Cryptographic Hash Function

* Hash functions used for Security applications known as

Cryptographic Hash Functions.
* Two important properties:

* |t is computationally infeasible to find either

* A data object that maps to a pre-specified hash result (the

one-way property)

« Two data objects that map to the same hash result (the

collision-free property)

Cryptographic Hash Function

Requirements and Security
Pre-Image Resistance

« Computationally hard to reverse a hash function.

 In other words, if a hash function h produced a hash value z,
then it should be a difficult process to find any input value x

that hashes to z.

« This property protects against an attacker who only has a

hash value and is trying to find the input.

— o —

input hash function digest

21

Cryptographic Hash Function

Requirements and Security

Pre-Image Resistance

* This measures how difficult to devise a message which hashes to the
known digest

* Roughly speaking, the hash function must be one-way.

Preimage Attack

Given: y = h(M) Find: M’ such that y = h(M’)
M: Message i
Hash: Hash function ., Oiven:y
h(M): Digest Find: any M’ such that
y=h(M")

M

» To Bob

Given only a message digest, can’t find any message
(or preimage) that generates that digest.

Alice

Cryptographic Hash Function
Requirements and Security

Second Pre-Image Resistance

The property says the following: if | give you an input and the digest it hashes to, you

should be unable to find a different input that hashes to the same digest.

Given message m1, it is difficult to produce another message m2 such that , Hm1) =

H(m?2).

input hash functlon\‘

/
. D — digest hello Hashing Algorithm 52

i Message 8+5+12+12+15 Digest
23

Cryptographic Hash Function
Requirements and Security

Second Pre-Image Resistance

* Given an input and its hash, it should be hard to find a

different input with the same hash.

* In other words, if a hash function h for an input x produces
hash value h(x), then it should be difficult to find any other
iInput value y such that h(y) = h(x).

« This property of hash function protects against an attacker
who has an input value and its hash, and wants to substitute
different value as legitimate value in place of original input

value.

Cryptographic Hash Function
Requirements and Security

Second Pre-Image Resistance

H(abc) =

44b6f8eda842aabdc9e669d919852d3bcc97f9ea

44h6f8eda842aabdc9e669d919852d3bcc97f9%ea

25

Cryptographic Hash Function

Requirements and Security
Second Pre-Image Resistance

* This measures how difficult to devise a message which hashes to the
known digest and its message

Second Preimage Attack
Given: M and h(M) Find: M’ # M such that h(M) = h(M’)

CGiven: M and h(M)
Find: M’ such that M # M, but h(M) = h(M")

M: Message

Hash: Hash function ' TEh ' ‘T
h(M): Digest : i @ - ‘ "
= Eve ' - ’ '

; h(M)=h(M") . -

» lo Bob

i

i

h(M)

* Given one message, can’t find another message that has the same message digest. An attack that
finds a second message with the same message digest is a second pre-image attack.

It would be easy to forge new digital signatures from old signatures if the hash function used
weren’t second preimage resistant

26

Cryptographic Hash Function
Requirements and Security

Collision Resistance

* |t guarantees that no one can produce two different inputs

that hash to the same output.

 Difficult to find any two different messages , m1 and m2 that

have same hash value; Him1) = H(m2)

« o
&« 3 -

input

hash function

Cryptographic Hash Function
Requirements and Security

Collision Resistance

* It is hard to find two inputs that hash to the same output; that
IS, two Iinputs a and b where a # b but H(a) = H(b).

« This property makes it very difficult for an attacker to find two
iInput values with the same hash.

* Also, if a hash function is collision-resistant then it is second

pre-image resistant.

Cryptographic Hash Function
Requirements and Security

Collision Resistance

Collision Attack
Given: none Find: M’ # M such that h(M) = h(M")

M: Message
Hash: Hash function [Find: M and M’ such that M # M’, but h(M) = h(M")]
h(M): Digest

Eve

Can’t find any two different messages with the same message digest

29

Security Requirements of
Cryptographic Hash Functions

Reguirement Description
Vaniable input size H can be applied to a block of data of any size,
Fixed output size H produces a fixed-length output.

Efficiency

Hix) is relatively casy to compute for any given x,
making both hardware and software implementa-

tions peactical

Preimage resistant (one-way property)

For any given hash value A, it is computationally
infeasible to find y such that H(y) = A.

Second preimage resistant (weak collision
resistant)

For any given block x, it is computationally
infeasible to find y # x with H(y) = H(x).

Collisi . (lis tant)

It is computationally infeasible to find any pair
(x, y) such that H(x) = H(y).

Pseudorandomness

Output of H meets standard tests for
pscudorandomness.

30

Simple Hash Function

* Here, there are two simple hash function, all hash functions are operating using same principle.
I. The message file is like a simple input it open a sequence on n-bit blocks.
2. When input 1s processed only one block at the given time in iterative fashion to generate
an n-bit hash function.

* The simple hash function is the bit-by-bit XORing done of every block.

_ . bit | bit 2 v bit n
* This can be shows the following ways: block | b by b,
C=B.PB:D: PB. block 2 by, by, b
where, C,=C, 1si" bit if hash code, 1 <=1 <=n ' ' ‘ '
m = m 1s the number of block n the mput ' ' ' '
B; = i bit in j block block m b, b, b
@ = XORing operation hash code | [¢

31

Hash with Authentication and
Confidentiality

Method 1 - Message and hash code encrypted

Key
Sender

Message -> Hash fun -> append(msg, ‘h’) -> Encrypt (msg/plaintext)
-> (Cipher, ‘h’)

Receiver

(Cipher, ‘h’) -> Decrypt -> (msg,’h() ->

Key Hash function \

If matches then,

‘W Compare , _
received message is

correct

32

ash with Authentication and
Confidentiality

Standard diagram — Message and hash code encrypted

& Source A

—_—

\f

[S—

>

[

| = E ——p

BK, (M| HOD)

<4— Destination B ———»

> D M

!

A

»i1) l

HM

o e ompare

33

Hash with Authentication and No
Confidentiality
Method 2 — only hash code encrypted
Symmetric Encryption

Sender
Message -> Hash fun -> ‘h’ -> Encrypt (hash code) -> append(msg,
E("h’)) Key
Receiver
Decrypt(‘h’) and msg passed to hash function ->

Key

l l If matches then,

" ‘W received message is

correct
Compare

34

ash with Authentication and No
Confidentiality

Asymmetric Cryptography

Private

Sender Key of

A
Message -> Hash fun -> ‘h’ -> Encrypt (hash code) -> append(msg,
E(*h’))
Receiver
Public
Key of A

Decrypt(‘h’) and msg passed to hash function -> if matches then

l l received message is

correct
’h’ Ihl
Compare

35

ash with Authentication and No
Confidentiality

Asymmetric Cryptography

Private

Sender Key of

A
Message -> Hash fun -> ‘h’ -> Encrypt (hash code) -> append(msg,
E(*h’))
Receiver
Public
Key of A

Decrypt(‘h’) and msg passed to hash function -> if matches then

l l received message is

correct
’h’ Ihl
Compare

36

ash with Aut

Confi

nentication and No

dentiality

Standard diagram - Only Hash code is encrypted

‘m

ol M

.."; _f\
S

1 L k
(H) (E }—

<

—l
_J

4—:— 1—

..
-

:' - ’
E(K. HH' M)

37

ash with Authentication and No
Confidentiality

Method 3 - With secret code
Sender

Message -> apply secret code -> pass to hash fun-> ‘h’ ->

append(msg, ‘h’)

Receiver
Decrypt (msg, ‘h’)-> apply secret code to msg and send to hash fun

If matches then,
received message is
correct 38

ash with Aut

Confi

nentication and No

dentiality

With secret code/value — standard diagram

‘ ’ ‘.n'lllp.if

WM S

39

ash with Authentication and
Confidentiality

With secret code — message encrypted
Sender

Message -> apply secret code -> pass to hash fun-> ‘h’ ->

append(msg, ‘h’) -> Encrypt -> (cipher, E(‘h’))

Receiver

Decrypt (cipher, E(‘h’))-> (msg,’h’) -> apply secret code to msg and
send to hash fun l l

If matches then,
received message is
correct

40

ash with Authentication and
Confidentiality

With secret code (message + hash encrypted)- standard
diagram

Hash Function Structure

Input Message
b by — [prmmmmmmmmmmmmmmmmeed b,
g S S
v |25l n |2E]| B b | 2E| b
——p BB f— BT —Pp - ———p 2T |—>
=P e’ =P o] oo
g 2 g = g 2D
(=T - (=] o 3
QO O O

\
\

/' V= Initial value
h;= Compression function output

b;= ith input block

n= Number of input blocks

\

42

Hash Algorithm

* A hash algorithm is a one way function that converts a data

string into a numeric string output of fixed length. The output
string is generally much smaller than the original data.
Therefore it is also called message digest or message
compression algorithm,

Hash algorithms are designed to be collision-resistant, meaning
that there is a very low probability that the same string would
be created for different data.

Two of the most common hash algorithms are the MD5
(Message-Digest algorithm 5) and the SHA-1 (Secure Hash
Algorithm). MD5 Message Digest checksums are commonly
used to validate data integrity when digital files are transferred
or stored.

43

One way Hash Function

A one way hash function H(M) operates on an arbitrary
length pre-image message M, and return a fixed length hash
value h.

h=H(M) ,where h is the length of m

Documents
.2 10-MB

Compress
Function
Hash Value
e.g. 1 60-Bie

44

One way Hash Function

" Many functions can take an arbitrary-length input and return
an output of fixed length, but one-way hash functions have
additional characteristics that make them one-way:

1. Itis relatively easy to compute, but significantly harder to
reverse. That is, given M it is easy to compute H[M], but given
H[M] itis hard to compute x.

2. Moreover it is also very hard to find another message M’ such
that H{M")=H[M)]. In other words it is collision resistant.

" In this context, "hard” is defined as something like: It would
take millions of years to compute M from H{M), even if all the

computers in the world were assigned to the problem,

®" When different input message results in the same
hash value, then it is called hash collision.

now is the time
for all good men
come to the

| 3id of their country \
different inputs " ? [f62eb0a3ed778cB839fa8e 3e6051a857

“~_[Fourscoraand the same hash?

even years ago
our fathers brought
forth, upon this
continent, a new
nation, conceived
inliberty, and
dedicated to the
proposition that
“all men are
created equal® 4 5

One way Hash Function

* When applying digital signature to a document, we no longer
need to encrypt the entire document with a sender’s private key,
it can be extremely slow. It is sufficient to encrypt the document’s
hash value instead. Therefor hash algorithm is used to digest the
message before applying DSA.

Hashing is to digest the original message while signing the

document digitally.
Private Key
Hash of :l)J/ocument

e ey erdad6b7w05348 |
Pl L Algorithm 94789

I agree to pay Hash

Document to be J
Signed -
Digital Signature =——> 436?48"?31;2';"'1"690

HMAC

46

One way Hash Function
Applications

Digital Signatures

Message Integrity

Password verification

Generation of pseudorandom bits

Message Authentication Code (MAC)

Hash Function Family

> MD (Message Digest)
Designed by Ron Rivest
Family: MD2, MD4, MD5
> SHA (Secure Hash Algorithm)
Designed by NIST
Family: SHA-O, SHA-1, and SHA-2
SHA-2: SHA-224, SHA-256, SHA-384, SHA-512
SHA-3: New standard in competition
> RIPEMD (Race Integrity Primitive Evaluation Message
Digest)
Developed by Katholieke University Leuven Team
Family : RIPEMD-128, RIPEMD-160, RIPEMD-256, RIPEMD-320,

48

MD4 family of Hash Functions

Algorithm Output Input No. of Collisions
[bit] [bit] rounds found

MDS5 128 512 64 yes
SHA-1 160 512 80 not yet
SHA-224 224 512 64 no
SHA-256 256 512 64 no
SHA-384 384 1024 80 no
SHA-512 512 1024 80 no

49

SHA Versions

SHA-1 | SHA-224 | SHA-256 | SHA-384 SHA-512
Digest size 160 224 256 384 512
Message size < 2% < 2% < 204 < 2148 < 2148
Block size 512 1L ald 1024 1024
\Word size 32 32 32 64 64
of steps 80 64 64 80 80

50

The need of new Hash standard

~ MD5 and SHA-O already broken

~ SHA-1 not yet fully “broken”
® but similar to broken MD5 & SHA-O
* so considered insecure and be fade out

~ SHA-2 (esp. SHA-512) seems secure

' shares same structure and mathematical operations as
predecessors so have concern
~ NIST announced in 2007 a competition for the SHA-3 next
gen hash function

SHA-3 Requirements

> replace SHA-2 with SHA-3 in any use
> so use same hash sizes

> preserve the nature of SHA-2
~ so must process small blocks (512 / 1024 bits)

51

SHA — Secure Hash Algorithm

* Developed by the National Institute of Standards and Technology
(NIST) and published as a federal information processing standard
(FIPS 180) in 1993; a revised version was issued as FIPS 180-1 in
1995 and is generally referred to as SHA-1.

* SHA-1 produces a hash value of 160 bits.

 The SHA-1 is called secure because it is computationally infeasible
to find a message which corresponds to a given message digest,
or to find two different messages which produce the same

message digest.

SHA — Secure Hash Algorithm

* In 2002, NIST produced a revision of the standard, FIPS 180-2,
that defined three new versions of SHA, with hash value lengths
of 256, 384, and 512 bits, known as SHA-256, SHA-384, and SHA-
512.

* Collectively, these hash algorithms are known as SHA-2. These
new versions have the same underlying structure and use the
same types of modular arithmetic and logical binary operations as

SHA-1.

* In 2005, NIST announced the intention to phase out approval of

SHA-1 and move to a reliance on the other SHA versions by 2010.

SHA - 512

* The algorithm takes as input a message with a maximum

length of less than 2128 bits and produces as output a 512-

bit message digest. The input is processed in 1024-bit

blocks.

Ih’: .:ll.
2
Hy

4

—

N = 1024 bits

L bits

- =+ | 28 bits -»=

Message

100..0

L

=

be—— 024 bits ———d+—— 10124 bits ——

M,

ME LN N

A 1024

DO

!

A 1024

+ = word-by-word addition mod 2%

be—no [024 bits —

M N

e 1024
A

L}

+:

hash
code

54

SHA - 512

Steps

Step 1: Append padding bits.

The message is padded so that its length is congruent to 896
modulo 1024 [length K =896 (mod 1024)].

Padding is always added, even if the message is already of the

desired length.
Thus, the number of padding bits is in the range of 1 to 1024.

The padding consists of a single 1-bit followed by the necessary

number of 0-bits

SHA - 512

Input Message

4

56

SHA - 512

Step 2: Append length.

* A block of 128 bits is appended to the message. This block is
treated as an unsigned 128-bit integer (most significant byte
first) and contains the length of the original message (before
the padding).

* The outcome of the first two steps yields a message that is an
integer multiple of 1024 bits in length. In Figure, the expanded
message is represented as the sequence of 1024-bit blocks
M1, M2, ..., MN, so that the total length of the expanded
message is N * 1024 bits.

57

Padding Example

Consider Input Message — ‘abc’
Represented in binary

01100001 01100010 01100011
Message length = 24 bits
Needed,

Message length = 896 mod 1024
Message length mod 1024 = 896

24 + 872 mod 1024 = 896
Pad 872 bits to message such that
Message length mod 1024 = 896

872 bits to be padded — 1 bit followed by 871 zeros

58

Padding Example

Consider Input Message — ‘abc’
Represented in binary

01100001 01100010 01100011 —
Padding(10000..........)

896 bits representation is shown below;

6162638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 .

59

Padding Example

Pad the original length of the message for 128 bits at the end
Message length = 24 bits

Convert this in hexadecimal = 18

So, represent 18 in 128 bits hexadecimal value —
0000000000000000 0000000000000018 (total 64 bits)

6162638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 .

6162638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000018

Message size = 896+128 =1024 bits

60

Exercise

 How many bits will you pad for input message
length of 2348 bits?

Exercise

* How many bits will you pad for input message length of 2348 bits?

2348 mod 1024 = 300 3

Need 596 bits more —
Pad 596 bits where in 1 followed by 595 zeros

Message_length (with padding) is = 23484596 = 2944 bits

Sol - Message length = 896 mod 1024

Add actual message length 2348 as 128 bits at the end

Total bits = 2944+128 = 3072

Which takes 3 M blocks of size 1024 bits each

62

Message Digest Creati

Augmented message: multiple of 1024-bit blocks

on

Block | Block 2

Block N

1024 bits 1024 bits b

512 bits

Compression
function

Compression
function

512 bits 512 buts

Inmitial
value

| |

=1 ol 1

Compression

function

Mwsagc
digest

63

Message Digest Creation

Figure 12.6 Message digest creation SHA-512

B Augmented message: multiple of 1024-bit blocks

Y

Block | Block 2 Block N
[1024 bits | 1024 bits 1024 bits

'

[512 hm 512 bits|

Initial Mc&sagc
value digest

The digest is initialized to a predetermined value of 512 bits. The algorithm mixes
this initial value with the first block of the message to create the first intermediate mes-
sage digest of 512 bits. This digest is then mixed with the second block to create the
second intermediate digest. Finally, the (N — 1)th digest is mixed with the Nth block to
create the Nth digest. When the last block is processed, the resulting digest is the mes-
sage digest for the entire message.

64

Message Digest Creation

v
1024 bit: 1024 bits
| |

1024 bits

!

V=H, H H

(512 Bits) (512 ‘Bits) (512 :Bds)

abcdefgh abcdefgh abcdefgh abcdefgh
2 Message Digest

65

SHA - 512

Steps

Step 3: Initialize hash buffer.

A 512-bit buffer is used to hold intermediate and final results of the

hash function.

* The buffer can be represented as eight 64-bit registers (a, b, c, d, e, f,
g, h).

* These registers are initialized to the following 64-bit integers

(hexadecimal values):

a = 6A09E667F3BCCI08 b = BB67AE8584CAA73B
c =3C6EF372FE94F82B d = A54FF53A5F1D36F1
e =510E527FADE682D1 f =9B05688C2B3E6C1F

g = 1F83D9ABFB41BD6B h =5BEOCD19137E2179

SHA -512
Steps

Step 3: Initialize hash buffer.

h =5BEOCD19137E2179

The values are calculated from first eight prime numbers (2,3,5,7,11,13,17,19)

— T — ' T———— ™ --l o A B L " NTa WARNA R A ' |v AN vlo LA R R J ,’I Sraanwrs LR L

the square root (l‘))” 4 3588%94%4 Converting the number (o binary mlh onl\
64 bits in the fraction part, we get

(100.0101 1011 1110..,.1001), . — (4.5BEOCDISI37E2179),4

SHA-512 keeps the fraction part, (SBEOCDI9137E2179),4, as an unsigned integer,

- —— - . -

67

SHA - 512

Steps
Step 4: Process message in 1024-bit blocks.

The heart of the algorithm is a module that consists of 80 rounds; this module

is labeled F. Each message block generates 80 words of 64 bits each

64 bits

64 bits

64 bits

64 bits

64 bits

64 bits

(512 Bits) (512 Bits) (512 Bits)

abcdefgh abcdefgh ab cdefgh abcdefgh 68

Message Digest

Word Expansion — derive 80 words from 1024
bits block
- 1024 bits - We W, :3'0 Wia

| M,

G4 buts

W, = o' (W, 2)+W, 3+05 (W, _15)+W,_ 16

where
oy (x) = ROTRY(x) @ ROTRY x) @ SHR(x)
oi'(x) = ROTR"(x) ® ROTR"(x) @ SHR"x)
ROTR"(x) circular right shift (rotation) of the 64-bit argument x by 2 bits
SHR"(x) = left shift of the 64-bit argument x by 2 bits with padding by
zeros on the right

+ = addition modulo 2*

SHA - 512

Steps

Step 4:

Each round takes as input the 512-bit buffer value abcdefgh and updates the contents of the buffer.

At input to the first round, the buffer has the value of the intermediate hash value, Hi-1.
* Each round t makes use of a 64-bit value Wt, derived from the current 1024-bit block being processed (Mi).

* Each round also makes use of an additive constant Kt, where 0 <=t <= 79 indicates one of the 80 rounds.
These words represent the first 64 bits of the fractional parts of the cube roots of the first 80 prime

numbers.

* The constants provide a “randomized” set of 64-bit patterns, which should eliminate any regularities in the

input data.

* The operations performed during a round consist of circular shifts, and primitive Boolean functions based

on AND, OR, NQOT, and XOR.
* The output of the eightieth round is added to the input to the first round (Hi-1) to produce Hi.

* The addition is done independently for each of the eight words in the buffer, with each of the corresponding

words in Hi-1, using addition modulo 254

Functioning of Module F

Mi iy

m'leubrn'f_rg

i— Round O - l
C

#ll#llll
" !‘4 AR

—h[Round

lllll bt

s

V=H

I I *'l d B B N (312 83

e abcdefgh abcdefgh abcdefgh abcdefgh
Message Digest

)

I
Figore 210 SHA-512 Processang of a Single 1024-Bat Block

71

What happens in a Round?

e Round Function

T2 T1
A \ [: |
a b c
\ ¥
-
R e

- 512 bits >

What happens in a Round? (cont.)

* Computing T1 -

Ty =h + Che,f,g) + () €) + W, + K,

 Ch — conditional function

Ch(e. f. g) = (¢ AND f) @ (NOT e AND g)

($7%) = ROTR(e) ROTR™(e) ® ROTR" (¢}

ROTR"(x) = circular night shift (rotation) of the 64-bit argument x by n bits

73

* Computing T1 -

e Kt — 80 constants

I =h + Ch(e,f,g) +

512

, e) + W,

Table 12.3 Eighty constants used for eighty rounds in SHA-512

$28A2F98D728AE22
3956C258P3488538
DBOTAA9BA3030242
72BESDT4FP278896F
E49B69C19EF14AD2
2DE92C6P592B0275
98JE5152EE66DFAS
CAEO0OBF33DASSFC2
27B70AB546D22FFC
650A73548BAF63DE
A2ZBFEBR14CF10364
D192E819D6EFS218
19A4C116B8D2D0CSE
391COCB3CSCISAE]
748F82EESDEFB2FC
90BEFFFA23631E28
| CA273BCERA26619C
DEFOSTAATZ1T6FBA
28DR77P523047D84
4CCSD4BECB3E4286

7137449123EF65CD
S9F111F1B605D019
1283580145706FBE
S0DEBIFE3B169681
EFBE4786384F25K3
SAT4AB4ANGEALE4RD
AB31C66D2DB4A3210
DSATS147930AAT 25
2E1B21385C26C926
T66A0ABBICT7 7TB2AS8
AB1A664BBC423001
D69906245565A910
1E376C085141A853
4EDSAAGAEI4IBACE
TBAS636F43172F60
A4506CEBDES2BDES
D186B8C721C0OC207
OAG637DCSA2CBSBAG
J2CAARTB4A0CT2493
4597P299CFCES7E2

B5COFBCFRECADIB2F
923F82A4AF194F9B
243185BE4REAB2EC
9BDCOSAT25C71235
OFC19DC68BECDSAS
5CBOAIDCBD4 1FBD4
BO0327CB98FB213F
06CAG3I51E003826F
4D2CEDFCSAC42AED
81C2C92E47EDAEES
C24B8B70DOF85791
FAOEISBSS771202A
2748774CDFSEERSY
SBYCCA4F717638373
84C87814A1P0ABT2
BEFOAIFTB2C67915
EADA7DD6CDEOEBIE
113F98048BEFS0DAE
3CYRBROALSCIBERC
SFCB6PABIADSFAEC

E9B5DBAS8189DBBC
ABICSEDSDAGDE11E
S50CTDC3IDSFPIB4AE2
C19BF174CF652694
240CAICCTTACHCES
76F988DAE31153B5
BF597FCTBEEFORES
142929670A0ESET0
53380D139D9583DF
92722C8514823538
C76C51A306548E30

106AA070320BD188

3480BCBS5E19B48AS8
682E6FFID6B2BBA3
SCCT702081A6439EC
C67178F2E3725328

FSTDAFTFERGED1TE

18710835131C4718
431D67C45C100D4C

6C44198C4EA4TSBLY

What happens in a Round? (cont.

+ K,

74

What happens in a Round? (cont.)

* Computing T2 -

¢ A (512

- 0

u) + Maj(a. b, ¢)
Maj(a, b, ¢) (a AND b)) ® (a AND c)® (b AND ¢)

(S, °a) = ROTR*(a) @ ROTR*(a) @ ROTR™(a)

* Maj(a,b,c) — majority function

75

* Round
T2

-,
=

| _a bgc | 4 | e
S
>\i\\\\\
- 7 ;' rtla

What happens in a Round? (cont.)

y B &
™l o~
4
—
(]

= on
-
-
+
—

- —
wononon ooy M

Ly
-
o 0

-

.
=

76

SHA - 512

Step 5:

Output. After all ‘N’ 1024-bit blocks have been processed, the output from
the Nth stage is the 512-bit message digest.

Reference — Fourozan and Stalling

77

SHA -1

SHA1: Secure Hash Algorithm 1
Designed by the United States National Security Agency
Produces hash value known as Message Digest

Works for any input message that is less than 294 bits
produces160 bits length message digest
Infeasible to retain the original message from the message digest

Same message digest to be produced from both sender and
receiver

Purpose: Authentication , not Encryption

widely used in security applications and protocols, including TLS,
SSL, PGP, SSH, IPSec and S/IMIME

78

SHA-1 Steps

X (X1, X2,Xn)

[

Append padding bits
Append Length

Initialize hash bufffer
SHA processing
Output

Compression
Function

-

I
1
)
1
!
I
I
1
1
f
I
1
:
I 1
1
1
I
I
!
H
1
I
1
I
i
1
I
I
i
I
1
I
I
I

79

SHA-1 Steps

padding bits are added to the original message to make the original message equal to a value

Step 1: Append Padding bits

divisible by 512.

Example —

* The massage padding is applied to the last data block such that SHA-1 can process the data
of nx512 bits.

* The last two words (64 bits) of padded message are reserved of the original message length
(in bits).

* Input message — ‘abcde’ — 40 bits

01100001 0110001001100011 01100100 01100101.

» After ‘1” is appended, 407 ‘0’ are required to complete 448 bits. In Hex, this can be written
as:

61626364 65800000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000

SHA-1 Steps

Step 2: Append length

The rest two words are preserved for the original message

length.

As per example, length of msg = 40 = “00000000 00000028” (Hexadecimal Value).
As a result, the passed massage is

61626364 65800000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000028.

SHA-1 Steps

X (X1[X2, ...Xn) « This 512 bits input to the
compression function
: 160 bits
ANG The message divided into 16

words.
 Each word consists of 32 bits.
« 512/32 =16 words

Compression
Function

I
]
1
I
i
I
I
I
]
]
i
]
|
—
I
'
]
]
I
I
I
]
I
I
i
]
]
I
]
i
I
]
]
L

82

SHA-1 Steps

Step 3: Initialize the hash buffer

Initial values of Ho are predefined
and stored in registers ABCDE

H [Hexvalues |
Ho(A) 01234567
Ho(B) 89ABCDEF
Ho(C) FEDCBA9S
Ho(D) 76543210
Ho(E) C3D2E1FO

These initial values are used in
Round 0.

83

SHA-1 Steps

Step 4: SHA Processing

Mmessage (m)

Round Intialize ‘_
v ABCDadE
Message
Padding
—— K, v
(A ::‘ Round 0 - 19
£ I .
5 %] \ 4
= . Round 20 - 39
BB cm—
2 '
S Kx ! v
| ® | Round 40- 59 :
: —» ;
B[] elp—E—
2 ; Round60-79 | !
1—4-_", J E
Final Round ‘_
Addtion

Word assigning to rounds:

SHA1 has 80 rounds defined.

The Message Scheduler Algorithm
schedules each word to rounds as:

W,=> Round 0

W,-> Round 1

W,s=> Round 15

W,s=> Round 16

1Wt 5
W79 > Round 79 — calculated

Each round = 20 iterations. Total iterations = 80 2

SHA-1 Steps

Step 4: SHA Processing

wessage —— Word assigning to other rounds:
v ABCDandE
Message
Padding
N — : i o
v i | For others (i.e round 16- 79)
: ;;=[: Wy = ST (W, 1 XOR W, 1, XOR W, o XOR W,)
5 Ke | A4 : [t [t-16] [t-14] [t-8] [t-3]
g :l Round 20 - 39 ‘
é s _ipr— '40 = For example: when round is 16,
£ [— m" 5
¥ ‘ :
é 3 Round 60 - 79 * W“G] - S1(W[16-16] XOR W[16-14] XOR W[16-8] XOR W[16-3])
Final Round (gt * Here W,, W,, Wy and W, are XORed.
v

T | * The output is the new word for round 16.

85

SHA-1 Steps

Step 4: SHA Processing

—— Division of stages:
« fowd e |g— g
Message
Padding
- Stages |Round
% t=1 0 to19
E t=2 20 to 39
§ t=3 40 to 59
= t=4 60 to 79

Each stage has 20 rounds.

86

SHA-1 Steps

Step 4: SHA Processing

e e e Constant values:
Message
e E: ' : At each stage:
2 P T p—— Predefined value of k
§ e =al £ K,=0X5A827999
|] | t, K,= OX6ED9EBAL
I e | f K,=0X8F1BBCDC
— :
o o 5 K,=OXCA62C1D6
v

87

SHA-1 Steps

Step 4: SHA Processing

— —— Process in each round:
v ABCDadE (€]
Pacang
oY L o Each round takes 3 inputs:
~or —— + 32 bit word form 512 bit block
: — (i.,e.W,)
1Y — =t « The values from register
3 >y ABCDE
“aon €
« ConstantK,

88

SHA-1 Steps

Step 4: SHA Processing

F, at different stages:

o I —

F(B.C,D) = (B anp C) or ((NoT B)
AND D)

F(B.C,D) = BxorC xorD

W,

-,

oR(C anp D)

t,
L
ty F(B.C,D) = (B axp C) or (B Anp D)
t,

F(B.C,D) = BxorC xorD

89

SHA-1 Steps

Step 4: SHA Processing

i At each Round:

* Output of F, and E are added

» Value in register A is 5 bit circular-left

shifted.
— « This then added to previous sum.
e « W,is added
P |

« K, introduced

« B s circular-left shifted by 30 bits.

A B C | D I E — New values for next round

Source: hipsi/en. wikipediaorg'wik ¥SHA-1

“Hpenotes addition module 222

90

SHA-1 Steps

Step 4: SHA Processing

SHA-1 has perform four rounds.

Each round takes the current 512-bit block, the
register ABCDE and constant K(t) (where t=0
to 79) as input.

SHA consists of four rounds, each round
containing 20 iteration. So total iteration 1s 80.

The logical operation of a single SHA-1
iteration looks as shown in figure.

Mathematically, an iteration consists of the
following operation:

ABCDE =E + Process P+ S *(a) + W(t) + K(1)

0 | £ —

Process
p

]

w(t)

K(t)

s
o
g

SHA-1 Steps

Step 4: The Output

at ABCDE

v

H(X)
160 bits

After Final Round:

* The 160 bit output from the final
round is modulo added to the initial

predefined values of Ho at registers
ABCDE.

* Output obtained thus is a 160 bit
hash code.

92

Let’s recall MAC ..

Key, K

Becavar

Key, K

v

.

Message

MAC
Algorithm

Message

MAC

MAC
Algorithm

MAC |

» Equal?

93

Hash based Message
Authentication Code (HMAC)

* Hash-based message authentication code (HMAC) is a mechanism
for calculating a message authentication code involving a hash
function in combination with a secret key. This can be used to

verify the integrity and authenticity of a message.

* HMAC s are almost similar to digital signatures. They both enforce

integrity and authenticity. They both use cryptography keys. And

they both employ hash functions.

* The main difference is that digital signatures use asymmetric

keys, while HMACs use symmetric keys (no public key).

94

HMAC Authentication

J

N

%’
@ Message U Message & MAC U Message @

Sender

Client

Create MAC

Verifty MAC

Same key is used to
create and verify MAC

\ /7
S

Shared Secret Key

Vel

Recipient

Server

How does HMAC Work ?

A data integrity check on a file transfer.

e Let's say a client application downloads a file from a remote server. It's
assumed that the client and server have already agreed on a common

hash function, for example SHA2.

B———— N

i Cer
Server

Y Y
ZRvmCKHoede... _Muﬂlhaﬁhﬂi?ﬁ ZRvmCKHoeds...

96

How does HMAC Work ?

* Before the server sends out the file, it first obtains a hash of that file using the
SHA2 hash function. It then sends that hash (ex. a message digest) along with

the file itself.

* Upon receiving the two items (ex. the downloaded file and the hash), the client
obtains the SHA2 hash of the downloaded file and then compares it with the
downloaded hash.

* |f the two match, then that would mean the file was not tampered with.

E Download b EI

Server

Y b4
FRvmCKHoede... _Mmlhﬁms?ﬁ ZRvmCKHoeds... 97

How does HMAC Work ?

e If an attacker manages to intercept the downloaded file, alter the file's contents,

and then forward the altered file to the recipient, that malicious act won't go

unnoticed.

* That's because, once the client runs the tampered file through the agreed hash

algorithm, the resulting hash won't match the downloaded hash.

e This will let the receiver know the file was tampered with during transmission.

]

SHA2

1

Server

Download

g

Client

Y b4
FRvmCKHoede... _equalhaﬁhes?ﬁ ZRvmCKHoeds... 98

How does HMAC Work ?

Authenticity Check
* An HMAC employs both a hash function and a shared secret key.

* A shared secret key provides exchanging parties a way to establish the

authenticity of the message.

e That is, it provides the two parties a way of verifying whether both the
message and MAC (more specifically, an HMAC) they receive really came

from the party they're supposed to be transacting with.

99

How does HMAC Work ?

Suitable for File Transfers

Efficiency - hash functions can take a message of arbitrary
length and transform it into a fixed-length digest. That means,
even if you have relatively long messages, their corresponding

message digests can remain short, allowing you to maximize

bandwidth.

100

HMAC Structure

K 1pad

| _.._
b bils b bits
5,

v —bt f Hash
K f ﬂpad ' n hits
L J [H(S, Il M)
F b bils Pad io b bits
¥ ¥

]

Y
i bils

IV ——{ Hash

n hits
| HMAC(K, M)
Figure 21,4 HMAC Structure

101

HMAC Structure

K ipad Figure 21.4 illustrates the overall operation of HMAC. Define the following terms:
L J II' = cmbedded hash function (c.g., SILA)
M = message mput to HMAC (including the padding specified in the
bbits _ bhits b bits
e — embedded hash function)
LS [h [v | eee [N Y, = ithblockof M0 =i = (L — 1)
+ L. = number of blocks in M
IV —=2% Hash b = number of bits in a block
K opad i n = length of hash code produced by embedded hash function
[HS, M) K = secret key; if key length is greater than b, the key is input to the hash
L J function to produce an n-bit key: recommended length is = n
& Pad 1o b birs K* = K padded with zeros on the left so that the result is b bits in length
ipad = 00110110 (36 in hexadecimal) repeated b/8 times
‘ So | I opad = 01011100 (5C in hexadecimal) repeated b/8 times

Then HMAC can be expressed as follows:
HMAC(K, M) = H[(K™ @ opad) | H[K " @ ipad] || M]]

Y
m hits

IV ———— Hash

n bits
HMAC(K, M)
Figure 21,4 HMAC Structure

In words,
1. Append zeros to the left end of K to create a b-bit string K™ (e.g., if K is of
length 160 bits and b = 512, then K will be appended with 44 zero bytes 0x00).
XOR (bitwise exclusive-OR) K™ with ipad to produce the b-bit block S;.

Append M to 5,
Apply H to the stream generated in step 3.

XOR K™ with opad to produce the b-bit block S,,.

Append the hash result from step 4 to §,,.
. Apply H to the stream generated in step 6 and output the result.

R R

b |

Reference - Stallings 102

MAC and HMAC reference

e Stalling

HMAC Security

e Security depends on the cryptographic strength of

the underlying hash function

* It is much harder to launch successful collision

attacks on HMAC because of secret key

Message Digest (MD 5)

MD5 is the Message Digest algorithm 5, created by Ronald Rivest.
It is the most widely used of the MD family of hash algorithms.
MD5 creates a 128-bit hash value based on arbitrary input length.
It verifies Integrity and authenticity of message.
Initially designed for digital signatures.

MD5 hashing is no longer considered reliable for use because
security experts have demonstrated techniques capable of easily

producing MD5 collisions on commercial off-the-shelf computers.

MD 5 Concept

o mRes
B
EEER
e

How MD5 works?

Step 1: Padding bits

« Bits are appended to the original input to make it compatible with

the hash function.
« Total bits must always be 64 bits short of any multiple of 512.
« The first bit added is ‘1, and the rest are all zeroes.

Original Message + Padding Bits

|

Total length to be 64 bits less than multiple of 512

Step 1: Padding bits (cont.)

Original Message @ Padding (1-512 bits)

!

Original Message Padding

-« ~

The total length of this should be 64 bits less than a multiple of 512.

For example, it can be 448 bits (448 = 512 — 64) or 960 bits (960 =
[2x 512] - 64) or 1472 (1472 = [3 x 512] - 64), elc.

Note: Padding is always added, even if the origi nal message is
already a multiple of 512.

109

Step 2: Padding length

« Length of the original message is padded to the result from step 1.
« Length is expressed in the form of 64 bits.

« Resultant string will now be a multiple of 512.

« Used to increase complexity of the function.

Original Message Padding Bits + Length of Input

|

Final Data to be Hashed as a multiple of 512

Step 3: Divide the I/P in 512 - bit block and
Initialize Buffer

Data to be hashed (digested)

Y Y Y Y Y Y Y
Block 1 Block 2 Block 3 ‘Blockn

512 bits 512 bits 512 bits 512 bits

The entire message is broken down into blocks of 512 bits each.
4 buffers are used of 32 bits each.

They are 4 words named A, B, C and D.

The first iteration has fixed hexadecimal values.

A = 0123 45 67 B = 89 ab cd ef

111

Step 4: Process each block

Divide the current 512-bit block 1n 16 sub blocks.

Block 1 (512 bits)

. ' ' : i

Sub-block 1 | Sub-block 2 Sub-block 16

32 bits 32 bits 32 bits

Each block is broken down to 16 sub blocks of 32 bit each.

There are 4 rounds of operations, each of them utilizing all
16 sub blocks, the 4 buffers and other constants.

The constant value is an array of 64 elements, with 16
elements being used every round.

Sub blocks : M[0], M[1], M[15]

Constant array : T[1], T[2], T[64]

112

Step 4: Process each block (cont.)

k]

We can mathematically express a single MDS operation as follows:

a b c d
{' Step 1
Process P |<€—
Step 2
Add |«
Y
—>»{ Add Step 3
Y
»{ Add Step 4
Shift | Step5
l Step 6
1 Step 7
a b c d

a = b+((a + Process P (b,c,d)+M[1i]+t[k])<<<s)

113

Non-linear Process Function

« Different for each round.
« Used to increase randomness of the hash as an upgrade over
MD4.
Round 1: (b AND ¢) OR ((NOT b) AND (d))
Round 2: (b AND d) OR (c AND (NOT d))

Round 3: b XOR ¢ XOR d

Round 4: ¢ XOR (b OR (NOT d))

Compressed Function

CVy
/128

/32

Ay By Cy Dy
G, T[17..32], X[2i]
16 steps

Ay By Cy Dy
H, T[33..48], X[3i]
16 steps

Ay B C Dy

I, T[49...64], X] 4i]
16 steps

Ay . =

128
Note: addition (+) is mod 232

Vgt

Figure 9.2 MDS Processing of a Single 512-bit Block
(MDS Compression Function)

MD5 —new A,B,C,D

fedcba®8 | 76543210

L N |

01234567]soabodef

=y

Oto 15
Mi—’

-

[~ [8 [< | o |

MDS5 output = 128 bits

Reference MD5

* Research paper’s PDFs will be shared
* https://en.wikipedia.org/wiki/MD5
e https://datatracker.ietf.org/doc/html/rfc1321

117

https://datatracker.ietf.org/doc/html/rfc1321

Learn ...

e Difference between MD5 and SHA

* Advantages and Disadvantages of
* MD5
* SHA
* HMAC

MAC Implementation

To realize and construct MAC algorithms, two different

cryptographic primitives are used.

MACs can be implemented using cryptographic hash functions or

using symmetric block ciphers.
Cryptographic hash functions - HMAC

Symmetric block ciphers —
. DAA,
« CMAC
* (1-CBC— MAC (it used AES) and

e 2.variant of CBC-MAC is CMAC (AES + triple DES))

Reference — Authentication _paper.pdf and Stalling (for CMAC) 119

MAC based on Block Ciphers

e Data Authentication Algorithm(DAA)

* Cipher Based Message Authentication Code(CMAC)

Data Authentication Algorithm(DAA)

Data Authentication Algorithm (DAA) widely used MAC based on DES-
CBC
The message to be authenticated grouped into contiguous 64-bit
blocks:

D1, D2,..., DN.
The final block is padded on the right with zeros to form a full 64-bit
block
Using DES encryption algorithm E and a secret key K, Data

Authentication Code (DAC) is calculated.

0, = E(K.D)
0, = EK [D;® O]

O; = ENK |D;® 0,)

Oy = E(Kv[D.\'G‘)ON»I])

Data Authentication Algorithm(DAA)

Time = |

D,
(64 bits)

Y

K DES
(56 bits) [encrypt

J

0,
(64 bits)

D
Y
_>@
L g

S

Time = 2 Time=N—1
Dy,
Y
______ ..@
Y
DES J . o oK _{ DES
encrypl encrypt
I
|
I
0, A Oy-

Time =N
Dy

8

Y

K _{ DES J
encrypt

Oy

\.—Y—J
DAC
(16 to 64 bits)

122

DAA

* Reference - Stallings

Understand

* Digital Signature
* E- signature
* Conventional Signature

Digital Signatures

A digital signature is a mathematical scheme for
verifying the authenticity of digital messages or
documents. A valid digital signature, where the
prerequisites are satisfied, gives a recipient very strong
reason to believe that the message was created by a

known sender (authentication), and that the message

was not altered in transit (integrity).

125

https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Data_integrity

Conventional —

e Traditional method of document
signing (Handwritten, seal etc.)

* Physical part of document

* Verified by comparing it to authentic
signatures

e Same sign on various docs — (one to
many)

Digital vs
Digital - Conventional

* E-signature based on public key

cryptography S | g N at ure

* Authenticating digital documents or
message

* |ssued by Certificate Authority (CA)
* Schemes — RSA, Elgamal
» Verified by verification algorithm .

 Different sign for different
documents(one to one)

Digital Signature Process

Bob uses a secure hash function, such as SHA-

512, to generate a hash value for the message.

That hash value, together with Bob’s private key
serves as input to a digital signature generation
algorithm, which produces a short block that

functions as a digital signature

Bob sends the message with the signature
attached.

When Alice receives the message plus signature,
she (1) calculates a hash value for the message;
(2) provides the hash value and Bob’s public key
as inputs to a digital signature verification

algorithm.

If the algorithm returns the result that the
signature is valid, Alice is assured that the

message must have been signed by Bob.

Bub‘f}
(g

Message M

Cryptographic

Bob's
I private
key

Message W 5

Bob's
signafure
for M

(a) Bob signs a message

I

Alice

Bob's
public
& key

Return
signature
valid or not valid

(b)) Alice verifies the signature

127

Digital Signature Properties

* Message Authentication does not protect the two parties against

each other.
* Disputes:
* Receiver may forge the message

* Sender denies sending the message

* The most attractive solution to this problem is the digital
signature. The digital signature must have the following
properties:

* It must verify the author and the date and time of the signature.
* It must authenticate the contents at the time of the signature.

* It must be verifiable by third parties, to resolve disputes.

Digital Signature Services

e Authentication

* Bob can verify the message is sent by Alice as Alice’s public key is used for

verification

* Integrity
* Different signature will be produced if message is changed.

e Hash preserves integrity

* Nonrepudiation

e Using Trusted Party

129

Digital Signature Services

* Nonrepudiation (cont.)
* Using Trusted Party

130

Digital Signature Services

* Confidentiality
* Not provided.
* If required ; then message and encryption must be encrypted.

131

Attacks on Digital Signature

Key-Only

Same as Ciphertext — only attack

e C — attacker, A — sender, B- receiver.
e A’s public key is known to everyone.

* C recreates signature using A’s public key and digitally sign the documents which A
doesn’t intend to do.

Known - Message

Same as Known — plaintext attack

e C knows previous message-signature pairs of A.
e C recreate signature by analyzing previous data (by using brute force)

SUCEEVEEEE S 6iilar to Chosen — plaintext attack

e C makes A to sign one or more messages.
e C has message-digital pairs.

132

Forgery Types

Existential
Forgery

e Attacker may be able to create a valid message-signature
pair but not that she can really use.

e Attacker’s message could be syntactically and semantically
unintelligible.

Selective

Forgery

e Attacker may be able to forge Sender’s signature on a
message with the content selectively chosen by attacker.

133

Digital Signature
Schemes

ElGamal Schnorr

134

Digital Signature Standard (DSS)

* NIST has published Federal Information Processing

Standard FIPS 186, known as DSS.
* [t makes use of the Secure Hash Algorithm (SHA)

* It was originally proposed in 1991 and revised in
1993 in response to public feedback concerning the

security of the scheme.

DSS Steps

e Generation of Public and Private key for User A
* Creation of Digital Signature by User A for message M

* User B verifies the Digital Signature

L i £\
M () o 4 [T&
PU: PR, § PU- PU.
r
-o'i“ > }—l\ _’}—1\
Ly et \or = Compare

I =

(b) DSS approach

136

Generation o1

- Global P

Compo

ublic Key

nents {p,c

8}

Global Public-Key Components

p prime number where 2F ' < p < 2F
for 512 = L = 1024 and L a multiple of 64;
1.¢., bit length of between 512 and 1024 bits
in increments of 64 bits

q prime divisor of (p — 1), where 2"’ < g < 2'%;
i.e., bit length of 160 bits

137

User A Public Key and User A
Private Key

User’s Private Key

x random or pseudorandom integer with 0 < x < g

User’s Public Key
y =g modp

138

Generating Signature {r,s}

User's Per-Message Secret Number

/Ig’ = random or pseudorandom integer with 0 < k < g

Signing
r = (¢"mod p) mod g
D= [k’l (H(M) + xr)] mod ¢

Signature = (7, 5)

Veritying Signature {r,s}

Verifving
w = (s")"" mod q
u; = [HIM")w] mod ¢
u, = (rJwmod g
v = [(g") mod p] mod g
TEST:v=r

M mossage 1o be ugned
HAN = hash of M usang SHA-|
M.r.2" = reccived veraons of M. 7. »

140

Authentication Applications

Verifying User’s ldentity:
e Kerberos,
e X.509 Authentication Service

Kerberos

In mythology, Kerberos (also known as Cerberus) is a large, three-
headed dog that guards the gates to the underworld to keep souls

from escaping.

Kerberos is the computer network authentication protocol initially
developed in the 1980s by Massachusetts Institute of Technology

(MIT) computer scientists.

The idea behind Kerberos is to authenticate users while preventing

passwords from being sent over the internet.

It uses secret-key cryptography and a trusted third party for
authenticating client-server applications and verifying users'

identities.

But in the protocol's case, the three heads of Kerberos represent the

client, the server, and the Key Distribution Center (KDC).

142

Kerberos Steps

* Client wants to access file on a server and with third party client must

be verified through trusted —third party

Key Distribution Center (KDC)

¥ S

Authentication

Key Distribution SEVER A,

Center (KDC)

Ticket Granting
Server(TGS)

143

Kerberos Steps

Step 1: Login.
* The user asks for a Ticket Granting Ticket (TGT) from the authentication server (AS).

* This request includes the client ID. And client’s password is a shared secret key.

File Server

File Server

144

Kerberos Steps

P
o
File Server

Kerberos Steps

Step 2: Obtaining a Service Granting Ticket (SGT)

i. Request

Kerberos Steps

Step 2: Obtaining a Service Granting Ticket (SGT)

ii. Response from TGS

147

Kerberos Steps

Step 3: User contacts Bob for accessing the server

i. Alice sends KAB to Bob

Kerberos Steps

Step 3: User contacts Bob for accessing the server

ii. Acknowledgement from Bob

Enable Kerberos support in
browsers

* http://woshub.com/enable-kerberos-
authentication-in-browser/

Kerberos Reference

* Cryptography and Network Security by Atul Kahate

Kerberos 4 vs 5

* Home laptop

Digital Certificates
o Digital Certificates

Digital certificates are used to
Public Key: g encrypt online communications
between an end-user's browser

and a website.
Website: example.com

Company Name: Example LLC
Valid From: 31 December 2014
valid To: 31\December 2017
. After verifying that a company
Signed: : :
owns a website, a certificate
Cébs gfgnatu,.e authority will sign their

certificate so it is trusted by
internet browsers.

153

Digital Certificate

* In cryptography, a public key certificate, also
known as a digital certificate or identity
certificate, iIs an electronic document used to

prove the ownership of a public key.

 The certificate includes

 information about the key,
 information about the identity of its owner (called the
subject), and

* The digital signature of an entity that has verified the

certificate's contents (called the issuer).

154

Digital Certificate (cont.)

* In a typical public-key infrastructure (PKI) scheme, the

certificate issuer is a certificate authority (CA), usually a

company that charges customers to issue certificates

for them.

* The most common format for public key certificates is

defined by X.509 defined in RFC 5280.

155

https://en.wikipedia.org/wiki/Public-key_infrastructure
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5280

Steps for obtaining Digital

Y

Certificate

(1. The user registers for a digial certificate.

2. Some method is used to determine random values,

3.An algorithm generates a public/private key pair.

4.The key pair is stored in a key store on the workstation.

5.A copy of the public key and other identifying information
is sent to the CA.

6.The CA generates a digital certificate containing the

public key and the other identifying information.
7.The new certificate Is sent to the user.

What is inside a Digital

Validity

Public Key

Signature

L4e:23:10:a6:..

Extensions

‘ Key usage

Certificate?

Subject Issuer

Not before Not after

Algorithm

Algorithm

\‘

St

”,—
/ﬁ‘J

Digital Certificate

Subject Name: Atul Kahate
Public Key: <Atul’s key>
Serial Number: 1029101
Other data: Email -
akahate@indiatimes.com
Valid From: I Jan 2001
Valid To: 31 Dec 2004
IssuerName; FeriSign r

157

X.509 Certificates

* Defines the structure of a digital certificate.

* The International Telecommunication Union (ITU)

released this standard 1988. It was a part of X.500.

* Since then, X.509 was revised twice. And, the

current version is Version 3 — X.509V3.

 |[ETF published the RFC2459 for X.509 in 1999.

X.509 Certificates (cont.)

All versinnsI

Version

Certificate serial number

Signature algorithm identifier

Period of validity

Subject Name

Public key Information

Issuer Unique ID

Subject Unique ID

Extensions

Signature

A 4 4
Version 1
Version 2
Version 3
Y
A J
Y

159

X.509 Certificates Contents

Version: which X.509 version applies to the
certificate (which indicates what data the certificate
must include)

Serial number: the identity creating the certificate
must assign it a serial number that distinguishes it
from other certificates

Algorithm information: the algorithm used by the
issuer to sign the certificate

Issuer distinguished name: the name of the entity Auversmsl
issuing the certificate (usually a certificate
authority)

Validity period of the certificate: the period of time

for which the certificate is valid with the start/end

date.

Version

Certificate serial number

Signature algorithm identifier

Period of validity

Subject Name

Public key Information

Issuer Unique ID

Subject Unique ID

Extensions

Signature

Version 1

Version 2

Version 3

160

X.509 Certificates Contents

Subject distinguished name: the name of the
identity the certificate is issued to

Subject public key information the public key
associated with the identity

Extensions (optional)

All versionsI

Version

Certificate serial number

Signature algorithm identifier

Period of validity

Subject Name

Public key Information

Issuer Unique ID

Subject Unique ID

Extensions

Signature

Version 1

Version 2

Version 3

161

X.509 — Version 3
Feld |pescription

Authority Key ldentifier Identifies the certification authority (CA) public key
that corresponds to the CA private key used to sign

the certificate.

Subject Key Identifier Differentiates between multiple public keys held by
the certificate subject. The extension value is

typically a SHA-1 hash of the key.

Key Usage Specifies restrictions on the operations that can be
performed by the public key contained in the

certificate.

Enhanced Key Usage Specifies the manner in which the public key

contained in the certificate can be used.

Private Key Usage Period Specifies a different validity period for the private
key than for the certificate with which the private

key is associated.

X.509 — Version 3 (cont.)
Fed lpescrpton

Certificate Policies

Policy Mappings

Subject Alternative Name

Issuer Alternative Name

Specifies the policies under which the
certificate has been issued and the purposes

for which it can be used.

Specifies the policies in a subordinate CA that

correspond to policies in the issuing CA.

Specifies one or more alternative name forms
for the subject of the certificate request.
Example alternative forms include email

addresses, DNS names, IP addresses, and URIs.

Specifies one or more alternative name forms

for the issuer of the certificate request.

163

X.509 — Version 3 (cont.)
Fed lpescrpton

Subject Directory Attributes Conveys identification attributes such as the

nationality of the certificate subject.

Basic Constraints Specifies whether the entity can be used as a
CA and, if so, the number of subordinate CAs
that can exist beneath it in the certificate

chain.

Name Constraints Specifies the namespace within which all
subject names in a certificate hierarchy must
be located. The extension is used only in a CA

certificate.

164

X.509 — Version 3 (cont.)
Fed pessipon

Name Constraints Specifies the namespace within which all
subject names in a certificate hierarchy must
be located. The extension is used only in a CA

certificate.

References:
https://docs.microsoft.com/en-us/windows/win32/seccertenroll/about-
version-3-extensions

Book:
Cryptography and Network Security by Atul Kahate

165

https://docs.microsoft.com/en-us/windows/win32/seccertenroll/about-version-3-extensions

References

* Books
* William Stalling
* Fourozan
e Atul kahate

