
Chapter 4
Message Authentication 

and Digital Signatures

- By

Jyoti Tryambake

1



Message Authentication
• A message, file, document, or other collection of data is said to

be authentic when it is genuine and came from its alleged source.

• Message authentication is a procedure that allows

communicating parties to verify that received message is

authentic.

• The important aspects are

• To verify that the contents of the message have not been altered

• The source is authentic.

• To verify a message’s timeliness and sequence relative to other

messages flowing between two parties.

2



Message Authentication 
Techniques

• Encryption

• MAC – Message Authentication Code - fixed length code

• Hash Function – H(M) – fixed length code

3



Message Authentication Techniques 
(cont.)

• Authentication using Conventional Encryption

Symmetric Encryption -

• Assume only sender and receiver share a key

• Single key for both encryption and decryption

• the sender encrypts plaintext using the receiver’s secret key, which 

can be later used by the receiver to decrypt the ciphertext.

4



Message Authentication Techniques 
(cont.)

• Authentication using Conventional Encryption

Asymmetric Encryption

• Public and private keys

5



Message Authentication Techniques (cont.)
• Authentication using Conventional Encryption

Asymmetric

i. (A-sender) Message -> E (Public key of B)-> Cipher-> D(Private key of B) -> 

(B - receiver) Message –

Authentication -❌, Confidentiality -✅

ii. (A-sender) Message -> E (Private key of A)-> Cipher-> D(Public key of A) -> 

(B - receiver) Message

Authentication -✅, Confidentiality -❌

iii. (A-sender) Message -> E (Private key of A)-> Cipher1-> E(Public key of B) -

> Cipher2-> D(Private key of B)-> Decipher 1 -> D(Public key of A)-> (B -

receiver) Message

Authentication -✅, Confidentiality -✅ 6



Message Authentication Techniques 
(cont.)

• Authentication without Message Encryption

• An authentication tag is generated and appended to each message

• The algorithm uses it to verify whether or not the ciphertext and/or associated data 

have been modified.

• If either the ciphertext or associated data has been modified, then the procedure 

that re-computes the validation tag on the receiving end will end up generating a 

different tag. The algorithm will check the re-computed tag against the tag that was 

bundled with the ciphertext and associated data (which collectively can be referred 

to as a "cryptogram").

• If the tags don't match, that means some part of the ciphertext and/or associated 

data have been modified.

7



Message Authentication Techniques (cont.)

Message Authentication Code(MAC)

• MAC algorithm is a symmetric key cryptographic technique to provide message

authentication.

• For establishing MAC process, the sender and receiver share a Symmetric key K.

• Essentially, a MAC is an encrypted checksum generated on the underlying

message that is sent along with a message to ensure message authentication.

8



Message Authentication Code(MAC) Process:

• The sender uses MAC algorithm, inputs the message and the secret key K and produces a

MAC value.

• Similar to hash, MAC function also compresses an arbitrary long input into a fixed length

output.

• The sender forwards the message along with the MAC.

• On receipt of the message and the MAC, the receiver feeds the received message and the

shared secret key K into the MAC algorithm and re-computes the MAC value.

• The receiver now checks equality of freshly computed MAC with the MAC received from the

sender. If they match, then the receiver accepts the message and assures himself that the

message has been sent by the intended sender.

• If the computed MAC does not match the MAC sent by the sender, the receiver cannot

determine whether it is the message that has been altered or it is the origin that has been

falsified.

• As a bottom-line, a receiver safely assumes that the message is not the genuine.

• No confidentiality but assures message origin authentication.

9



MAC with Confidentiality and 
Authentication

10



Hash Function
• A hash function is a mathematical function that converts a

numerical input value into another compressed numerical value.

• The input to the hash function is of arbitrary length but output is

always of fixed length.

• Values returned by a hash function are called message digest or

simply hash values

11



Hash Function
• When hash function provides security , is called as cryptographic

hash functions.

• Hash function protects integrity of the message.

• If the encryption process is applied on message with hash

function, it provides authentication and confidentiality.

12



Hash Function
• Example

13



Features of Hash Functions

Fixed Length Output (Hash Value)

• Hash function coverts data of arbitrary length to a fixed length. This

process is often referred to as hashing the data.

• In general, the hash is much smaller than the input data, hence

hash functions are sometimes called compression functions.

• Since a hash is a smaller representation of a larger data, it is also

referred to as a digest.

• Hash function with n bit output is referred to as an n-bit hash

function.

• Popular hash functions generate values between 160 and 512 bits.

14



Features of Hash Functions

Efficiency of Operation

• Generally for any hash function h with input x,

computation of h(x) is a fast operation.

• Computationally hash functions are much faster than a

symmetric encryption.

15



Hash Function Properties
It is mathematically impossible to extract the original

message from the digest.

• Hashing is sometimes referred to as one-way encryption:

the message can be encrypted but is impossible to decrypt.

This is accomplished using one-way functions within the

hashing algorithm.

• It is impossible to derive ‘hello’ knowing only a resulting

digest of ’52’. Mostly because there could be thousands of

messages that result in the identical digest.

16



Hash Function Properties (cont.)
A slight change to the original message causes a drastic change in the

resulting digest.

• Any minor modification – even as small as changing a single character – to the

original Message should greatly alter the computed digest. This is sometimes

referred to as the Avalanche effect.

• If for two different messages, message digest in case is similar then this term is

known as Collision.

17



Hash Function Properties (cont.)
The result of the hashing algorithm is always the same

length.

• It is vital for the resulting Digest to not provide any hints or

clues about the original Message – including its length. A

digest should not grow in size as the length of the Message

increases.

18



Hash Function Properties (cont.)
It is infeasible to construct a message which generates a 

given digest.

• As per example below, if given the digest of 52 , it would not 

be overly difficult to generate a list of words that might have 

been the original message. 

19



Cryptographic Hash Function

• Hash functions used for Security applications known as

Cryptographic Hash Functions.

• Two important properties:

• It is computationally infeasible to find either

• A data object that maps to a pre-specified hash result (the

one-way property)

• Two data objects that map to the same hash result (the

collision-free property)

20



Cryptographic Hash Function 
Requirements and Security

Pre-Image Resistance

• Computationally hard to reverse a hash function.

• In other words, if a hash function h produced a hash value z,

then it should be a difficult process to find any input value x

that hashes to z.

• This property protects against an attacker who only has a

hash value and is trying to find the input.

21



Cryptographic Hash Function 
Requirements and Security

Pre-Image Resistance

22



Cryptographic Hash Function 
Requirements and Security

Second Pre-Image Resistance

The property says the following: if I give you an input and the digest it hashes to, you

should be unable to find a different input that hashes to the same digest.

Given message m1, it is difficult to produce another message m2 such that , H(m1) =

H(m2).

23



Cryptographic Hash Function 
Requirements and Security

Second Pre-Image Resistance

• Given an input and its hash, it should be hard to find a

different input with the same hash.

• In other words, if a hash function h for an input x produces

hash value h(x), then it should be difficult to find any other

input value y such that h(y) = h(x).

• This property of hash function protects against an attacker

who has an input value and its hash, and wants to substitute

different value as legitimate value in place of original input

value.

24



Cryptographic Hash Function 
Requirements and Security

Second Pre-Image Resistance

25

H(abc) = 

H(xyz) = 



Cryptographic Hash Function 
Requirements and Security

Second Pre-Image Resistance

26



Cryptographic Hash Function 
Requirements and Security

Collision Resistance

• It guarantees that no one can produce two different inputs

that hash to the same output.

• Difficult to find any two different messages , m1 and m2 that

have same hash value; H(m1) = H(m2)

27



Cryptographic Hash Function 
Requirements and Security

Collision Resistance

• It is hard to find two inputs that hash to the same output; that

is, two inputs a and b where a ≠ b but H(a) = H(b).

• This property makes it very difficult for an attacker to find two

input values with the same hash.

• Also, if a hash function is collision-resistant then it is second

pre-image resistant.

28



Cryptographic Hash Function 
Requirements and Security

Collision Resistance

29



Security Requirements of 
Cryptographic Hash Functions

30



Simple Hash Function

31



Hash with Authentication and 
Confidentiality

Sender

Message -> Hash fun -> append(msg, ‘h’) -> Encrypt (msg/plaintext)   
-> (Cipher, ‘h’)

Receiver

(Cipher, ‘h’) -> Decrypt -> (msg,’h’) -> 

Hash function

‘h’ Compare
If matches then , 
received message is 
correct

Key

Key

32

Method 1 - Message and hash code encrypted



Hash with Authentication and 
Confidentiality

Standard diagram – Message and hash code encrypted

33



Hash with Authentication and No 
Confidentiality

Symmetric Encryption

Sender

Message -> Hash fun -> ‘h’ -> Encrypt (hash code) -> append(msg, 
E(‘h’)) 

Receiver

Decrypt(‘h’) and msg passed to hash function -> 

If matches then , 
received message is 
correct

Key

Key

‘h’ ‘h’

Compare

34

Method 2 – only hash code encrypted



Hash with Authentication and No 
Confidentiality

Asymmetric Cryptography

Sender

Message -> Hash fun -> ‘h’ -> Encrypt (hash code) -> append(msg, 
E(‘h’)) 

Receiver

Decrypt(‘h’) and msg passed to hash function -> 
If matches then , 
received message is 
correct

Private 
Key of 
A

Public 
Key of A

‘h’ ‘h’
Compare

35



Hash with Authentication and No 
Confidentiality

Asymmetric Cryptography

Sender

Message -> Hash fun -> ‘h’ -> Encrypt (hash code) -> append(msg, 
E(‘h’)) 

Receiver

Decrypt(‘h’) and msg passed to hash function -> 
If matches then , 
received message is 
correct

Private 
Key of 
A

Public 
Key of A

‘h’ ‘h’
Compare

36



Hash with Authentication and No 
Confidentiality

37

Standard diagram - Only Hash code is encrypted



Hash with Authentication and No 
Confidentiality

Method 3 - With secret code

Sender

Message -> apply secret code -> pass to hash fun-> ‘h’ -> 

append(msg, ‘h’)  

Receiver

Decrypt  (msg, ‘h’)-> apply secret code to msg and send to hash fun 

If matches then , 
received message is 
correct

‘h’
‘h’Compare

38



Hash with Authentication and No 
Confidentiality

With secret code/value – standard diagram

39



Hash with Authentication and 
Confidentiality

With secret code – message encrypted

Sender

Message -> apply secret code -> pass to hash fun-> ‘h’ -> 

append(msg, ‘h’) -> Encrypt -> (cipher, E(‘h’))  

Receiver

Decrypt  (cipher, E(‘h’))-> (msg,’h’) -> apply secret code to msg and 
send to hash fun 

If matches then , 
received message is 
correct

‘h’
‘h’Compare

40



Hash with Authentication and 
Confidentiality

With secret code (message + hash encrypted)- standard 
diagram

41



Hash Function Structure

42



Hash Algorithm

43



One way Hash Function

44



One way Hash Function

45



One way Hash Function

46
HMAC



One way Hash Function 
Applications

47

• Digital Signatures

• Message Integrity

• Password verification

• Generation of pseudorandom bits

• Message Authentication Code (MAC)



Hash Function Family

48



49



SHA Versions

50



51



SHA – Secure Hash Algorithm

• Developed by the National Institute of Standards and Technology

(NIST) and published as a federal information processing standard

(FIPS 180) in 1993; a revised version was issued as FIPS 180-1 in

1995 and is generally referred to as SHA-1.

• SHA-1 produces a hash value of 160 bits.

• The SHA-1 is called secure because it is computationally infeasible

to find a message which corresponds to a given message digest,

or to find two different messages which produce the same

message digest.

52



SHA – Secure Hash Algorithm

• In 2002, NIST produced a revision of the standard, FIPS 180-2,

that defined three new versions of SHA, with hash value lengths

of 256, 384, and 512 bits, known as SHA-256, SHA-384, and SHA-

512.

• Collectively, these hash algorithms are known as SHA-2. These

new versions have the same underlying structure and use the

same types of modular arithmetic and logical binary operations as

SHA-1.

• In 2005, NIST announced the intention to phase out approval of

SHA-1 and move to a reliance on the other SHA versions by 2010.

53



SHA - 512
• The algorithm takes as input a message with a maximum

length of less than 2128 bits and produces as output a 512-

bit message digest. The input is processed in 1024-bit

blocks.

54



SHA - 512
Steps

Step 1: Append padding bits. 

• The message is padded so that its length is congruent to 896 

modulo 1024 [length K ≅ 896 (mod 1024)].

• Padding is always added, even if the message is already of the 

desired length. 

• Thus, the number of padding bits is in the range of 1 to 1024. 

• The padding consists of a single 1-bit followed by the necessary 

number of 0-bits

55



SHA - 512

56



SHA - 512
Step 2: Append length.

• A block of 128 bits is appended to the message. This block is

treated as an unsigned 128-bit integer (most significant byte

first) and contains the length of the original message (before

the padding).

• The outcome of the first two steps yields a message that is an

integer multiple of 1024 bits in length. In Figure, the expanded

message is represented as the sequence of 1024-bit blocks

M1, M2, . . . , MN, so that the total length of the expanded

message is N * 1024 bits.

57



Padding Example

Consider Input Message – ‘abc’

Represented in binary

01100001 01100010 01100011

Message length = 24 bits

Needed,

Message_length≅ 896 mod 1024

Message_length mod 1024 ≅ 896

24 + 872 mod 1024 ≅ 896

Pad 872 bits to message such that 

Message_length mod 1024 ≅ 896

872 bits to be padded – 1 bit followed by 871 zeros
58



Padding Example
Consider Input Message – ‘abc’

Represented in binary

01100001 01100010 01100011 –

Padding(10000……….)

896 bits representation is shown below;

59



Padding Example
Pad the original length of the message for 128 bits at the end

Message_length = 24 bits

Convert this in hexadecimal = 18

So, represent 18 in 128 bits hexadecimal value –

0000000000000000 0000000000000018 (total 64 bits)

Message size = 896+128 =1024 bits
60



Exercise

• How many bits will you pad for input message 
length of 2348 bits?

61



Exercise
• How many bits will you pad for input message length of 2348 bits?

Sol - Message_length ≅ 896 mod 1024

2348 mod 1024 = 300 

Need 596 bits more

Pad 596 bits where in 1 followed by 595 zeros

Message_length (with padding) is = 2348+596 = 2944 bits

Add actual message length 2348 as 128 bits at the end

Total bits = 2944+128 = 3072

Which takes 3 M blocks of size 1024 bits each

62



Message Digest Creation

63



Message Digest Creation

64



Message Digest Creation

65



SHA - 512
Steps

Step 3: Initialize hash buffer.

• A 512-bit buffer is used to hold intermediate and final results of the 

hash function. 

• The buffer can be represented as eight 64-bit registers (a, b, c, d, e, f, 

g, h). 

• These registers are initialized to the following 64-bit integers 

(hexadecimal values):

a = 6A09E667F3BCC908               b = BB67AE8584CAA73B 

c = 3C6EF372FE94F82B                d = A54FF53A5F1D36F1

e = 510E527FADE682D1                f = 9B05688C2B3E6C1F 

g = 1F83D9ABFB41BD6B               h = 5BE0CD19137E2179
66



SHA - 512
Steps

Step 3: Initialize hash buffer.

h = 5BE0CD19137E2179

The values are calculated from first eight prime numbers (2,3,5,7,11,13,17,19)

67



SHA - 512
Steps

Step 4: Process message in 1024-bit blocks. 

The heart of the algorithm is a module that consists of 80 rounds; this module 

is labeled F. Each message block generates 80 words of 64 bits each

68



Word Expansion – derive 80 words from 1024 
bits block

69



SHA - 512
Steps

Step 4:

• Each round takes as input the 512-bit buffer value abcdefgh and updates the contents of the buffer.

• At input to the first round, the buffer has the value of the intermediate hash value, Hi-1.

• Each round t makes use of a 64-bit value Wt, derived from the current 1024-bit block being processed (Mi).

• Each round also makes use of an additive constant Kt, where 0 <= t <= 79 indicates one of the 80 rounds.

These words represent the first 64 bits of the fractional parts of the cube roots of the first 80 prime

numbers.

• The constants provide a “randomized” set of 64-bit patterns, which should eliminate any regularities in the

input data.

• The operations performed during a round consist of circular shifts, and primitive Boolean functions based

on AND, OR, NOT, and XOR.

• The output of the eightieth round is added to the input to the first round (Hi-1) to produce Hi.

• The addition is done independently for each of the eight words in the buffer, with each of the corresponding

words in Hi-1, using addition modulo 264

.

70



71

Functioning of Module F 



• Round Function

72

What happens in a Round?

T2 T1



• Computing T1 –

• Ch – conditional function

73

What happens in a Round? (cont.)



• Computing T1 –

• Kt – 80 constants

74

What happens in a Round? (cont.)



• Computing T2 –

• Maj(a,b,c) – majority function

75

What happens in a Round? (cont.)



• Round

76

What happens in a Round? (cont.)
T2 T1



SHA - 512
Step 5: 

Output. After all ‘N’ 1024-bit blocks have been processed, the output from 
the Nth stage is the 512-bit message digest. 

Reference – Fourozan and Stalling 

77



SHA - 1

78



SHA-1 Steps

79



SHA-1 Steps

80

Step 1: Append Padding bits

padding bits are added to the original message to make the original message equal to a value 

divisible by 512.

Example –

• The massage padding is applied to the last data block such that SHA-1 can process the data

of n×512 bits.

• The last two words (64 bits) of padded message are reserved of the original message length

(in bits).

• Input message – ‘abcde’ – 40 bits

• 01100001 01100010 01100011 01100100 01100101.

• After ‘1” is appended, 407 ‘0’ are required to complete 448 bits. In Hex, this can be written 

as: 

61626364 65800000 00000000 00000000 

00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 

00000000 00000000



SHA-1 Steps

81

Step 2: Append length

The rest two words are preserved for the original message 

length. 

As per example, length of msg = 40 = “00000000 00000028” (Hexadecimal Value). 

As a result, the passed massage is 

61626364 65800000 00000000 00000000 

00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000028.



SHA-1 Steps

82



SHA-1 Steps

83

Step 3: Initialize the hash buffer



SHA-1 Steps

84

Step 4:  SHA Processing

Each round = 20 iterations. Total iterations = 80



SHA-1 Steps

85

Step 4:  SHA Processing



SHA-1 Steps

86

Step 4:  SHA Processing



SHA-1 Steps

87

Step 4:  SHA Processing



SHA-1 Steps

88

Step 4:  SHA Processing



SHA-1 Steps

89

Step 4:  SHA Processing



SHA-1 Steps

90

Step 4:  SHA Processing



SHA-1 Steps

91

Step 4:  SHA Processing



SHA-1 Steps

92

Step 4:  The Output



Let’s recall MAC ..

93



Hash based Message 
Authentication Code (HMAC) 

• Hash-based message authentication code (HMAC) is a mechanism

for calculating a message authentication code involving a hash

function in combination with a secret key. This can be used to

verify the integrity and authenticity of a message.

• HMACs are almost similar to digital signatures. They both enforce

integrity and authenticity. They both use cryptography keys. And

they both employ hash functions.

• The main difference is that digital signatures use asymmetric

keys, while HMACs use symmetric keys (no public key).
94



HMAC Authentication

95



How does HMAC Work ?
A data integrity check on a file transfer.

• Let's say a client application downloads a file from a remote server. It's

assumed that the client and server have already agreed on a common

hash function, for example SHA2.

96



How does HMAC Work ?
• Before the server sends out the file, it first obtains a hash of that file using the

SHA2 hash function. It then sends that hash (ex. a message digest) along with

the file itself.

• Upon receiving the two items (ex. the downloaded file and the hash), the client

obtains the SHA2 hash of the downloaded file and then compares it with the

downloaded hash.

• If the two match, then that would mean the file was not tampered with.

97



How does HMAC Work ?
• If an attacker manages to intercept the downloaded file, alter the file's contents,

and then forward the altered file to the recipient, that malicious act won't go

unnoticed.

• That's because, once the client runs the tampered file through the agreed hash

algorithm, the resulting hash won't match the downloaded hash.

• This will let the receiver know the file was tampered with during transmission.

98



How does HMAC Work ?
Authenticity Check

• An HMAC employs both a hash function and a shared secret key.

• A shared secret key provides exchanging parties a way to establish the

authenticity of the message.

• That is, it provides the two parties a way of verifying whether both the

message and MAC (more specifically, an HMAC) they receive really came

from the party they're supposed to be transacting with.

99



How does HMAC Work ?
Suitable for File Transfers

Efficiency - hash functions can take a message of arbitrary

length and transform it into a fixed-length digest. That means,

even if you have relatively long messages, their corresponding

message digests can remain short, allowing you to maximize

bandwidth.

100



HMAC Structure

101



HMAC Structure

102Reference - Stallings



MAC and HMAC reference

• Stalling

103



HMAC Security

• Security depends on the cryptographic strength of

the underlying hash function

• It is much harder to launch successful collision

attacks on HMAC because of secret key

104



Message Digest (MD 5) 

• MD5 is the Message Digest algorithm 5, created by Ronald Rivest. 

• It is the most widely used of the MD family of hash algorithms. 

• MD5 creates a 128-bit hash value based on arbitrary input length.

• It verifies Integrity and authenticity of message.

• Initially designed for digital signatures.

• MD5 hashing is no longer considered reliable for use because 

security experts have demonstrated techniques capable of easily 

producing MD5 collisions on commercial off-the-shelf computers.

105



MD 5 Concept

106

Every message is padded into blocks of 
512 bits each. 

4 rounds of 16 operations = 
64 operations

O/P of every block, 
is fed into the 

subsequent block. 

Message 
Digest



How MD5 works?

107



Step 1: Padding bits

108



Step 1: Padding bits (cont.)

109



Step 2: Padding length

110



Step 3: Divide the I/P in 512 - bit block and 
Initialize Buffer

111



Step 4: Process each block

112



Step 4: Process each block (cont.)

113



Non-linear Process Function 

114



Compressed Function 

115



MD5 – new A,B,C,D

116



Reference MD5

• Research paper’s PDFs will be shared

• https://en.wikipedia.org/wiki/MD5

• https://datatracker.ietf.org/doc/html/rfc1321

117

https://datatracker.ietf.org/doc/html/rfc1321


Learn …

• Difference between MD5 and SHA

• Advantages and Disadvantages of
• MD5

• SHA 

• HMAC

118



MAC Implementation

• To realize and construct MAC algorithms, two different

cryptographic primitives are used.

• MACs can be implemented using cryptographic hash functions or

using symmetric block ciphers.

• Cryptographic hash functions - HMAC

• Symmetric block ciphers –

• DAA,

• CMAC

• (1. CBC – MAC (it used AES) and

• 2. variant of CBC-MAC is CMAC (AES + triple DES))

• Reference – Authentication_paper.pdf and Stalling (for CMAC) 119



MAC based on Block Ciphers

• Data Authentication Algorithm(DAA)

• Cipher Based Message Authentication Code(CMAC)

120



Data Authentication Algorithm(DAA)

121

• Data Authentication Algorithm (DAA) widely used MAC based on DES-

CBC

• The message to be authenticated grouped into contiguous 64-bit

blocks:

D1, D2,…, DN.

• The final block is padded on the right with zeros to form a full 64-bit

block

• Using DES encryption algorithm E and a secret key K, Data

Authentication Code (DAC) is calculated.



Data Authentication Algorithm(DAA)

122



DAA 

• Reference - Stallings

123



Understand

• Digital Signature

• E- signature

• Conventional Signature

124



Digital Signatures

• A digital signature is a mathematical scheme for

verifying the authenticity of digital messages or

documents. A valid digital signature, where the

prerequisites are satisfied, gives a recipient very strong

reason to believe that the message was created by a

known sender (authentication), and that the message

was not altered in transit (integrity).

125

https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Data_integrity


Digital vs 
Conventional 
Signature

Conventional –

• Traditional method of document 
signing (Handwritten, seal etc.)

• Physical part of document

• Verified by comparing it to authentic 
signatures

• Same sign on various docs – (one to 
many)

Digital –

• E-signature based on public key 
cryptography

• Authenticating digital documents or 
message

• Issued by Certificate Authority (CA)

• Schemes – RSA, Elgamal

• Verified by verification algorithm

• Different sign for different 
documents(one to one)



Digital Signature Process
• Bob uses a secure hash function, such as SHA-

512, to generate a hash value for the message.

• That hash value, together with Bob’s private key

serves as input to a digital signature generation

algorithm, which produces a short block that

functions as a digital signature

• Bob sends the message with the signature

attached.

• When Alice receives the message plus signature,

she (1) calculates a hash value for the message;

(2) provides the hash value and Bob’s public key

as inputs to a digital signature verification

algorithm.

• If the algorithm returns the result that the

signature is valid, Alice is assured that the

message must have been signed by Bob. 127



Digital Signature Properties

• Message Authentication does not protect the two parties against 

each other.

• Disputes:

• Receiver may forge the message 

• Sender denies sending the message

• The most attractive solution to this problem is the digital 

signature. The digital signature must have the following 

properties: 

• It must verify the author and the date and time of the signature. 

• It must authenticate the contents at the time of the signature. 

• It must be verifiable by third parties, to resolve disputes.

128



Digital Signature Services

• Authentication

• Bob can verify the message is sent by Alice as Alice’s public key is used for 

verification

• Integrity

• Different signature will be produced if message is changed.

• Hash preserves integrity

• Nonrepudiation

• Using Trusted Party

129



Digital Signature Services

• Nonrepudiation (cont.)
• Using Trusted Party

130



Digital Signature Services

• Confidentiality 
• Not provided. 

• If required ; then message and encryption must be encrypted.

131



Attacks on Digital Signature

Same as Ciphertext – only attackKey-Only

• C – attacker, A – sender, B- receiver.

• A’s public key is known to everyone.

• C recreates signature using A’s public key and digitally sign the documents which A 
doesn’t intend to do.

Same as Known – plaintext attackKnown - Message

• C knows previous message-signature pairs of A.

• C recreate signature by analyzing previous data (by using brute force)

Similar to Chosen – plaintext attackChosen - Message

• C makes A to sign one or more messages.

• C has message-digital pairs.

132



Forgery Types

Existential
Forgery

• Attacker may be able to create a valid message-signature
pair but not that she can really use.

• Attacker’s message could be syntactically and semantically
unintelligible.

Selective
Forgery

• Attacker may be able to forge Sender’s signature on a
message with the content selectively chosen by attacker.

133



Digital Signature 
Schemes

RSA ElGamal Schnorr

134



Digital Signature Standard (DSS)

• NIST has published Federal Information Processing

Standard FIPS 186, known as DSS.

• It makes use of the Secure Hash Algorithm (SHA)

• It was originally proposed in 1991 and revised in

1993 in response to public feedback concerning the

security of the scheme.

135



DSS Steps

• Generation of Public and Private key for User A

• Creation of Digital Signature by User A for message M

• User B verifies the Digital Signature

136



Generation of Global Public Key 
Components {p,q,g}

137



User A Public Key and User A 
Private Key

138



Generating Signature {r,s}

139



Verifying Signature {r,s}

140



Authentication Applications

Verifying User’s Identity:

• Kerberos, 

• X.509 Authentication Service

141



Kerberos 

• In mythology, Kerberos (also known as Cerberus) is a large, three-

headed dog that guards the gates to the underworld to keep souls

from escaping.

• Kerberos is the computer network authentication protocol initially

developed in the 1980s by Massachusetts Institute of Technology

(MIT) computer scientists.

• The idea behind Kerberos is to authenticate users while preventing

passwords from being sent over the internet.

• It uses secret-key cryptography and a trusted third party for

authenticating client-server applications and verifying users'

identities.

• But in the protocol's case, the three heads of Kerberos represent the

client, the server, and the Key Distribution Center (KDC). 142



Kerberos Steps

• Client wants to access file on a server and with third party client must 

be verified through trusted –third party

143

Key Distribution 
Center (KDC)

Authentication 
Server(AS)

Ticket Granting 
Server(TGS)



Kerberos Steps

Step 1: Login.

• The user asks for a Ticket Granting Ticket (TGT) from the authentication server (AS). 

• This request includes the client ID. And client’s password is a shared secret key.

144



Kerberos Steps

145



Kerberos Steps

146

Step 2: Obtaining a Service Granting Ticket (SGT)

i. Request



Kerberos Steps

147

Step 2: Obtaining a Service Granting Ticket (SGT)

ii. Response from TGS



Kerberos Steps

148

Step 3: User contacts Bob for accessing the server

i. Alice sends KAB to Bob



Kerberos Steps

149

Step 3: User contacts Bob for accessing the server

ii. Acknowledgement from Bob



Enable Kerberos support in 
browsers
• http://woshub.com/enable-kerberos-

authentication-in-browser/

150



Kerberos Reference

• Cryptography and Network Security by Atul Kahate

151



Kerberos 4 vs 5 

• Home laptop

152



Digital Certificates

153



Digital Certificate

• In cryptography, a public key certificate, also

known as a digital certificate or identity

certificate, is an electronic document used to

prove the ownership of a public key.

• The certificate includes

• information about the key,

• information about the identity of its owner (called the

subject), and

• The digital signature of an entity that has verified the

certificate's contents (called the issuer).
154



Digital Certificate (cont.)

• In a typical public-key infrastructure (PKI) scheme, the

certificate issuer is a certificate authority (CA), usually a

company that charges customers to issue certificates

for them.

• The most common format for public key certificates is

defined by X.509 defined in RFC 5280.

155

https://en.wikipedia.org/wiki/Public-key_infrastructure
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5280


Steps for obtaining Digital 
Certificate

156



What is inside a Digital 
Certificate?

157



X.509 Certificates

• Defines the structure of a digital certificate.

• The International Telecommunication Union (ITU) 

released this standard 1988. It was a part of X.500.

• Since then, X.509 was revised twice. And, the 

current version is Version 3 – X.509V3. 

• IETF published the RFC2459 for X.509 in 1999.

158



X.509 Certificates (cont.)

159



X.509 Certificates Contents

160

Version: which X.509 version applies to the 

certificate (which indicates what data the certificate 

must include)

Serial number: the identity creating the certificate 

must assign it a serial number that distinguishes it 

from other certificates

Algorithm information: the algorithm used by the 

issuer to sign the certificate

Issuer distinguished name: the name of the entity 

issuing the certificate (usually a certificate 

authority)

Validity period of the certificate: the period of time 

for which the certificate is valid with the start/end 

date.



X.509 Certificates Contents

161

Subject distinguished name: the name of the 

identity the certificate is issued to

Subject public key information the public key 

associated with the identity

Extensions (optional)



X.509 – Version 3

162

Field Description

Authority Key Identifier Identifies the certification authority (CA) public key 

that corresponds to the CA private key used to sign 

the certificate.

Subject Key Identifier Differentiates between multiple public keys held by 

the certificate subject. The extension value is 

typically a SHA-1 hash of the key.

Key Usage Specifies restrictions on the operations that can be 

performed by the public key contained in the 

certificate.

Enhanced Key Usage Specifies the manner in which the public key 

contained in the certificate can be used.

Private Key Usage Period Specifies a different validity period for the private 

key than for the certificate with which the private 

key is associated.



X.509 – Version 3 (cont.)

163

Field Description

Certificate Policies Specifies the policies under which the 

certificate has been issued and the purposes 

for which it can be used.

Policy Mappings Specifies the policies in a subordinate CA that 

correspond to policies in the issuing CA.

Subject Alternative Name Specifies one or more alternative name forms 

for the subject of the certificate request. 

Example alternative forms include email 

addresses, DNS names, IP addresses, and URIs.

Issuer Alternative Name Specifies one or more alternative name forms 

for the issuer of the certificate request.



X.509 – Version 3 (cont.)

164

Field Description

Subject Directory Attributes Conveys identification attributes such as the 

nationality of the certificate subject. 

Basic Constraints Specifies whether the entity can be used as a 

CA and, if so, the number of subordinate CAs 

that can exist beneath it in the certificate 

chain.

Name Constraints Specifies the namespace within which all 

subject names in a certificate hierarchy must 

be located. The extension is used only in a CA 

certificate.



X.509 – Version 3 (cont.)

165

Field Description

Name Constraints Specifies the namespace within which all 

subject names in a certificate hierarchy must 

be located. The extension is used only in a CA 

certificate.

References:
https://docs.microsoft.com/en-us/windows/win32/seccertenroll/about-
version-3-extensions

Book:
Cryptography and Network Security by Atul Kahate

https://docs.microsoft.com/en-us/windows/win32/seccertenroll/about-version-3-extensions


References

• Books
• William Stalling

• Fourozan

• Atul kahate

166


