Chapter 3 – Asymmetric Key Cryptography

By

Jyoti Tryambake

Public Key Cryptosystems (1)

- Public-key/two-key/asymmetric cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a related private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- Is asymmetric because those who encrypt messages or verify signatures cannot decrypt messages or create signatures
- Asymmetric algorithms rely on one key for encryption and a different but related key for decryption. These algorithms have the following important characteristic.
 - It is computationally infeasible to determine the decryption key given only knowledge of the cryptographic algorithm and the encryption key.

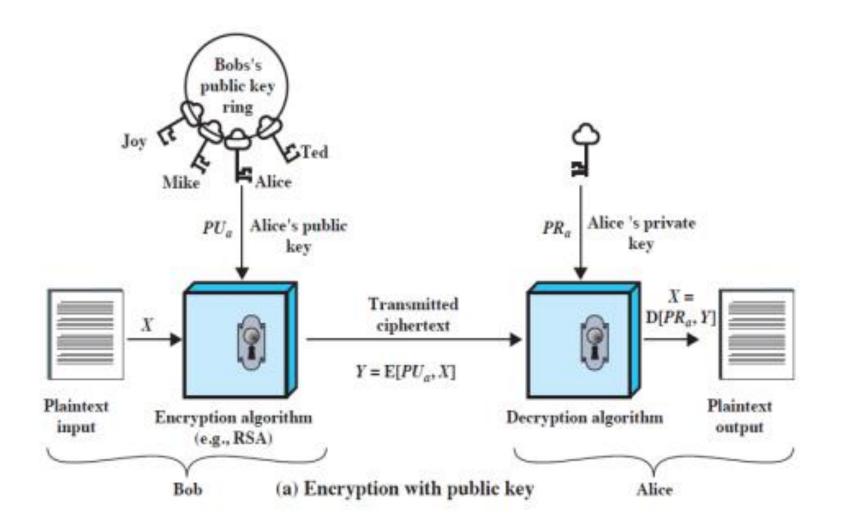
Public-Key Cryptosystems (2)

- In addition, some algorithms, such as RSA, also exhibit the following characteristic.
 - Either of the two related keys can be used for encryption, with the other used for decryption.
 - A public-key encryption scheme has following ingredients
 - **Plaintext**: This is the readable message or data that is fed into the algorithm as input.
 - Encryption algorithm: The encryption algorithm performs various transformations on the plaintext.
 - **Public and private keys**: This is a pair of keys that have been selected so that if one is used for encryption, the other is used for decryption. The exact transformations performed by the algorithm depend on the public or private key that is provided as input.
 - **Decryption algorithm:** This algorithm accepts the ciphertext and the matching key and produces the original plaintext.

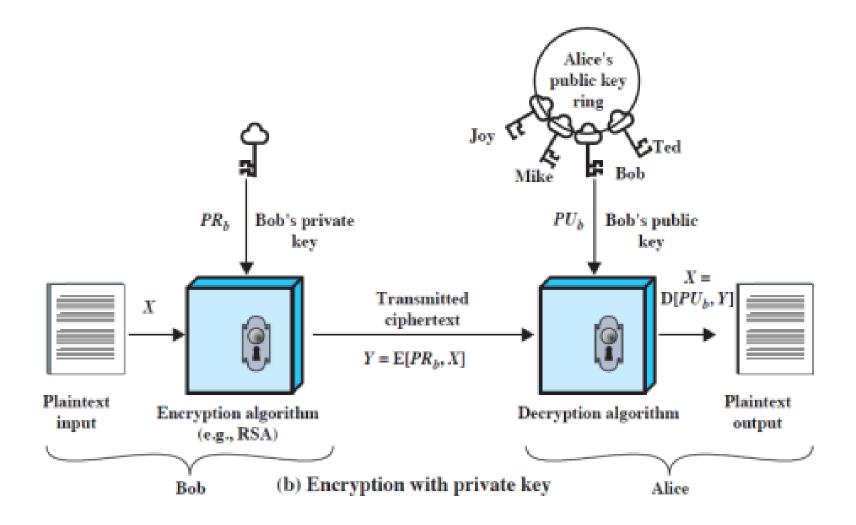
Terms for further slides ..

- There is some source A that produces a message in plaintext, $X = [X_1, X_2, ..., X_M]$.
- The M elements of X are letters in some finite alphabet.
- The message is intended for destination B.
- B generates a related pair of keys: a public key, PU_b, and a private key, PR_b.
- PR_b is known only to B, whereas PU_b is publicly available and therefore accessible by A.
- With the message X and the encryption key PU_b as input, A forms the ciphertext Y = $[Y_1, Y_2, ..., Y_N]$:
 - Y = E(PU_b, X)
 - The intended receiver, in possession of the matching private key, is able to invert the transformation:
 - $X = D(PR_b, Y)$

Public Key Cryptosystems (3)



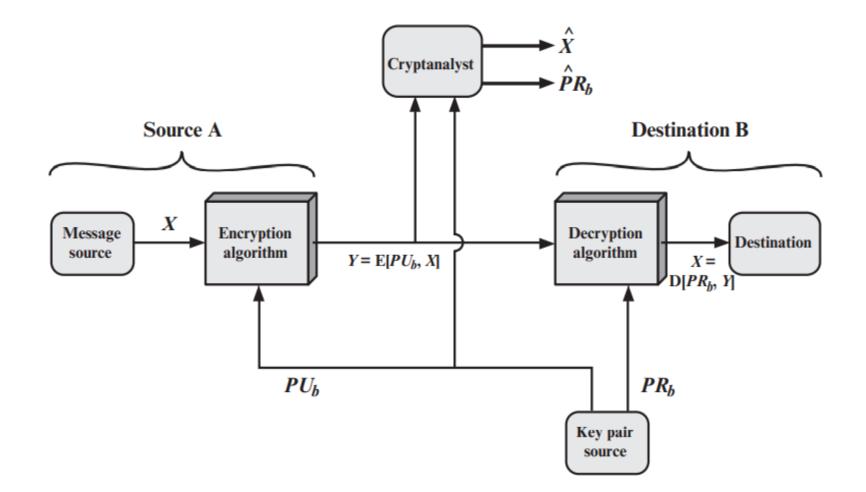
Public Key Cryptosystems (4)



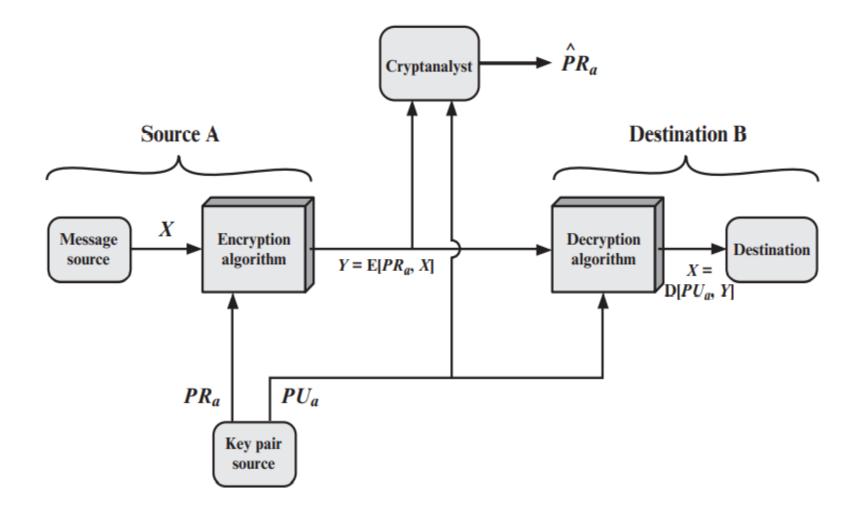
Conventional Encryption	Public-Key Encryption
Needed to Work:	Needed to Work:
 The same algorithm with the same key is used for encryption and decryption. 	 One algorithm is used for encryption and a related algorithm for decryption with a pair of keys, one for
The sender and receiver must share the algorithm and the key.	encryption and one for decryption. 2. The sender and receiver must each have one of the
Needed for Security:	matched pair of keys (not the same one).
1. The key must be kept secret.	Needed for Security:
2. It must be impossible or at least impractical	 One of the two keys must be kept secret.
to decipher a message if the key is kept secret.	It must be impossible or at least impractical to decipher a message if one of the keys is kept secret.
 Knowledge of the algorithm plus samples of ciphertext must be insufficient to determine the key. 	 Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key.

Table 9.2 Conventional and Public-Key Encryption

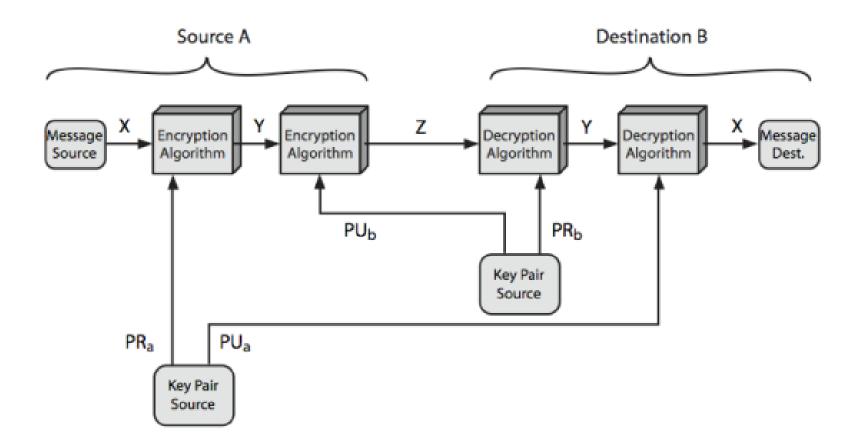
Public Key Cryptosystems -Confidentiality



Public Key Cryptosystems -Authentication



Public Key Cryptosystems



Combining secrecy and authentication

Application of public key cryptography

- Encryption/Decryption: sender encrypts the message with receiver's public key
- **Digital Signature** : sender signs the message with his private key
- **Key exchange**: Both sender and receiver cooperate to exchange a session key typically for conventional encryption.

Application of public key cryptography

Table 9.3 Applications for Public-Key Cryptosystems

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Requirements of Public Key Cryptography (1)

Algorithm must fulfill;

- It is computationally easy for a party B to generate a key pair (public key PU_b, private key PR_b).
- It is computationally easy for a sender A, knowing the public key and the message to be encrypted, M, to generate the corresponding ciphertext:
 - C = E(PU_b, M)
- It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private key to recover the original message:
 - M = D(PR_b, C) = D[PR_b, E(PU_b, M)]

Requirements of Public Key Cryptography (2)

Algorithm must fulfill;

- It is computationally infeasible for an adversary, knowing the public key, PU_b, to determine the private key, PR_b.
- It is computationally infeasible for an adversary, knowing the public key, PU_b, and a ciphertext C, to recover the original message, M.
- The two keys can be applied in either order:
 - $M = D[PU_b, E(PR_b, M)] = D[PR_b, E(PU_b, M)]$

The RSA Algorithm (1)

- It was developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78].
- The Rivest-Shamir-Adleman (RSA) scheme has since that time reigned supreme as the most widely accepted and implemented generalpurpose approach to public-key encryption.
- The **RSA** scheme is a cipher in which the plaintext and ciphertext are integers between 0 and *n* 1 for some *n*.
- A typical size for *n* is 1024 bits, *n* is less than 2^{1024} .

The RSA Algorithm (2)

Description

- RSA makes use of an expression with exponentials.
- Plaintext is encrypted in blocks, with each block having a binary value less than some number n. That is, the block size must be less than or equal to log₂(n) + 1;
- in practice, the block size is *i* bits, where $2^i < n <= 2^{i+1}$
- Encryption and decryption are of the following form, for some plaintext block M and ciphertext block C.
 - $C = M^e \mod n$
 - $M = C^d \mod n$

The RSA Algorithm (3)

Description

- Both sender and receiver must know the value of n.
- The sender knows the value of e, and only the receiver knows the value of d.
- Thus, this is a public key encryption algorithm with

a public key of PU = {e, n} and

a private key of PR = {d, n}.

The RSA Algorithm (4)

Description

• For this algorithm to be satisfactory for public-key encryption, the following requirements must be met.

It is possible to find values of e, d, n such that M^{ed} mod n = M for all M < n.
 It is relatively easy to calculate M^e mod n and C^d mod n for all values of M < n.
 It is infeasible to determine d given e and n.

The RSA Algorithm (5)

The preceding relationship holds if *e* and *d* are multiplicative inverses modulo $\phi(n)$, where $\phi(n)$ is the Euler totient function. It is shown in Appendix B that for *p*, *q* prime, $\phi(pq) = (p - 1)(q - 1)$. $\phi(n)$, referred to as the Euler totient of *n*, is the number of positive integers less than *n* and relatively prime to *n*. The relationship between *e* and *d* can be expressed as

 $ed \mod \phi(n) = 1$

This is equivalent to saying

 $ed \mod \phi(n) = 1$ $d \mod \phi(n) = e^{-1}$

That is, *e* and *d* are multiplicative inverses mod $\phi(n)$. According to the rules of modular arithmetic, this is true only if *d* (and therefore *e*) is relatively prime to $\phi(n)$. Equivalently, $gcd(\phi(n),d) = 1$; that is, the greatest common divisor of $\phi(n)$ and *d* is 1.

The RSA Algorithm (5)

Figure 21.5 summarizes the RSA algorithm. Begin by selecting two prime numbers, p and q, and calculating their product n, which is the modulus for encryption and decryption. Next, we need the quantity $\phi(n)$. Then select an integer e that is relatively prime to $\phi(n)$ [i.e., the greatest common divisor of e and $\phi(n)$ is 1]. Finally, calculate d as the multiplicative inverse of e, modulo $\phi(n)$. It can be shown that d and e have the desired properties.

RSA Scheme

Key Generation by Alice		
p and q both prime, $p \neq q$		
- 1)		
$gcd(\phi(n), e) = 1; 1 < e < \phi(n)$		
$d \equiv e^{-1} (\mathrm{mod} \phi(n))$		
$PU = \{e, n\}$		
$PR = \{d, n\}$		

Encryption by Bob with Alice's Public Key		
Plaintext:	M < n	
Ciphertext:	$C = M^e \mod n$	

Decryption by Alice with Alice's Public Key		
Ciphertext:	С	
Plaintext:	$M = C^d \mod n$	

Figure 9.5 The RSA Algorithm

RSA Numerical

Example 1

- P=3, q=5
- N = p*q =15
- Φ(n) = (p-1)(q-1) = 2*4 = 8
- Gcd(e, Φ(n)) = 1 where, 1<e< Φ(n)
- Let e = 3

de mod $\Phi(n) = 1$

d * 3 mod 8 = 1

- So, d = 3
- Public key = (e,n) = (3,15)
- Private key = (d,n) = (3,15)
- Let M= 4
 - $C = M^e \mod n = 4^3 \mod 15 = 4$
 - $M = C^d \mod n = 4^3 \mod 15 = 4$

Key Generation by Alice			
Select p, q	p and q both prime, $p \neq q$		
Calculate $n = p \times q$	Calculate $n = p \times q$		
Calcuate $\phi(n) = (p - 1)(q - 1)$	Calcuate $\phi(n) = (p-1)(q-1)$		
Select integer e	$\gcd\left(\phi(n),e\right) = 1; 1 < e < \phi(n)$		
Calculate d	$d \equiv e^{-1} (\mathrm{mod} \phi(n))$		
Public key	$PU = \{e, n\}$		
Private key	$PR = \{d, n\}$		

Encryption by Bob with Alice's Public Key		
Plaintext:	M < n	
Ciphertext:	$C = M^e \mod n$	

Decryption by Alice with Alice's Public Key		
	Ciphertext:	С
1	Plaintext:	$M = C^d \bmod n$

RSA Numerical

Example 2

• P=11, q=3

Key Generation by Alice		
Select p, q	p and q both prime, $p \neq q$	
Calculate $n = p \times q$		
Calcuate $\phi(n) = (p - 1)(q$	- 1)	
Select integer e	$gcd(\phi(n), e) = 1; 1 < e < \phi(n)$	
Calculate d	$d \equiv e^{-1} (\mathrm{mod} \phi(n))$	
Public key	$PU = \{e, n\}$	
Private key	$PR = \{d, n\}$	

Encryption by Bob with Alice's Public Key		
Plaintext:	M < n	
Ciphertext:	$C = M^e \mod n$	

Decryption by Alice with Alice's Public Key		
Ciphertext:	С	
Plaintext:	$M = C^d \bmod n$	

RSA Numerical

Example 2

- P=11, q=3
- N = p*q =33
- Φ(n) = (p-1)(q-1) = 10*2 = 20
- Gcd(e, Φ(n)) = 1 where, 1<e< Φ(n)
- Let e = 3

de mod $\Phi(n) = 1$

- d * 3 mod 20 = 1
- So, d = 7
- Public key = (e,n) = (3,33)
- Private key = (d,n) = (7,33)
- Let M= 7
 - $C = M^e \mod n = 7^3 \mod 33 = 13$
 - $M = C^d \mod n = 13^7 \mod 33 = 7$

Key Generation by Alice			
Select p, q	p and q both prime, $p \neq q$		
Calculate $n = p \times q$	Calculate $n = p \times q$		
Calcuate $\phi(n) = (p - 1)(q$	Calcuate $\phi(n) = (p-1)(q-1)$		
Select integer e	$\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$		
Calculate d	$d \equiv e^{-1} (\mathrm{mod} \phi(n))$		
Public key	$PU = \{e, n\}$		
Private key	$PR = \{d, n\}$		

Encryption by Bob with Alice's Public Key				
Plaintext:	M < n			
Ciphertext:	$C = M^e \mod n$			

Decryption by Alice with Alice's Public Key				
	Ciphertext:	С		
	Plaintext:	$M = C^d \bmod n$		

Figure 9.5 The RSA Algorithm

Attacks on RSA

Attacks on RSA

- Mathematical attack
 - Factorization
 - Common Modulus
- Short Message attack
- Timing attack
- Cycling attack
- Chosen cipher attack

Factorization attacks on RSA

- Factoring is splitting an integer into a set of smaller integers which, when multiplied together form the original integer.
- The problem: for example, 2*7 = 14.
- The factoring problem is to find 2 and 7 when given 14. Prime factorization requires splitting an integer into factors that are prime numbers.
- This problem in factoring that an RSA modulus would allow an attacker to figure out the private key from the public key.

Factorization attacks on RSA (cont.)

- The solution: choose two large primes with a larger modulus for becoming a larger and so, the attacker needs more time to figure it out.
- Tow primes should be one is much smaller than other.
- If the two primes are extremely close or their difference is close to any predetermined amount, then there is a potential security risk, but the probability that two randomly chosen primes are so close is negligible.

Common Modulus Attack

If multiple entities share the same modulus n=pq with different pairs of (e_i, d_i), it is not secure. Do not share the same modulus!

Cryptanalysis: If the same message M was encrypted to different users

User $u_1 : C_1 = M^{e_1} \mod n$ User $u_2 : C_2 = M^{e_2} \mod n$ If gcd(e_1, e_2)=1, there are *a* and *b* s.t. $ae_1 + be_2 = 1 \mod n$ Then,

 $(C_1)^a(C_2)^b \mod n = (M^{e_1})^a(M^{e_2})^b \mod n = M^{ae_1+be_2} \mod n = M \mod n$

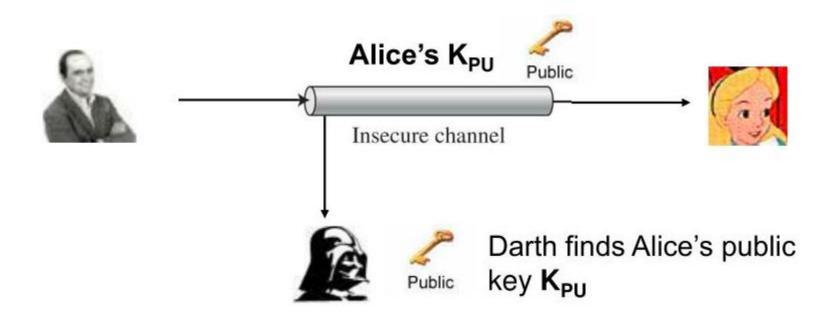
Short Message Attack

- Typical use of public key algorithm: Generating <u>short</u> messages
 - Symmetric keys (used then to send rest of message)
 - Social security numbers, etc.
- Idea:
 - Adversary acquires public key *E*, *n*
 - Uses them to encrypt <u>all possible messages</u> that may be sent (plausible if messages are short enough!) and stores in <u>table</u>
 - Intercepts encrypted message C and searches for match in the table

Adversary can recover plaintext without decryption key!

• Example:

Darth knows that Bob will use Alice's public key to send her a Social Security Number (9 digits)

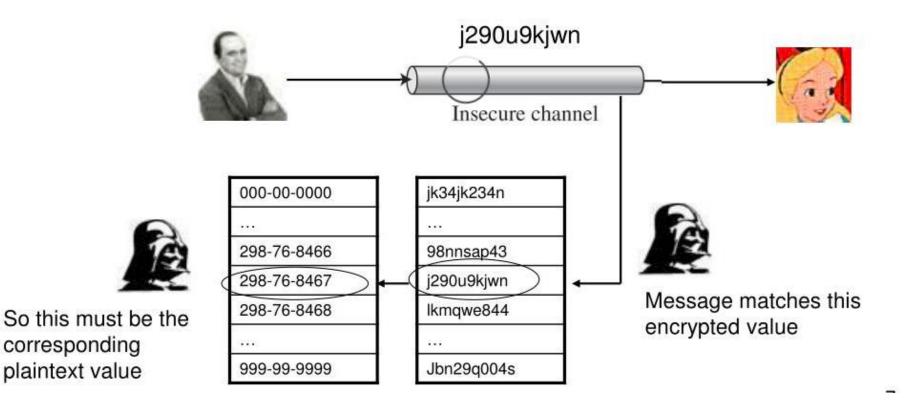


 Darth uses Alice's public key K_{PU} to encrypt <u>all possible</u> <u>Social Security Numbers</u> (only a billion)

Æ	000-00-0000	Alice's K _{PU}	jk34jk234n
		Public	
	298-76-8466		98nnsap43
	298-76-8467	1 done	j290u9kjwn
	298-76-8468		lkmqwe844

	999-99-9999		Jbn29q004s

- Darth intercepts Bob's SSN encrypted with Alice's public key
- Searches for <u>match</u> in table of encrypted values



- Solution: <u>Pad</u> message to **M** bits
 - *M* large enough so adversary can't generate all 2^M possible messages
 - Can't just add extra bits to end still possible to crack
- Optimal Asymmetric Encryption Padding (OAEP)
 - Additional bits used as "mask" to conceal plaintext
 - Mask generated randomly
 - Mask data sent as part of encrypted message for decryption
 - Based on cryptographic hash (more later)

Timing Attack

- If adversary knows the following:
 - Ciphertext C
 - Can be intercepted
 - Can compute how long it takes to multiply ciphertext and compute mods
 - Total time decryption takes
 - Can be <u>observed</u>

They could compute <u>number of 1's</u> in private **D**

 Given enough known plaintexts, can reliably guess *D* completely

Timing Attack (cont.)

 Fast exponentiation algorithm used for decryption to compute *C^p* mod *n*:

```
result = 1
```

```
for (i = 0 to number of bits in D - 1) {
```

```
if (i<sup>th</sup> bit of D = \Lambda)
```

```
result = (result * C) mod n \leftarrow
```

$$C = C^2 \mod n$$

- Speed of decryption depends on <u>number of 1's</u> in D
 - Each 1 requires additional multiplication operation
 - Each 0 skips that step

Timing Attack (cont.)

Solutions:

• "Pad" algorithm so all decryptions take <u>same time</u> for (i = 0 to number of bits in D - 1) { if (ith bit of D = 1) result = (result * C) mod n else garbageVariable = (result * C) mod n C = C² mod n }

Cycling Attack

Cycling Attack

Since $c = m^e \mod n$, encryption maps message *m* to one of the elements of the message space $Z_n = \{0, 1, ..., n - 1\}$. If the encryption is applied repeatedly on *c*, eventually a stage⁷ will arrive when *c* will get mapped to *m*. The adversary uses this fact to his advantage. He intercepts a ciphertext *c*, he carries out repeat encryptions of *c* till he gets back the intercepted ciphertext *c*. He goes back by one step because the message encrypted last must be the original plaintext *m*. It has been shown that computational complexity of this attack is equivalent to the complexity of factoring *n*.

Example 2 Bob sends ciphertext 37 to Alice after using her RSA public key {7, 77}. The adversary intercepts the ciphertext and launches cycling attack using the public key of Alice. Write the computation carried out by the adversary to decrypt the ciphertext.

Solution The adversary encrypts 37 repeatedly as given below:

 $c_1 = 37^7 \mod 77 = 16$ $c_2 = 16^7 \mod 77 = 58$ $c_3 = 58^7 \mod 77 = 9$ $c_4 = 9^7 \mod 77 = 37$

In the fourth step he gets $c_4 = 37$. Therefore, he concludes Bob's message is 9.

Unconcealed Messages

An unconcealed message is one that encrypts to itself, i.e., $c = m^e \mod n = m$. For example, messages 0, 1, n-1 always remain unconcealed. The number of unconcealed messages in Z_n is given by

 $[1 + \gcd(e - 1, p - 1)] \times [1 + \gcd(e - 1, q - 1)]$

Chosen Cipher Attack

Chosen-Ciphertext Attack

This attack is based on multiplicative property of RSA algorithm. Let m_1 and m_2 be two messages, and let c_1 and c_2 be their respective RSA encryptions. Now,

 $(m_1m_2)^e \mod n = m_1^e m_2^e \mod n = (m_1^e \mod n) \times (m_2^e \mod n) = c_1c_2$

In other words, RSA encryption of product of two messages is the product of their respective encryptions. The adversary can use this property to decrypt illegitimately copied ciphertext. Suppose Bob sends to Alice a ciphertext c, which the adversary copies. We assume that Alice will decrypt arbitrary ciphertext from the adversary other than c. The adversary conceals cin c' as $c' = cx^e \mod n$, where x is a random integer in \mathbb{Z}_n^* and has multiplicative inverse in \mathbb{Z}_n^* . He sends c' to Alice for decryption. Alice computes m' and returns it to the adversary.

$$m' = (c')^d \mod n = (cx^e)^d \mod n = c^d x^{ed} \mod n = mx \mod n$$

The adversary computes m by multiplying m' and multiplicative inverse of x.

 $m' x^{-1} \mod n = m x x^{-1} \mod n = m$

This simple attack can be prevented by imposing a structure to the plaintext m, e.g. by appending a pad to m. Alice would notice structural discrepancy of m' when she decrypts c', and she would not return the decrypted message m' to the adversary. The process of appending a pad to plaintext for this purpose is sometimes known as 'salting' the plaintext.

Elliptic Curve Cryptography

➤ECC can be defined as: EC over Z_P and EC over GF(2^m).

➤ECC can be used for Key exchange and Encryption.

Elliptic curves over Z_p:

The curve of this type is prime curve

The variables and coefficients are restricted to elements of a finite field.

➤The values are restricted from 0 through p-1. If the values exceeds the range perform modulo p.

The curve is represented by y² mod p = (x³ + ax +b) mod p

How can two people in a crowded room derive a secret that only the pair know, without revealing the secret to anyone else that might be listening?

Diffie Hellman Key Exchange(1)

- The Diffie-Hellman Key Exchange is a means for two parties to jointly establish a shared secret over an unsecure channel, without having any prior knowledge of each other.
- This protocol is widely used in protocols like IPSec and SSL/TLS.
- Using this protocol, sending and receiving devices in a network derive a secret key then be used for subsequent symmetric encryption of messages.

Diffie Hellman Key Exchange(2)

- Not an encryption algo
- Used to exchange secret key between two users
- Uses asymmetric encryption to exchange the secret key
- Depends for its effectiveness on the difficulty of computing
 Discrete Logarithms (Refer Chapter Number Theory (Stalling)).

Diffie Hellman Key Exchange(3)

 A primitive root of a prime number p is one whose powers modulo p generate all the integers from 1 to p - 1. That is, if a is a primitive root of the prime number p, then the numbers

 $a \mod p, a^2 \mod p, \ldots, a^{p-1} \mod p$

are distinct and consist of the integers from 1 through p - 1 in some permutation. For any integer b and a primitive root a of prime number p, we can find a unique exponent i such that

 $b \equiv a^i \pmod{p}$ where $0 \le i \le (p-1)$

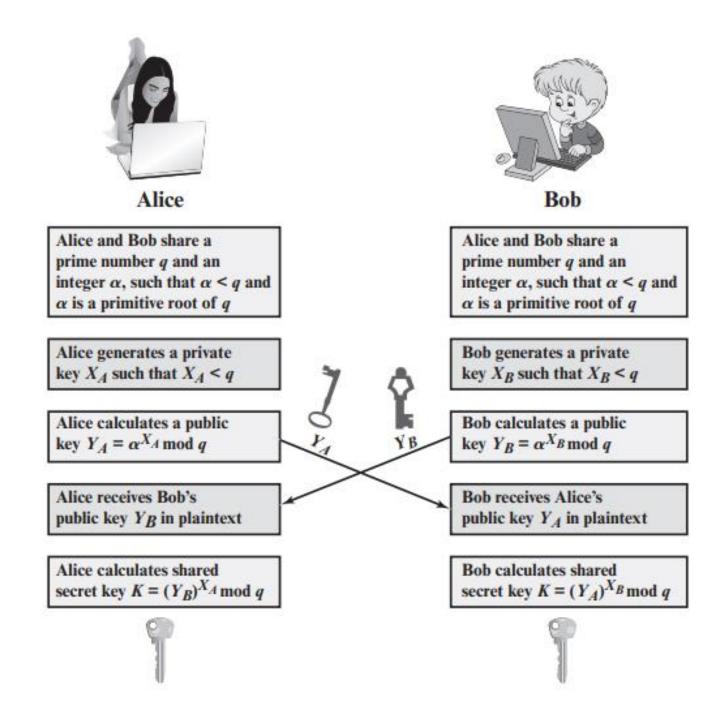
- The exponent i is referred to as the discrete logarithm of b for the base
 - a, mod p expressed as $dlog_{a,p}(b)$.

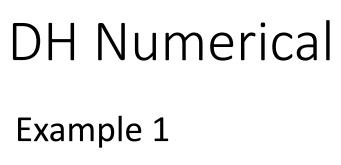
Primitive root example

Primitive root calculation. $3' \mod 7 = 37 = 1 \text{ to } 6.$ $3^2 \mod 7 = 2$ Coress all no.s. $3^3 \mod 7 = 6$ from 1 to 6 34 mod 7 = 4 hence, 3 is 35 mod 7 = 5 | a primitive not 36 mod 17 = 1

DH Algorithm Key terms...

- Twp publicly known numbers:
 - A prime number q
 - An integer α = primitive root of q
- User A
 - Random integer X_A (private key of A) < q
 - Compute Y_A (public key of A) = $\alpha^{X_A} \mod q$
 - Compute $K = (Y_B)^{X_A} \mod q$
- User B
 - Random integer X_B (private key of B) < q
 - Compute Y_B (public key of B) = $\alpha^{X_B} \mod q$
 - Compute $K = (Y_A)^{X_B} \mod q$
- K should be identical





Let q = 11,

Find primitive root α , We get $\alpha = 2$

QJ. Choose x. × mod 11 mod-11 mod 11 8 9 10 3 5 imodil 13 modil 1. 1 23 %.11 5 10 9 7 3 6 -8 5 3 4 5 8 9 10 to <=2, as it is primitive not &

DH Numerical

Example 1 (cont.)

Select $X_A = 8$

• Compute Y_A (public key of A) = $\alpha^{X_A} \mod q = 2^8 \mod 11 = 3$

Select $X_B = 4$

• Compute Y_B (public key of B) = $\alpha^{X_B} \mod q = 2^4 \mod 11 = 5$

Sender A -> Computes K = $(Y_B)^{X_A} \mod q = 5^8 \mod 11 = 4$ Sender B -> Computes K = $(Y_A)^{X_B} \mod q = 3^4 \mod 11 = 4$

DH Numerical

Example 2

In a Diffie-Hellman Key Exchange, Alice and Bob have chosen prime value q = 17 and primitive root = 5. If Alice's secret key is 4 and Bob's secret key is 6, what is the secret key they exchanged?

Ans - 16

Security Aspect of DH

Possibility to compute Private key and preventive measures

• Let q = 353 , α = 3, Y_A = 40 and Y_B = 248

• Prevention – choose large primary key

Man in the Middle Attack

• Allows attacker to eavesdrop on the communication between two users. Attack takes place during exchange of public keys.

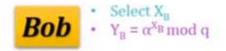
Analogy: 2 users- Alice and bob, Attacker- Darth

- Darth could tell Alice that he was bob and tell bob that she was Alice
- Alice would believe and reveal her conversation to Darth.
- Darth gathers information, alters and pass the message to Bob.
- Thus, conversation is hijacked.

Man in the Middle Attack – Scenario (1)

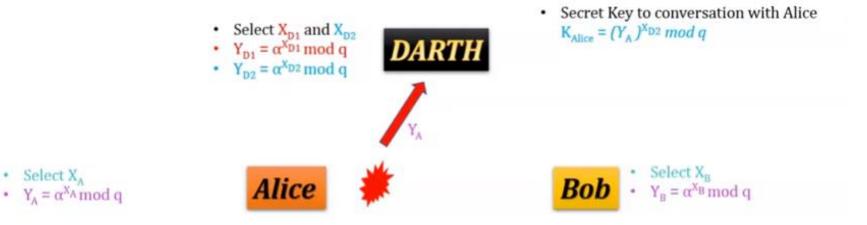
• Select X_{D1} and X_{D2} • $Y_{D1} = \alpha^{X_{D1}} \mod q$ • $Y_{D2} = \alpha^{X_{D2}} \mod q$

Select X_A
 Y_A = α^{XA} mod q



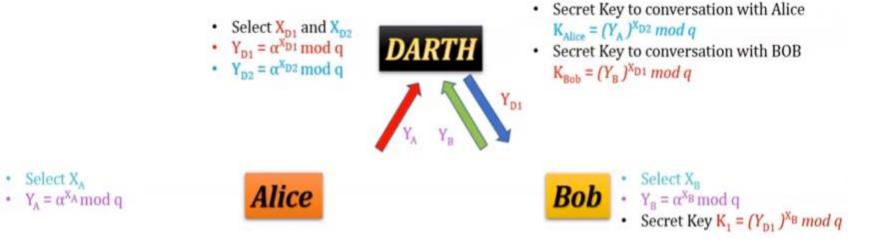
- · Darth prepares for the attack,
 - Generating two random private keys X_{D1} and X_{D2}
 - Calculate public key Y_{D1}
 - Calculate public key Y_{D2}

Man in the Middle Attack – Scenario (2)



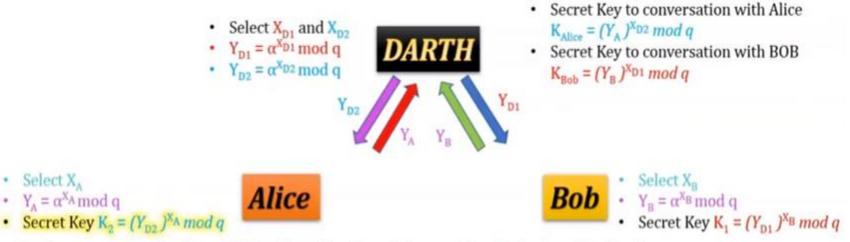
- As per key exchange algorithm, Alice transmits her public key Y_A to Bob.
- Darth intercepts Y_A
- Darth calculate secret key K_{Alice} for more conversation with Alice. $K_{Alice} = (Y_A)^{X_{D2}} \mod q$.

Man in the Middle Attack – Scenario (3)



- Darth transmits Y_{D1} (in place of Y_A) to Bob. Bob doesn't have an idea, Y_{D1} is shared by Darth.
- Bob calculate secret key K₁ using Y_{D1}. Secret Key K₁ = (Y_{D1})^{XB} mod q.
- Bob transmits his public key Y_B to Alice.
- Darth intercepts Y_B.
- Darth calculate secret key K_{Bob} for more conversation with Bob. $K_{Bob} = (Y_B)^{X_{D1}} \mod q$

Man in the Middle Attack – Scenario (4)



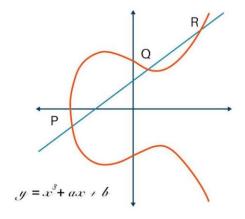
- Darth transmits Y_{D2} (in place of Y_B)to Alice. Alice doesn't have an idea, Y_{D2} is shared by Darth.
- Alice calculate secret key K₂ using Y_{D2}. Secret Key K₂ = (Y_{D2})^{X_A} mod q.
- Now, Darth will capture all subsequent messages of Alice and Bob. Read and modify all the message and send to the alice and Bob.

This vulnerability can be overcome with the use of digital signatures and public-key certificates;

Elliptic Curve Cryptography

- Asymmetric /public key cryptosystem
- Provides equal security with smaller key size
- Reduces processing overhead
- Makes use of elliptic curves
- Defined by some mathematical functions:
 - $y^2 = x^3 + ax + b$
 - Elliptic curve is represented as Ep(a,b).

P is a prime number and a,b are restricted to mod p.



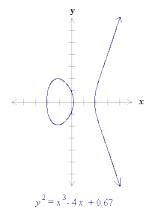
Elliptic Curves over Real Numbers

Elliptic curves over real numbers use a special class of elliptic curves of the form

In the above equation, if $4a^3 + 27b^2 \neq 0$, the equation represents a nonsingular elliptic curve; otherwise, the equation represented a singular elliptic curve.

where x, y, a and b are real numbers.

Each choice of the numbers a and b yields a different elliptic curve. For example, a = -4 and b = 0.67 gives the elliptic curve with equation $y^2 = x^3 - 4x + 0.67$; the graph of this curve is shown below:



Elliptic Curves over Real Numbers

Elliptic curves over real numbers use a special class of elliptic curves of the form

In the above equation, if $4a^3 + 27b^2 \neq 0$, the equation represents a nonsingular elliptic curve; otherwise, the equation represented a singular elliptic curve.

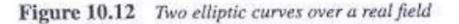
 $y^2 = x^3 + ax + b$

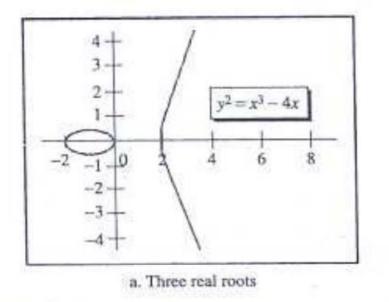
Looking at the equation, we can see that the left-hand side has a degree of 2 while the right-hand side has a degree of 3. This means that a horizontal line can intersects the curve in three points if all roots are real. However, a vertical line can intersects the curve at most in two points.

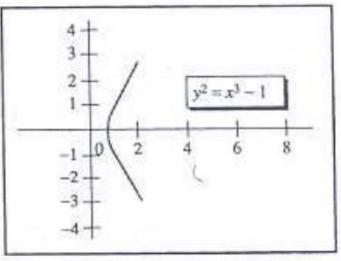
Elliptic Curves over Real Numbers

Example 10.13

Figure 10.12 shows two elliptic curves with equations $y^2 = x^3 - 4x$ and $y^2 = x^3 - 1$. Both are nonsingular. However, the first has three real roots (x = -2, x = 0, and x = 2), but the second has only one real root (x = 1) and two imaginary ones.







b. One real and two imaginary roots

Elliptic Curve Cryptography

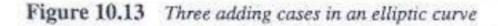
• Abelian groups:- commutative group

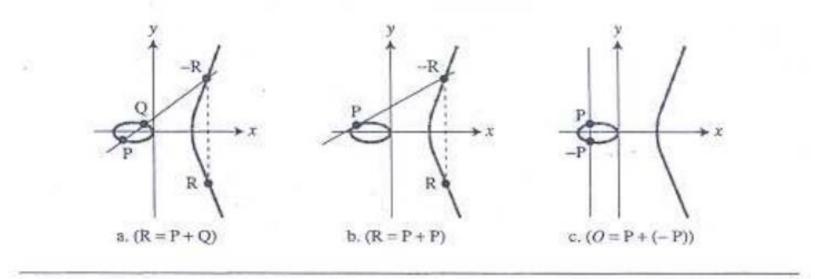
Operations

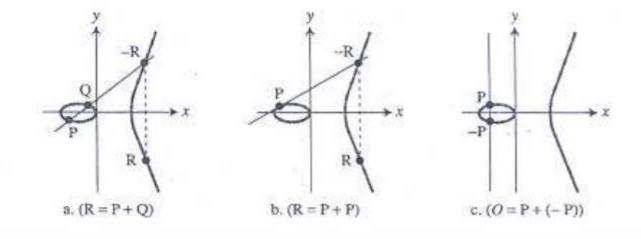
. The operation is the addition of two points on the curve to get another point on the curve

R = P + Q, where $P = (x_1, y_1)$, $Q = (x_2, y_2)$, and $R = (x_3, y_3)$

To find R on the curve, consider three cases as shown in Figure 10.13.



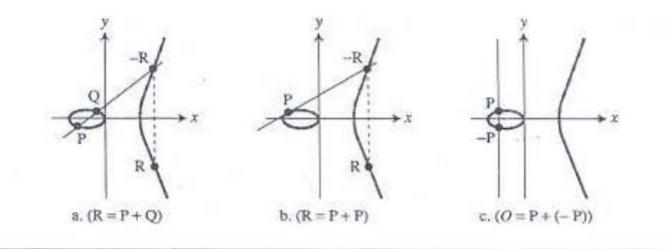




 In the first case, the two points P = (x₁, y₁) and Q = (x₂, y₂) have different x-coordinates and y-coordinates (x₁ ≠ y₁ and x₂ ≠ y₂), as shown in Figure 10.13a. The line connecting P and Q intercepts the curve at a point called -R. R is the reflection of -R with respect to the x-axis. The coordinates of the point R, x₃ and y₃, can be found by first finding the slope of the line, λ, and then calculating the values of x₃ and y₃, as shown below:

$$\lambda = (y_2 - y_1) / (x_2 - x_1)$$

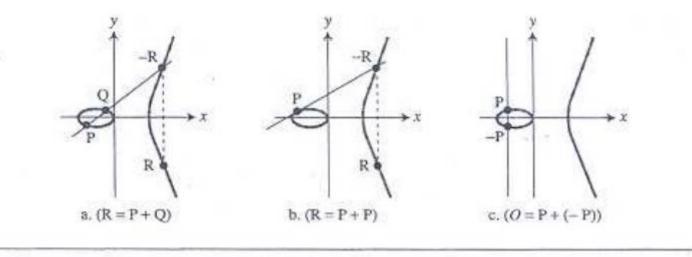
$$y_3 = \lambda (x_1 - x_3) - y_1$$



 In the second case, the two points overlap (R = P + P), as shown in Figure 10.13b. In this case, the slope of the line and the coordinates of the point R can be found as shown below:

$$\lambda = (3x_1^2 + a)/(2y_1)$$

$$x_3 = \lambda^2 - x_1 - x_2 \qquad y_3 = \lambda (x_1 - x_3) - y_1$$



3. In the third case, the two points are additive inverses of each other as shown in Figure 10.13c. If the first point is P = (x₁, y₁), the second point is Q = (x₁, -y₁). The line connecting the two points does not intercept the curve at a third point. Mathematicians say that the intercepting point is at infinity; they define a point O as the point at infinity or zero point, which is the additive identity of the group.

• Abelian groups:

Properties of operation:

- Closure
- Associativity
- Identity element
- Inverse element
- Commutativity

ECC- properties of operation

Closure: For all a, b in A, the result of the operation a • b is also in A.

Associativity: For all a, b and c in A, the equation

 $(a \bullet b) \bullet c = a \bullet (b \bullet c)$ holds.

>Identity element: There exists an element e in A, such that for all elements a in A, the equation $e \cdot a = a \cdot e = a$ holds.

Inverse element: For each a in A, there exists an element b in A such

that **a** • **b** = **b** • **a** = **e**, where *e* is the identity element.

>Commutativity: For all a, b in $A, a \cdot b = b \cdot a$.

A group in which the group operation is not commutative is called a "non-abelian group" or "non-commutative group".

ECC- properties of operation w.r.t. P,Q and R

- Closure: It can be proven that adding two points, using the addition operation defined in the previous section, creates another point on the curve.
- 2. Associativity: It can be proven that (P + Q) + R = P + (Q + R).
- Commutativity: The group made from the points on a non-singular elliptic curve is an abelian group; it can be proven that P + Q = Q + P.
- Existence of identity: The additive identity in this case is the zero point, O. In other words P = P + O = O + P.
- 5. Existence of inverse: Each point on the curve has an inverse. The inverse of a point is its reflection with respect to the x-axis. In other words, the point $P = (x_1, y_1)$ and $Q = (x_1, -y_1)$ are inverses of each other, which means that P + Q = O. Note that the identity element is the inverse of itself.

A Group and a Field

The group defines the set of the points on the elliptic curve and the addition operation on the points. The field defines the addition, subtraction, multiplication, and division using operations on real numbers that are needed to find the addition of the points in the group.

ECC over Galois Field GF(p) – modular arithmetic

• Same addition operation as that of real numbers but calculations are done in modulo p.

```
Elliptic curves over Z<sub>p</sub> :
```

```
>The curve of this type is prime curve
```

The variables and coefficients are restricted to elements of a finite field.

The values are restricted from 0 through p-1. If the values exceeds the range perform modulo p.

The curve is represented by y² mod p = (x³ + ax +b) mod p

ECC over GF(p) – modular arithmetic (cont.)

Elliptic curve arithmetic over Z_p:

Addition:

>Adding 2 points $P(x_p, y_p)$ and $Q(x_q, y_q)$ gives $R(x_r, y_r)$.

≻Steps:

>Find the slope λ:

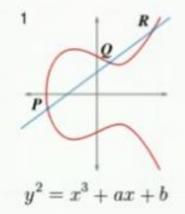
 $\lambda = (y_a - y_p) / (x_a - x_p) \text{ if } P \neq Q$

 $\lambda = (3x_p^2 + a) / 2y_p$ if P = Q where a is obtained from E_p (a,b)

Find the Sum: R (i.e (x_r, y_r)) = P + Q

$$\mathbf{x}_{r} = \mathbf{\lambda}^{2} - \mathbf{x}_{p} - \mathbf{x}_{q}$$

$$y_r = \lambda(x_p - \underline{x}_r) - \underline{y}_p$$



ECC over GF(p) – modular arithmetic (cont.)

Negating a point:

> If Q =
$$(x_{q}, y_{q})$$

> Then $-Q = -(x_{q}, y_{q}) = (x_{q}, -y_{q})$

Subtraction: P – Q can be P + (-Q).

>P – Q = (x_p, y_p) - (x_q, y_q) = (x_p, y_p) + (x_q, -y_q mod p). Now perform addition.

Multiplication:

➤Only Scalar multiplication is possible. Multiplication between two points are not possible. Repeated addition is performed.

> 2P = P + P, 3P = P + P + P and so on. Note for slope (λ) calculation use the formula P=Q.

Division: only scalar division is possible. $[1/a(x_p, y_p)] = a^{-1} (x_p, y_p)$.

Multiplication steps can be followed.

ECC over GF(p) – Finding points on curve

 For determining the security of various elliptic curve ciphers, it is of some interest to know the number of points in a finite abelian group defined over an elliptic curve.

 In the case of the finite group E_P(a, b), the number of points N is bounded by

$$p+1-2\sqrt{p} \le N \le p+1+2\sqrt{p}$$

 Note that the number of points in E_p(a, b) is approximately equal to the number of elements in Z_p, namely p elements.

Understand- find mod for -ve no.

Find mod for -ve no. Formula, -n mod k = K - (n mod ki ex; -3 mod 12 (-24-10) mod 221 K al have plan $= 12 - (3 \mod 12) = 12 - 3 = 9$, -11.2 =7 mod 12 (01/F) =1 = 12 - (7 mod 12) = 12 - (7) = 5.111. -13 mod 13 = 12 - (13 mod 12) = 12 - (1) = 11. in. - 34 mod 23. = 23 - (34 mod 23) = 23-11 = 12

thostat: -3 mod 12 , n=3, K=12 if it < 14. it. 3 <12 they stimply submact in those K k - n = 12 - 3 = 9. -7 mod 12, n<k. 14-12-7= 5. iii if n>k. i.e. -34 mod 23 then take multiple of K which thould be greater than n' & then stubract in from that multiple. to, 23×1=23=, 2334 not applicable 23×2=46, >34 ~ 46-34 = (12) multiple 'n'. : - 34 mod 23 = 12 of divide -34-123 = -11 34+23=-11: and add modulus (23) to make it non-negerive, -11+23=12

Understand- find mod for -ve no.

- 164 mod 23.
$$23 \times 7 = 161$$

 $3 \times 7 = 161$
 $164 \times 164 = 20$
 $-164 \% 28 = 20$. $-3 \times 8 = 184 \times 164 \times 164$

Understand- find mod for inverse no.

Understand- find mod for inverse no.

$$g' \mod 5$$

 $3 \times - \mod 5 = 1$
 $3 \times 2 \mod 5 = 1$
 $3 \times 2 \mod 5 = 1$
 $3 \times 2 \mod 5 = 12$
 $3 \times 2 \mod 5 = 12$
above method is veried chen in is prime.

Co-prime ⇒ gcd (5,9)= 1. ged of 2 to Ahaud be 1 . 5' mod 9 5 × - mod q=1 5x 2 mod 9= L. 5" mod 9 = 2 3. 11-1 mod 26. 1 - 2 ban 200 11 X _ mod 26=1 2 born 1 11 x 19 mod 26-11 better 209 mod 26 = 1 V 11-1 mod 26 = 19 1 home : Reter, Forouzan - Chapton 2. for Modular Arithmetic, Congruence and Matrices.

Group

 $G = \langle Z_n, + \rangle$

- A set of elements with a binary operation (.)whose result is also in the set and
- Has following properties:
 - Closure: if a and b are in set G, then c=b.a will always result in value which is in set G
 - Associative law: (a.b).c = a.(b.c) (a+b)+c = a+(b+c)

 - Has inverse a': $a \cdot a' = e$ a + (-a) = 0
- If commutative a.b = b.a a+b=b+a
 - then forms an abelian group

ΔG	rour	ם – ר	xample		
	TOUP		Admpic	<i>G</i> <	n we can perform + and – < Z _n ,+> is Abelian Group Z _n ,*> is not Abelian Group
) mod n)mod 6 d 6	$G = \langle Z_n, * \rangle$ c = (3 * 5) mod 6 c = (15) mod 6 c = 3	((8mode () ((3 *) ((15mod	5) + 2)mod 6 = (3 + (5 + 2))mod 6 5) + 2)mod 6 = (3 + (7mod6)mod 6) (2 + 2)mod 6 = (3 + 1)mod 6 (4)mod 6 = (4)mod 6 5) * 2)mod 6 = (3 * (5 * 2))mod 6 6) * 2)mod 6 = (3 * (10mod6)mod 6) (3 * 2)mod 6 = (3 * 4)mod 6 (06)mod 6 = (12)mod 6 0 = 0
			(4 + (-4))mod (4 + (-4 mod 6))mod		$(4*(4^{-1}))mod \ 6 = 1$ gcd(6,4) = 2
Zn	+	*	(4 + (2))mod	6 = 0	gcu(0,4) = 2
Closure	\checkmark	\checkmark	(6) <i>mod</i>	6 = 0	
Associative	\checkmark	\checkmark	(3+2)mod 6 = (2+3)	mod 6	(3 * 2) mod 6 = (2 * 3) mod 6
Identity	\checkmark	\checkmark	$(3+2)mod \ 6 = (2+3)$ (5)mod \ 6 = (5)mod		(6) mod 6 = (6) mod 6

Inverse

Commutative

X

 \checkmark

 \checkmark

 \checkmark

A Field

 $F = \langle Z_p, +, * \rangle$

- A set of elements with two binary operations whose result is also in the set and
- Has following properties:
 - It's an Abelian Group for Addition Operation
 - It's an Abelian Group for Multiplication Operation
 - Identity of 1st operation has no inverse in 2nd operation.

Closure	Closure		
Associative	Associative		
Identity	Identity		
Inverse	Inverse		
Commutative	Commutative		
tion			

A Field - example

$$Z_7 = \{0, 1, 2, 3, 4, 5, 6\} \quad F = \langle Z_p, +, * \rangle \quad Z_{7^*} = \{1, 2, 3, 4, 5, 6\}$$

P represents prime numbers

A Field - example

in Z_p we can perform+, –,* and \div

$$Z_7 = \{0,1,2,3,4,5,6\} F = \langle Z_p, +, * \rangle Z_{7^*} = \{1,2,3,4,5,6\}$$
P represents prime numbers

$$(3 + 0) mod 7 = 3$$

 $(3 * 1) mod 7 = 3$

$$(4 + (-4))mod 7 = 0$$

(4 + (-4 mod 7))mod 7 = 0
(4 + (3))mod 7 = 0
(7)mod 7 = 0

$$(4 * (4^{-1}))mod 7 = 1$$

gcd(7,4) = 1
(4 * (2))mod 7 = 1
(8)mod 7 = 1

Zn	+	*
Closure	\checkmark	\checkmark
Associative	\checkmark	\checkmark
Identity	\checkmark	\checkmark
Inverse	\checkmark	\checkmark
Commutative	\checkmark	\checkmark

Extended Euclidean to find the value of 4^{-1} in mod 7

Finding Inverse Numerical 1

Coemident $ex.2. E_{23}(1,1)$, where $a=1, b_{2}$ formeque: y2 = x3 + x+1 (mod 23) P=23 (mime no.) (0.... 22) i. P= (13,7) then find -p 2) Ordditive $-p = (\alpha, -\gamma)$ inverse. - (13, -7) add mod 23 to (-7) = 15(= (13,16) pino rebieno) [in modular anithmetic, we don't un -re no.s. , convert that to the no.

Addition rules

Addition in elliptic Cerme anithmetic: IF P= (xp, Yp) and Q= (xe, ye) with P = Q then, R= PtQ = (2KR, YR). where, $a_R = (\lambda^2 - a_p - \lambda_a) \mod p$ $Y_R = (\lambda = (\chi_P - \chi_R) - \gamma_P) \mod p$ 7 = stope of the chippic carre λ=) (YQ-YP) mod p iF P=Q $\left(\frac{3\chi_p^2 + \alpha}{2\chi_p}\right) \mod p$ if $p = \alpha$. = es ham c. = make at 11 - 3 -

84

Addition numerical

• P = (3,10), Q = (9,7), E₂₃(1,1)

Addition Numerical

xp = (12-xp-xa) mod p. ex. $= (11^2 - 3 - 9) \mod 23^{-1}$ = (121-12) mod 23 E 23(1,1) [of the term Ep (9,1) 1.7 1 $= 109 \mod 23$ $\chi_{p} = 17.$ T.II Pab i) Find PtQ. Addition. 3 Sol: Here, P = Q. () () MR = (X (2p-2p) - Yp) mod p So, $\lambda = \left(\frac{\gamma_{q} - \gamma_{p}}{\varkappa_{q} - \varkappa_{p}}\right) \mod p$. = (11(3-17)-10) mod 23 = (11 (-14) - 10) mod 23 $= \left(\frac{7-10}{9-3}\right) \mod 23.$ = (-154-10) mod 23. = -164 mod 23 [Hint $=\left(\frac{-3}{6}\right) \mod 23 = \left(\frac{-1}{2}\right) \mod 23.$ = 20 mod 23 23×7=161 = -2 mod 23. = - (12 /.3) = 20. - ve no. is not allowed 23×8=184 = -(-1)/mgd/23 = 23-12=11= 11 mod/23 = 11. fauger. 184-164 do, find no. in multiples of = 20 23 which is 7 164 and stubtract 164 tom that no.

Multiplication Numerical

ii Multiplication in Elliphic Curre anithmetic.

: R = P + R = (17, 20)

2p = RN multiplication, rive consider repeated addition. 2p=p+p. 4p= p+p+p+p. born top bort of

NOW, P = (3, 10), and P = Q.

 $\lambda = \left(\frac{32p^2 + a}{2\gamma_p}\right) \mod p.$ = $\left(\frac{3(3)^2 + 1}{2\times 10}\right) \mod 23.$

 $= \frac{28}{20} \mod 23 = \frac{28 \mod 23}{20}$ = $\frac{5}{20} \mod 23 = \frac{1}{4} \mod 23$ = $4' \mod 23 = 6 \mod 23$.

Ap=(2 - 2p - 2@) mod ip ... $= (6^2 - 3 - 3) \mod 23$. 1 mitosites with = (36-6) mod 23. - 30 mod 23 R=7. montibles between YR= (1 (ap - ar) - Yp) mod p = (6 (3-7) -10) mod 23 = (6 (-4) - 10) mod 23 = (-24-10) mod 23 = - 34 mod 23. Hint YR= 12-01 = (01 born 8 23 × 2=46 2p= (7,12) . 46 × 34=12

(of boar =) - 21 =

Multiplication Numerical

ii Multiplication in Elliphic Curre anithmetic.

: R = P + R = (17, 20)

2p = RN multiplication, rive consider repeated addition. 2p=p+p. 4p= p+p+p+p. born top bort of

NOW, P = (3, 10), and P = Q.

 $\lambda = \left(\frac{32p^2 + a}{2\gamma_p}\right) \mod p.$ = $\left(\frac{3(3)^2 + 1}{2\times 10}\right) \mod 23.$

 $= \frac{28}{20} \mod 23 = \frac{28 \mod 23}{20}$ = $\frac{5}{20} \mod 23 = \frac{1}{4} \mod 23$ = $4' \mod 23 = 6 \mod 23$.

Ap=(2 - 2p - 2@) mod ip ... $= (6^2 - 3 - 3) \mod 23$. 1 mitosites with = (36-6) mod 23. - 30 mod 23 R=7. montibles between YR= (1 (ap - ar) - Yp) mod p = (6 (3-7) -10) mod 23 = (6 (-4) - 10) mod 23 = (-24-10) mod 23 = - 34 mod 23. Hint YR= 12-01 = (01 born 8 23 × 2=46 2p= (7,12) . 46 × 34=12

(of boar =) - 21 =

Numerical - 2

ex. 2. Given y2 = 23 + 2x+3 mod 17. Point P = (5, 11)1. Find 2p. Stope of line J. $\lambda = 3 \times (5)^2 + 2 \mod 17.$ 2 × 11 $= \frac{75+2}{22} \mod 17 = \frac{9}{5} \frac{77}{22} \mod 17$ 77 (mod 17) = 9 22 mod 17 = 5. $= \frac{9}{5} \mod 17 = 9 \times 5^{-1} \mod 17$. Frow find 5' mod 77 \$7×2=54 5X _ mod 17 = 1. 5×7 mod 17 = 1 So, q X 17 mod P7 = 63 1. 27

Find coordinates N3, Y3. 23= (12)² - 5 - 5 mod 17. L (2, 4 12 are starry = 144-10 mod 17. x3 = 134 mod 17 = 15. $J_3 = 12(5 - 15) - 11 \mod 17$. = 12(-10)-11 mod 17 = - 120 - 11 mod 17. (1 born) pr = - 131 mod 17. = El boon se B = ti pour B Find -134 mod 17 = - (131 1.17) 4 how = - 12. = -12 + 17 = 52P = (75,5).

Numerical – 2 (cont.)

$$N_{3} = 13 (5 - 13) - 11 \mod 17.$$

$$= 13 (-8) - 11 \mod 17.$$

$$= -115 \mod 17 = 4.$$

$$3p = (13, 4).$$

$$(3u, 4u) = (5, 11)$$

$$(3u, -4u) = (5, -11 + 17)$$

Elliptic Curve over GF(2^m)

- For elliptic curves over GF(2^m), we use a cubic equation in which the variables and coefficients all take on values in GF(2^m) for some number m and in which calculations are performed using the rules of arithmetic in GF(2^m).
- It turns out that the form of cubic equation appropriate for cryptographic applications for elliptic curves is somewhat different for GF(2^m) than for Z_p.

Elliptic Curve over GF(2^m)

The form is

• $y^2 + xy = x^3 + ax^2 + b$

 where it is understood that the variables x and y and the coefficients a and b are elements of GF(2^m) and that calculations are performed in GF(2^m).

Elliptic Curve over GF(2^m) – rule

It can be shown that a finite abelian group can be defined based on the set $E_{2^m}(a, b)$, provided that $b \neq 0$. The rules for addition can be stated as follows. For all points $P, Q \in E_{2^m}(a, b)$:

- 1. P + O = P.
- 2. If $P = (x_P, y_P)$, then $P + (x_P, x_P + y_P) = O$. The point $(x_P, x_P + y_P)$ is the negative of P, which is denoted as -P.
- 3. If $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ with $P \neq -Q$ and $P \neq Q$, then $R = P + Q = (x_R, y_R)$ is determined by the following rules:

$$x_R = \lambda^2 + \lambda + x_P + x_Q + a$$

$$y_R = \lambda(x_P + x_R) + x_R + y_P$$

where

$$\lambda = \frac{y_Q + y_P}{x_Q + x_P}$$

4. If $P = (x_P, y_P)$ then $R = 2P = (x_R, y_R)$ is determined by the following rules:

$$x_R = \lambda^2 + \lambda + a$$

$$y_R = x_P^2 + (\lambda + 1)x_R$$

where

$$\lambda = x_P + \frac{y_P}{x_P}$$
94

GF(2^m)

- Computational considerations:
- A polynomial f(x) in GF(2ⁿ) is;
 f(X) = a_{n-1}xⁿ⁻¹ + a_{n-2}xⁿ⁻² +a₁x + a₀
- Uniquely represented by its 'n' coefficients (a_{n-1}, a_{n-2},a₀). a_i ∈ {0,1}
- Thus every polynomial in GF(2ⁿ) can be represented by an n-bit number
- the coefficients and variables are in finite field

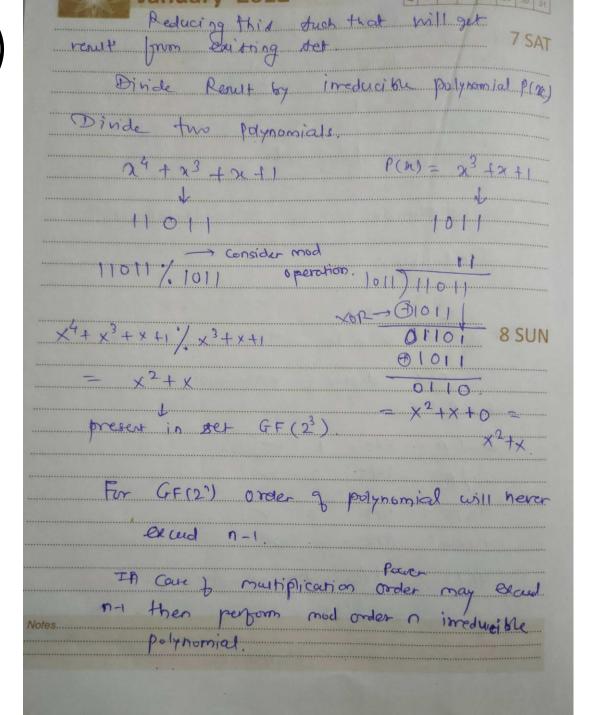
GF(2^m) - basics

Advanced Encyption standard -Finite Field GF(2") Fields. 1 SUN GF(2) = GF(2') = {0,1} - power 1 for primeno. Called as prime field $GF(8) = GF(2^3) = p^{m} > 1 - extension Field.$ set of polynomials. $G_F(2^\circ) = \langle$ Contains 8 polynomial elements in this set as follows, polynamia 000 $- \alpha x^2 + \alpha x + 1 \rightarrow 0$ 001 $- 0(x^2) + 0(x) + 1 \rightarrow \bot$ $0 10 - 0(x^2) + 1(x) + 0 - x + 0 - x$ $011 \rightarrow 0x^2 + x + 1 \rightarrow x + 1$ - x2 +0+0 -> x2 00 1.01 $- \chi^{2} + 1$ 10 -> x2+x + x2 + 2 + 1 = {0, 1, 2, 2+1, 22, 22+1, 22+2, 22+2+1 Let, take any two elements and perform addition .

GF(2^m)

	* Addition: in binite field is XOR OperationTU
IJ ⊕	$2^{2}+2+1$ $2^{2}+2+0$ $2^{2}+3+0$ $12^{2}+12+0$ $12^{2}+12+0$
	0 + 0 + 1 = 1.
	two equal terms gets cancelle in xor.
	Addition operation racult is a part of set
2]	$x^{2} + 0 + 1$
	$+ \chi^2 + \chi + \chi$
	$0 + \times +1 \rightarrow \times +1 - is a part q Selver$
*	Multiplication in $G \in (2^3)$.
	$(x^2 + x + 1)$ $(x^2 + 1)$
	$= x^{4} + x^{3} + x^{2} + x^{2} + x + 1$
	Apply add operation with XOR
	after Cancellation of Aimilar tems.
Alatas	$= \chi^4 + \chi^3 + \chi + 1$
Notes	

GF(2^m)



98

Elliptic Curve over GF(2^m)

- Find points on curve
- Reference https://www.certicom.com/content/certicom/en/4 1-an-example-of-an-elliptic-curve-group-overf2m.html

ECC Algorithm - ECDH

• ECC key exchange – similar to DH Key exchange

Global public elements

- Eq(a,b) Elliptic curve parameters a,b and q prime no. or integer of the form 2^m.
- G point on the elliptic curve
- User A key generation
 - Select private key n_A , $n_A < n$
 - Calculate public key P_A , $P_A = n_A * G$
- User B key generation
 - Select private key n_B , n_B < n
 - Calculate public key P_B , $P_B = n_B * G$

ECDH Algorithm

- Calculation of secret key by User A, $K = n_A * P_B$
- Calculation of secret key by User B, $K = n_B * P_A$

ECC encryption

Let the message be M

First encode this message M into a point on elliptic curve. Let this point be P^m

- For encryption: choose a random positive integer K.
- The cipher point will be,
 - Cm = {KG, $P_m + KP_B$ }
 - This point will be sent to receiver.

ECDH Algorithm

- For Decryption: multiply x-coordinate with receiver's secret key - KG * n_B
- Then subtract from coordinate of cipher point;
- $Pm + KP_B (KG * n_B)$
- We know that, $P_B = n_B * G$

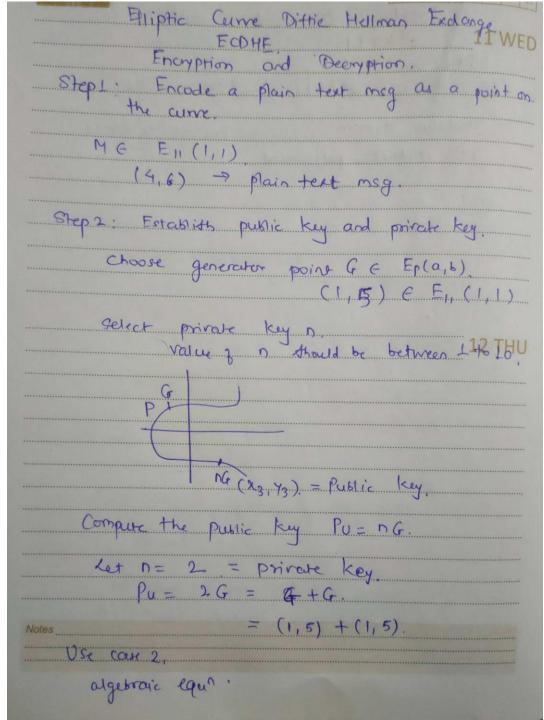
So substitute in above equation and we get,

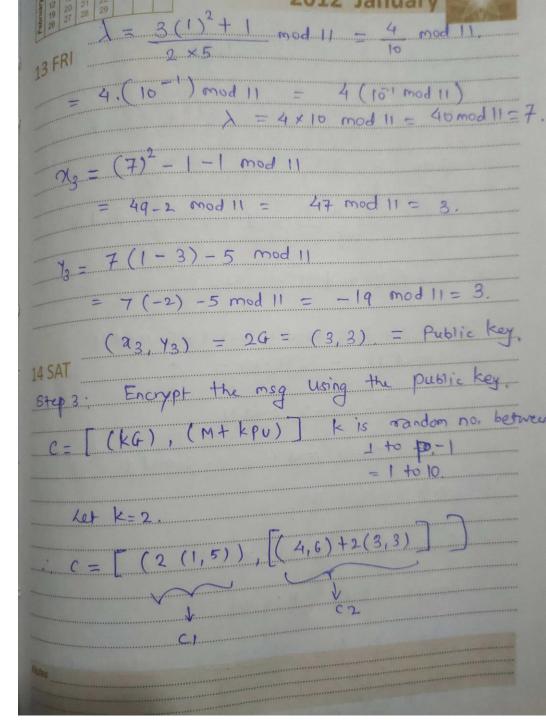
•
$$Pm + KP_B - KP_B$$

Pm

So, receiver gets the same point.

ECDH - numerical





$$C_{1} = 2 C_{1} (5) = (1,5) + (1,5) = (3,3) = 15 Sup
C_{2} = (4,6) + 2(3,3) = (4,6) + (3,3)(3,3)
Compute (3,3) + (3,3)
$$\frac{\lambda}{2} = \frac{3 \times 3^{2} + 1}{2 \times 3^{2}} \mod 11 = \frac{23}{6} \mod 11$$

$$= 23 \cdot (6)^{-1} \mod 11 = -1$$

$$R_{3} = 1 - 3 - 3 \mod 11 = 1 - 6 \mod 11$$

$$= -5 \mod 11 = (11 - 5) = -6 \qquad 16 \mod 11$$

$$= -3 - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} - (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$

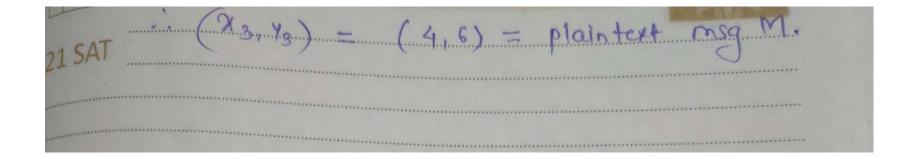
$$R_{3} + (3 - 6) - 3 \mod 11 = -6 \mod 11 = 5$$$$

$$TUE = \frac{4}{25 - 10 \mod 11} = 15 \mod 11 = 4$$

$$\frac{1}{25 - 10 \mod 11} = 15 \mod 11 = 4$$

$$\frac{1}{25 - 10 \mod 11} = 5$$

Pecal, Additive inverse
$$P$$
 is $-P$ 19 THU
 $P(q^{2,4})$
 $(q^{2,-4})$
 $(q^{2,-4})$
 $(q^{2,-4})$
 $(q^{2,-4})$
 $(q^{2,-4})$
 $(q^{2,-4})$
 $(q^{2,-5})$
 $= (q^{2,5}) + [(-6, 5)]$
 $= (q^{2,5}) + [(-6, 5)]$
 $(q^{2,-5})$
 $(q^{2,-5})$



Factoring with Elliptic Curves

Basis idea: To factorize an integer n choose an elliptic curve E, a point P on E and compute (modulo n) either iP for i = 2, 3, 4, ... or $2^{j}P$ for j = 1, 2, ... The point is that in doing that one needs to compute gcd(k,n) for various k. If one of these values is between 1 and n we have a factor of n.

Factoring of large integers: The above idea can be easily parallelised and converted to using an enormous number of computers to factor a single very large n. Each computer gets some number of elliptic curves and some points on them and multiplies these points by some integers according to the rule for addition of points. If one of computers encounters, during such a computation, a need to compute 1 < gcd(k, n) < n, factorization is finished.

Example: If curve $E: y^2 = x^3 + 4x + 4 \pmod{2773}$ and its point P = (1,3) are used, then 2P = (1771, 705) and in order to compute 3P one has to compute gcd(1770, 2773) = 59 – factorization is done.

Example: For elliptic curve $E: y^2 = x^3 + x - 1 \pmod{35}$ and its point P = (1, 1) we have 2P = (2, 2); 4P = (0, 22); 8P = (16, 19) and at the attempt to compute 9P one needs to compute gcd(15, 35) = 5 and factorization is done.

Factoring with Elliptic Curves - example

Step 1. Generate an elliptic curve with point P mod n $y^2 = x^3 + 10x - 2 \pmod{4453}$ let P = (1,3)

Step 2. Compute BP for some integer B.

Lets compute 2P first $\frac{3x^2 + 10}{2y} = \frac{13}{6} \equiv 3713 \pmod{4453}$ We used the fact that gcd(6,4453) = 1 to find $6^{-1} \equiv 3711 \pmod{4453}$ we find that 2P = (x, y) with $x \equiv 3713^2 - 2$ $y \equiv -3713(x-1) - 3 \equiv 3230$

2P is (4332, 3230) Ex: We want to factor 4453

Factoring with Elliptic Curves – example (cont.)

Step 3. If step 2 fails because some slope does not exist mod n, the we have found a factor of n.

To compute 3P we add P and 2P

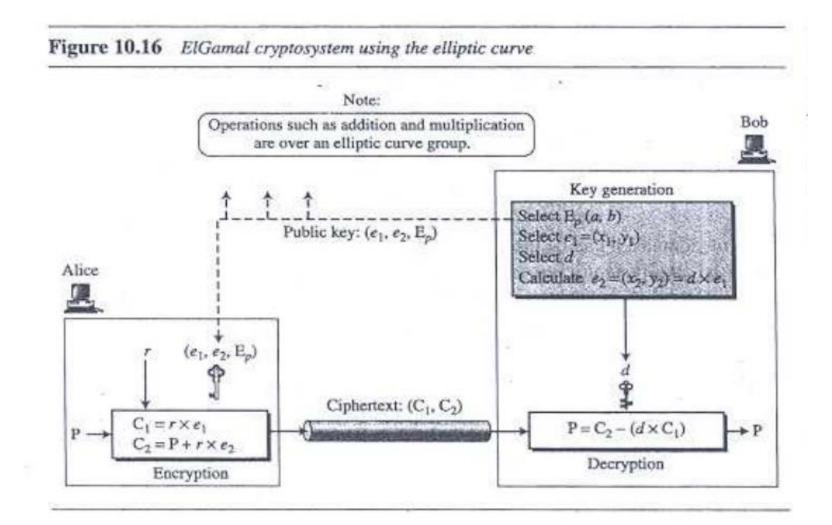
The slope is
$$\frac{3230-3}{4332-1} = \frac{3227}{4331}$$

But $gcd(4331, 4453) = 61 \neq 1$ we can not find $4331^{-1} \pmod{4453}$

However, we have found the factor 61 of 4453

Elliptic Curve Cryptography Simulating ElGamal

ElGamal with Elliptic Curve



ElGamal with Elliptic Curve (cont.)

Generating Public and Private Keys

- 1. Bob chooses E(a, b) with an elliptic curve over GF(p) or $GF(2^n)$.
- 2. Bob chooses a point on the curve, $e_1(x_1, y_1)$.

 $C_1 = r \times e_1$

- 3. Bob chooses an integer d.
- Bob calculates e₂(x₂, y₂) = d × e₁(x₁, y₁). Note that multiplication here means multiple addition of points as defined before.
- Bob announces E(a, b), e₁(x₁, y₁), and e₂(x₂, y₂) as his public key; he keeps d as his private key.

Encryption

Alice selects P, a point on the curve, as her plaintext, P. She then calculates a pair of points on the text as ciphertexts:

 $C_2 = P + r \times e$

ElGamal with Elliptic Curve (cont.)

Decryption

Bob, after receiving C1 and C2, calculates P, the plaintext using the following formula.

 $P = C_2 - (d \times C_1)$ The minus sign here means adding with the inverse.

We can prove that the P calculated by Bob is the same as that intended by Alice, as shown below: -

 $\mathbf{P} + r \times e_2 - (d \times r \times e_1) = \mathbf{P} + (r \times d \times e_1) - (r \times d \times e_1) = \mathbf{P} + \mathbf{O} = \mathbf{P}$

P, C₁, C₂, e_1 , and e_2 are all points on the curve. Note that the result of adding two inverse points on the curve is the *zero point*.

ElGamal with Elliptic Curve -Numerical

Example 10.19

Here is a very trivial example of encipherment using an elliptic curve over GF(p).

- 1. Bob selects E₆₇(2, 3) as the elliptic curve over GF(p).
- 2. Bob selects $e_1 = (2, 22)$ and d = 4.
- 3. Bob calculates $e_2 = (13, 45)$, where $e_2 = d \times e_1$.
- Bob publicly announces the tuple (E, e1, e2).
- 5. Alice wants to send the plaintext P = (24, 26) to Bob. She selects r = 2.
- 6. Alice finds the point $C_1 = (35, 1)$, where $C_1 = r \times e_1$.
- 7. Alice finds the point $C_2 = (21, 44)$, where $C_2 = P + r \times e_2$.
- Bob receives C₁ and C₂. He uses 2 × C₁ (35, 1) to get (23, 25).
- 9. Bob inverts the point (23, 25) to get the point (23, 42).
- 10. Bob adds (23, 42) with $C_2 = (21, 44)$ to get the original plaintext P = (24, 26).

References

- William Stalling
- Forouzan