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Public Key Cryptosystems (1)

* Public-key/two-key/asymmetric cryptography involves the use of two keys: —

* a public-key, which may be known by anybody, and can be used to encrypt

messages, and verify signatures

* a related private-key, known only to the recipient, used to decrypt

messages, and sign (create) signatures

* Is asymmetric because — those who encrypt messages or verify signatures

cannot decrypt messages or create signatures

* Asymmetric algorithms rely on one key for encryption and a different but
related key for decryption. These algorithms have the following important

characteristic.

* It is computationally infeasible to determine the decryption key given only

knowledge of the cryptographic algorithm and the encryption key. 5



Public-Key Cryptosystems (2)

* In addition, some algorithms, such as RSA, also exhibit the following

characteristic.

* Either of the two related keys can be used for encryption, with the other used for

decryption.

* A public-key encryption scheme has following ingredients

Plaintext: This is the readable message or data that is fed into the algorithm as input.

Encryption algorithm: The encryption algorithm performs various transformations on

the plaintext.

Public and private keys: This is a pair of keys that have been selected so that if one is used
for encryption, the other is used for decryption. The exact transformations performed by

the algorithm depend on the public or private key that is provided as input.

Decryption algorithm: This algorithm accepts the ciphertext and the matching key and

produces the original plaintext.



erms for further slides ..

There is some source A that produces a message in plaintext, X = [X;, X,, ...., Xl

The M elements of X are letters in some finite alphabet.

The message is intended for destination B.

B generates a related pair of keys: a public key, PU,, and a private key, PR,.

PR, is known only to B, whereas PU, is publicly available and therefore accessible by A.

With the message X and the encryption key PU, as input, A forms the ciphertext Y =
Yy, Yy e, Yo
« Y=E(PU,, X)

* The intended receiver, in possession of the matching private key, is able to invert the

transformation:

X = D(PR,Y)



Public Key Cryptosystems (3)
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Public Key Cryptosystems (4)
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Table 9.2  Conventional and Public-Key Encryption

Conventional Encryption Public-Key Encryption
Needed 1o Work: Needed o Work:
1. The same algorithm with the same key 1s 1. One algorithm is used for encryption and a related
used for encryption and decryption. algorithm for decryption with a pair of keys, one for
2. The sender and receiver must share the encryption and one for decryption.
algorithm and the key. 2. The sender and receiver must each have one of the
Needed for Security: maltched pair of keys (not the same one).
1. The key must be kept secret. Needed for Security:
2. It must be impossible or at least impractical L. One of the two keys must be kept secret.
to decipher a message if the key is kept 2. It must be impossible or at least impractical to
secrel. decipher a message if one of the keys is kept secret.
3. Knowledge of the algorithm plus samples of 3. Knowledge of the algorithm plus one of the keys
ciphertext must be insufficient to determine plus samples of ciphertext must be insufficient to
the key. determine the other key.




Public Key Cryptosystems -
Confidentiality
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Public Key Cryptosystems -
Authentication
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Public Key Cryptosystems

Source A Destination B
Encryption Decryption Decryption Es5age
Algorithm Algorithm Algorithm Dest.

'

Combining secrecy and authentication
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Application of public key
cryptography

* Encryption/Decryption: sender encrypts the message

with receiver’s public key

 Digital Signature : sender signs the message with his

private key

* Key exchange: Both sender and receiver cooperate to
exchange a session key typically for conventional

encryption.



Application o

cryptography

Table 9.3 Applications for Public-Key Cryptosystems

" public key

Algorithm Encryption/Decryption | Digital Signature Key Exchange
RSA Yes Yes Yes
Elliptic Cuive Yes Yes Yes
Diffie-Hellman No No Yes
DS5S No Yes No
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Requirements of Public Key
Cryptography (1)

Algorithm must fulfill;

* It is computationally easy for a party B to generate a key pair

(public key PU,, private key PR,).

* It is computationally easy for a sender A, knowing the public key
and the message to be encrypted, M, to generate the
corresponding ciphertext:

e C=E(PU,, M)

* It is computationally easy for the receiver B to decrypt the

resulting ciphertext using the private key to recover the original

message:

* M =D(PR,, C) = D[PR,, E(PU,, M)]



Requirements of Public Key
Cryptography (2)

Algorithm must fulfill;

* It is computationally infeasible for an adversary, knowing

the public key, PU,, to determine the private key, PR,

* It is computationally infeasible for an adversary, knowing
the public key, PU,, and a ciphertext C, to recover the

original message, M.

* The two keys can be applied in either order:

M =D[PU,, E(PR,, M)] = D[PR,, E(PU,, M)]
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The RSA Algorithm (1)

It was developed in 1977 by Ron Rivest, Adi Shamir, and
Len Adleman at MIT and first published in 1978 [RIVE78].

The Rivest-Shamir-Adleman (RSA) scheme has since that time reigned
supreme as the most widely accepted and implemented general-

purpose approach to public-key encryption.

The RSA scheme is a cipher in which the plaintext and ciphertext are

integers between 0 and n -1 for some n.

A typical size for nis 1024 bits, n is less than 21024,
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The RSA Algorithm (2)

Description
* RSA makes use of an expression with exponentials.

* Plaintext is encrypted in blocks, with each block having a binary value

less than some number n. That is, the block size must be less than or

equal to log,(n) + 1;
* in practice, the block size is i bits, where 2' < n <= 2*!

* Encryption and decryption are of the following form, for some plaintext

block M and ciphertext block C.
« C=Memodn

e« M =CYmodn
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The RSA Algorithm (3)

Description
 Both sender and receiver must know the value of n.

* The sender knows the value of e, and only the receiver

knows the value of d.
* Thus, this is a public key encryption algorithm with
a public key of PU = {e, n} and

a private key of PR = {d, n}.



The RSA Algorithm (4)

Description

* For this algorithm to be satisfactory for public-key

encryption, the following requirements must be met.

It is possible to find values of e, d. n such that M mod n = M for all M < n.
It is relatively easy to calculate M® mod n and C¥mod n for all values of M < n.

It is infeasible to determine d given e and ».
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The RSA Algorithm (5)

The preceding relationship holds if e and 4 are multiplicative inverses modulo ¢(n),
where ¢(n) i1s the Euler totient function. It is shown in Appendix B that for p, g

prime, d(pg) = (p — 1)(g — 1). ¢(n), referred to as the Euler totient of n, is the
number of positive integers less than n and relatively prime to n. The relationship
between e and d can be expressed as

ed mod db(n) = 1

This 1s equivalent to saying
ed mod d(n) = 1
d mod ¢(n) = e
That 1s, e and d are multiplicative inverses mod ¢(n). According to the rules of

modular arithmetic, this is true only if d (and therefore e) is relatively prime to

d(n). Equivalently, ged(d(n).d) = 1; that is, the greatest common divisor of ¢(n)
and d is 1.
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The RSA Algorithm (5)

Figure 21.5 summarizes the RSA algorithm. Begin by selecting two prime
numbers, p and g, and calculating their product n, which is the modulus for encryp-
tion and decryption. Next, we need the quantity ¢(n). Then select an integer e that
is relatively prime to ¢(n) [i.e., the greatest common divisor of e and &(n) is 1].
Finally, calculate d as the multiplicative inverse of ¢, modulo ¢(n). It can be shown
that d and e have the desired properties.

20



RSA Scheme

Key Generation by Alice
Sclect p, g p and g both prime, p # g

Calculaten = p X g
Calcuate d(n) = (p — 1)(g — 1)

Select integer e gcd (P(n), e) = 1:1 < e < d(n)
Calculate d d = ¢! (mod ¢(n))

Public key Pl = (e, n)

Private key PR = |d, n}

Encryption by Bob with Alice’s Public Key
Plaintext: M <n

Ciphertext: C=Mmodn

Decryption by Alice with Alice’s Public Key
Ciphertext: C
Plaintext: M = CYmodn

Fignre 9.5 The RSA Algorithm




RSA Numerical

Example 1
Key G tion by Ali
. P=3, q=5 S ey Generation ‘\' ce |
clect p, g p and g both prime, p # ¢
* N= p*q =15 Calculaten = p X q
Calcuate ¢(n) = (p = 1)(g = 1)
_ — )%k —
¢ (D(n) - (p'l)(q_l) =2%4 = 8 Select integer e ged (d(n),e) = 151 < e < d(n)
: = -1
° ch(e' (D(n) ) — 1 Where, 1<e< (D(n) Calculate d d = ¢ (mod d(n))
Public key Pll = {e, n)
e Lete=3 Private key PR = {d,n)

de mod O(n) =1

Encryption by Bob with Alice’s Public Key

d * 3 mOd 8=1 Plaintext: M<n
Ciphertext: C = M'modn
* So,d=3
. Decryption by Alice with Alice’s Public Key

* Public key = (e,n) = (3,15) CobEt: :

. S i — d
e Private key — (d’n) - (3’15) Plaintext: M= C'modn
. |_et M: 4 Figure 9.5 The RSA Algorithm

e C= Mémodn=43>mod 15=4
e M =C"modn =43mod 15=4
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Example 2
e P=11,9=3

RSA Numerical

Key Generation by Alice
Sclect p, g p and g both prime, p # ¢
Calculaten = p X q
Calcuate ¢(n) = (p = 1)(g = 1)

Select integer e ged (d(n),e) = 11 < e < ¢(n)
Calculate d d = ¢ (mod d(n))

Public key Pl = (e, n)

Private key PR = |d, n}

Encryption by Bob with Alice’s Public Key
Plaintext: M<n
Ciphertext: C=Mmodn

Decryption by Alice with Alice’s Public Key
Ciphertext: C
Plaintext: M = C'modn

Figure 9.5 The RSA Algorithm
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RSA Numerical

Example 2
e P=1 1’ q= 3 Key Generation by Alice |

Sclect p, g p and g both prime, p # ¢
* N=p*q=33 Calculaten = p X q

Calcuate ¢(n) = (p - 1)(g - 1)

®(n) = (p-1)(g-1) = 10*2 = 20

Select integer e ged (d(n),e) = 151 < e < d(n)
: =
° ch(e' (D(n) ) - 1 Where, 1<e< (D(n) Calculate d d = ¢ (mod d(n))
Public key Pll = {e, n)
e Lete=3 Private key PR = {d,n)

de mod O(n) =1

Encryption by Bob with Alice’s Public Key

d * 3 mOd 20=1 Plaintext: M<n
Ciphertext: C = M'modn
e So,d=7
. Decryption by Alice with Alice’s Public Key

* Public key = (e,n) = (3,33) CobEt: :

. S i — d
e Private key — (d’n) - (7’33) Plaintext: M= C'modn
. |_et M: 7 Figure 9.5 The RSA Algorithm

e C= Mémodn=7mod33=13
e M =C"modn =13"mod33=7
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Attacks on RSA



Attacks on RSA

* Mathematical attack
* Factorization
e Common Modulus

* Short Message attack
* Timing attack
e Cycling attack
* Chosen cipher attack



Factorization attacks on RSA

Factoring 1s splitting an integer into a set of smaller
integers which, when multiplied together form the
original integer.

The problem: for example, 2*7 =14 .

The factoring problem is to find 2 and 7 when given 14.
Prime factorization requires splitting an integer into factors
that are prime numbers.

This problem in factoring that an RSA modulus would
allow an attacker to figure out the private key from the
public key.
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Factorization attacks on RSA
(cont.)

e The solution: choose two large primes with a larger
modulus for becoming a larger and so, the attacker needs
more time to figure it out.

e Tow primes should be one 1s much smaller than other.

e If the two primes are extremely close or their difference
1s close to any predetermined amount, then there 1s a
potential security risk, but the probability that two
randomly chosen primes are so close 1s negligible.

28



Common Modulus Attack

++ If multiple entities share the same modulus n=pq with different
pairs of (e ,, d), it is not secure. Do not share the same modulus!

<+ Cryptanalysis: If the same message M was encrypted to
different users

Useru,:C, =M1 modn

Useru,:C,=M=2modn
Ifgcd( e,,e,)=1,there are aand b s.t. ae, + be,= 1 modn
Then,

(C,)3(C,)> mod n = (M #1)3(Me2)® mod n = M 2e1**¢2 mod n = M mod n

29



Short Message Attack

» Typical use of public key algorithm:
Generating short messages
— Symmetric keys (used then to send rest of message)
— Social security numbers, etc.

* |dea:
— Adversary acquires public key E, n

— Uses them to encrypt all possible messages that may be sent
(plausible if messages are short enough!) and stores in table

— Intercepts encrypted message C and searches for match in the
table

Adversary can recover plaintext without decryption key!

30



Short Message Attack (cont.)

« Example:
Darth knows that Bob will use Alice’s public key to send
her a Social Security Number (9 digits)

. ' 2
C Alice’s Ky,
- Public

&k . 4
Insecure channel

31



Short Message Attack (cont.)

« Darth uses Alice’s public key Kp, to encrypt all possible

Social Security Numbers

(only a billion)

)7

- , /
000-00-0000 | Alice’s Koy [Maiazan
N ﬁ' ses
298-76-8466 = 98nnsap43
Public

298-76-8467 {290u9kjwn
298-76-8468 kmqwe844
999-99-9999 Jbn29q004s

32



Short Message Attack (cont.)

« Darth intercepts Bob’s SSN encrypted with Alice’s public key
« Searches for maich in table of encrypted values

( j290u9kjwn
“ — ’ N
. S v 8t
Insecure channel N
000-00-0000 jk34jk234n
" 298-76-8466 98nnsapd3
" q208768467 > f—(j200uskiwn ) | —
P P Message matches this
‘ 298-76-8468 lkmqwe844
corresponding
plaintext value 999-99-9999 Jbn29q004s
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Short Message Attack (cont.)

» Solution: Pad message to M bits

— M large enough so adversary can’t generate all 2/
possible messages

— Can't just add extra bits to end — still possible to crack

« Optimal Asymmetric Encryption Padding (OAEP)

— Additional bits used as “mask” to conceal plaintext
« Mask generated randomly
« Mask data sent as part of encrypted message for decryption

— Based on cryptographic hash (more later)
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Timing Attack

 |f adversary knows the following:
— Ciphertext C

« Can be intercepted

« Can compute how long it takes to multiply ciphertext and
compute mods

— Total time decryption takes
» Can be observed

They could compute number of 1's in private D

« Given enough known plaintexts, can reliably guess D
completely

35



Timing Attack (cont.)

« Fast exponentiation algorithm used for decryption

to compute CP mod n:
result = 1

for (1 = ( to number of bits 1n D = 1) {
ifE (A" it of D =\

result = (resulX * C) mod n =
C = ¢ mod o
}

» Speed of decryption depends on number of 1’'s in D
— Each 1 requires additional multiplication operation

— Each 0 skips that step
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Timing Attack (cont.)

Solutions:
« “Pad” algorithm so all decryptions take same time
for (1 = 0 to number of bits in D - 1) {
if (it bit of D= 1) result = (result * £) mod n
else garbageVariable - [result * C) mod n

C = C% mod n
}

37



Cycling Attack




Chosen Cipher Attack

xt Attack

attack is based on multiplicative property of RSA algorithm. Let m; and m, be two
es. and let ¢; and ¢, be their respective RSA encryptions. Now,

(mymy)* mod n = m,°m,° mod n = (m,° mod n) x (m, mod n) = €€z

other words, RSA encryption of product of two messages.is th_e.product of thelr W
tions. The adversary can use this property to decrypt Meglqmawly copied m
se Bob sends to Alice a ciphertext ¢, which the adversary copies. We assume c
¢ arbitrary ciphertext from the adversary o}her}han c. The advaszy emw!h. £
a5 ¢’ = cx* mod n, where x is a random integer in Z,,'and has mmw mverse -
e sends ¢’ to Alice for decryption. Alice computes m and returns it adversary

m’ = (c)? mod n = (cx®)® mod n = ¢ mod n = mx mod n
¢ adversary computes m by multiplying m” and multiplicative inverse of x.
' x  mod n = mxx' modn=m

is simple attack can be prevented by imposing a stmcmreotfothe blaintext |
ing a pad to m. Alice would notice structural discrepancy

¢ The
essage m’ to the adversgy.‘
would not return the decrypted mmcti ngws e ol

plaintext for this purpose is so

Reference : https://crypto.stackexchange.com/questions/2323/how-does-a-chosen-plaintext-attack-on-rsa-work
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Elliptic Curve Cryptography

>ECC can be defined as: EC over Z , and EC over GF(2™).

>ECC can be used for Key exchange and Encryption.

Elliptic curves over Z  :

>The curve of this type is prime curve

>The variables and coefficients are restricted to elements of a finite field.
>The values are restricted from 0 through p-1. If the values exceeds the range
perform modulo p.

>The curve is represented by y> mod p = (x® + ax +b) mod p

40



How can two people in a crowded room derive a
secret that only the pair know, without revealing

the secret to anyone else that might be listening?

41



Diffie Hellman Key Exchange(1)

 The Diffie-Hellman Key Exchange is a means for two
parties to jointly establish a shared secret over an
unsecure channel, without having any prior knowledge of

each other.

* This protocol is widely used in protocols like IPSec and

SSL/TLS.

* Using this protocol, sending and receiving devices in a
network derive a secret key then be used for subsequent

symmetric encryption of messages.



Diffie Hellman Key Exchange(2)

Not an encryption algo
Used to exchange secret key between two users
Uses asymmetric encryption to exchange the secret key

Depends for its effectiveness on the difficulty of computing
Discrete Logarithms (Refer Chapter — Number Theory
(Stalling)).



Diffie Hellman Key Exchange(3)

e A primitive root of a prime number p is one whose powers modulo p
generate all the integers from 1 to p - 1. That is, if a is a primitive root of

the prime number p, then the numbers

1 —
amodp,a°modp, ... ,a" 'modp

are distinct and consist of the integers from 1 through p — 1 in some permutation.
For any integer b and a primitive root a of prime number p, we can find a
unique exponent i such that

b = a' (mod p) where 0 =i = (p — 1)

* The exponent i is referred to as the discrete logarithm of b for the base

a, mod p expressed as dlog, ,(b).
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Primitive root example
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DH Algorithm Key terms...

* Twp publicly known numbers:
e A prime number g
* An integer a = primitive root of g

 User A

* Random integer X, (private key of A) < q
* Compute Y, (public key of A) = a*~mod g
* Compute K = (Y;)** mod g

e User B

* Random integer X; (private key of B) < q
* Compute Y, (public key of B) = a*: mod g
* Compute K = (Y,)** mod q

K should be identical



d
Alice

Alice and Bob share a

prime number ¢ and an
integer a, such that & < g and
« is a primitive root of ¢

Alice generates a private
key X ssuchthat X4 <g

Alice calculates a public
key Y = aXimod ¢

Alice receives Bob’s
public key Y g in plaintext

Alice calculates shared
secret key K = (Yg)¥4mod ¢

1

Bob

Alice and Bob share a

prime number ¢ and an
integer a, such that & < g and
« is a primitive root of ¢

Bob generates a private
key Xgsuch that Xg<g

Bob calculates a public
key Yp=aXsmod g

Bob receives Alice’s
public key Y 4 in plaintext

Bob calculates shared
secret key K = (YA)XBmod q

P

1




DH Numerical

Example 1

Let g = 11,

Find primitive root a,
We get a =2




DH Numerical

Example 1 (cont.)

Select X, = 8
* Compute Y, (public key of A) = a** mod q =28 mod 11 =3

Select X; = 4
* Compute Y (public key of B) = a** mod q =2*mod 11 =5

Sender A -> Computes K = (Y;)** mod q = 53 mod 11 =4
Sender B -> Computes K = (Y,)*®* mod q=3*mod 11 =4
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DH Numerical

Example 2

In a Diffie-Hellman Key Exchange, Alice and Bob have chosen
prime value g = 17 and primitive root = 5. If Alice’s secret key is 4

and Bob’s secret key is 6, what is the secret key they exchanged?

Ans - 16
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Security Aspect of DH

Possibility to compute Private key and preventive
measures

*letq=353,a=3,Y,=40 and Y, = 248

* Prevention — choose large primary key



Man in the Middle Attack

* Allows attacker to eavesdrop on the communication between two

users. Attack takes place during exchange of public keys.
Analogy: 2 users- Alice and bob, Attacker- Darth

 Darth could tell Alice that he was bob and tell bob that she was

Alice
* Alice would believe and reveal her conversation to Darth.
* Darth gathers information, alters and pass the message to Bob.

* Thus, conversation is hijacked.
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Man in the Middle Attack —
Scenario (1)

Select X,,, and X
Y

Alice Bob -

» Darth prepares for the attack,
* Generating two random private keys X, and X
* Calculate publickey Y,

* Calculate publickey Y,

53



Man in the Middle Attack —
Scenario (2)

* Secret Key to conversation with Alice

¢ Select X, and X K. =(Y, )02 mod q
* Yy, =a'Pimod q DARTH
* Y,,=a'"modq

iy Alice Bl

* As per key exchange algorithm, Alice transmits her public key Y, to Bob.
* Darth intercepts Y,

* Darth calculate secret key K, . for more conversation with Alice. K, = (V, )'»2 mod q.
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Y,

Man in the Middle Attack —
Scenario (3)

* Secret Key to conversation with Alice
K. = (Y. )22 mod q

*+ Secret Key to conversation with BOB
Koo = (Y )01 mod q

* SelectX,, and X,
* Y, =aPimodq
* Yy, =a®modq

| Y [ — 1 . X
ct X e |
a*Amod q BOb g ¥ a*8 mod q

* Secret Key K, = (Y, )*® mod q

Darth transmits Y, (in place of Y,)to Bob. Bob doesn’t have an idea, Y, is shared by Darth.

Bob calculate secret key K, using Yy,,. Secret Key K, = (¥,,, J*® mod g.

D1
Bob transmits his public key Y, to Alice.

Darth intercepts Y.

Darth calculate secret key Kg,,, for more conversation with Bob. K , = (¥, )01 mod g
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Man in the Middle Attack —
Scenario (4)

. Select\', and X

. \’2—

o

1mod q

mod q

S(‘(‘l‘(’t K(’y K,=(Y,, )"Amod q

Alice calculate secret key K, using ¥

. Secret Key K, -

DARTH

4N\

Darth transmits Y, (in place of Y, )to Alice. Alice doesn't have an idea, Y

vV
Iy

! N
iy

* Secret Key to conversation with Alice

K = (Y, )"

Kq., = (Y )0

Bob -

Hh,‘x/t‘i

Secret Key to conversation with BOB

mod q

mod (]

Secret Key K, = (Y,,, )*® mod q

is shared by Darth.

Now, Darth will capture all subsequent messages of Alice and Bob. Read and modify all the message and send to the alice

and Bob.

This vulnerability can be overcome with the use of digital signatures and public-key

certificates;

56



Elliptic Curve Cryptography

Asymmetric /public key cryptosystem
Provides equal security with smaller key size
Reduces processing overhead

Makes use of elliptic curves

Defined by some mathematical functions:

 y2=x3+ax+b

R
 Elliptic curve is represented as Ep(a,b). (\ﬁ/

P is a prime number and a,b are restricted

P
to mod p. /<//\

Wi =.2'3+ av s b
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Elliptic Curves over Real Numbers

Elliptic curves over real numbers use a special class of elliptic curves of the form

_'pzz.lj'i’le‘{*b

. : 2 : P
In the above equation, if da® + 27b* £ 0, the equation represents a nonsingular
elliptic curve; otherwise, the equation represented a singular elliptic curve. - '

where x, y, a and b are real numbers.
Each choice of the numbers a and b yields a different elliptic curve. For
example, a = -4 and b = 0.67 gives the elliptic curve with equation y? = x3 - 4x +

0.67; the graph of this curve is shown below:

¥y

O :

¥ =x3—4x +0.67
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Elliptic Curves over Real Numbers

Elliptic curves over real numbers use a special class of elliptic curves of the form

y2:x3+ax+b /

In the above equation, if 4a® + 27b* £ 0, the equation represents a nonsingular
elliptic curve; otherwise, the equation represented a singular elliptic curve. -

Looking at the equation, we can see that the left-hand side has a degree of 2 while
the right-hand side has a degree of 3. This means that a horizontal line can intersects
the curve in three points if all roots are real. However, a vertical line can intersects the
curve at most in two points.
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Elliptic Curves over Real Numbers

Example 10.13

Figure 10.12 shows two clliptic curves with equations f =x —4xand y* = x - 1. Both are non-
singular, However, the first has three real roots (x = -2 x=0, and x = 2), but the second has only
one real root (x = 1) and two imaginary oncs

e

Figure 10.12 Two elliptic curves over a real field

2-—0~ 2~b—
: yr=x - 4x : y=xt—|
| |

E O

a. Three real roots b. One real and two imagindry roots
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Elliptic Curve Cryptography

* Abelian groups:- commutative group

Operations



ECC- Addition operation on the points of

curve

. The operation is the addition of two points on the curve to get another point on

the curve

R =P _& Q. whcn‘: P=(x;. 1), Q = (x,, YQ_), and R ::‘(13. yy)

To find R on the curve, consider three cases as shown in Figure 10.13.

Figure 10.13 7hree adding cases in an elliptic curve

3a{R=P+Q)

C.{(O=P+(-P)
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ECC- Addition operation on the points of
curve (cont.)

2. (R=P+Q) b.(R=P+P) c.(O=P+{-P)

1. In the first case, the two points P = (xy, y,) and Q = (x5, y,) have different x-coordinates
and y-coordinates (x; # y; and x, # ¥,),' as shown in Figure 10.13a. The line con-
necting P and Q intercepts the curve at a point called <R. R is the reflection of <R
with respect to the x-axis. The coordinates of the point R, x5 and y;, can be found
by first finding the slope of the line, A, and then calculating the values of x5 and y,.
as shown below:

. ik : A= 0n =y B2
e N g = A R =z
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ECC- Addition operation on the points of
curve (cont.)

3. (R=P+0Q) b.(R=P+P) c.(O=P+(-P)

P ————————————————————— ——

2. In the second case, the two points overlap (R = P + P), as shown in Figure 10.13b.
In this case, the slope of the line and the coordinates of the point R can be found as
shown below:

A= Bxer @2y,
2 "?f:t;x-'J;;l'z"-—xl e KOS Y3 =A(xy —x3) =y,
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ECC- Addition operation on the points of

a{R=P+0Q)

curve (cont.)

bb(R=P+P)

c.(O=P+{(~-P))

3. In the third case, the two points are additive inverses of each other as shown in
Figure 10.13c. If the first point is P = (x, y;), the second point is Q = (x;, -¥1).
The line connecting the two points does not intercept the curve at a third point.
Mathematicians say that the intercepting point is at infinity; they define a point O
as the point at infinity or zero point, which is the additive identity of the group.
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ECC- Addition operation on the
points of curve (cont.)

e Abelian groups:

Properties of operation:

* Closure

* Associativity

* ldentity element
* Inverse element

* Commutativity



ECC- properties of operation

>Closure: For all @, b in A, the result of the operation a ¢ b is also in A.

> Associativity: For all @, b and c in A, the equation
(aeb)ec=ae(bec)holds.

>|dentity element: There exists an element e in A, such that for all

elements ain A, the equatione ® a =a ¢ e = a holds.

>|Inverse element: For each a in A, there exists an element b in A such

thatae b=b ¢ a =e, where e is the identity element.

>Commutativity: Foralla,binA,aeb=bea.

> A group in which the group operation is not commutative is called a

"non-abelian group" or "non-commutative group".
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ECC- properties of operation w.r.t.
PQ and R

I. Closure: It can be proven that adding two points, using the addition operation
defined in the previous section, creates another point on the curve.

2. Associativity: It can be proven that (P+ Q)+ R=P + (Q + R).
3. Commutativity: The group made from the points on a non-singular elliptic curve 1s
an abehan group; it can be proven that P+ Q=Q + P,

4. Existence of identity: The additive identity in this case is the zero point, 0. In other
words P=P+0=0+P.

Existence of inverse: Each point on the curve has an inverse. The inverse of a point
is its reflection with respect to the x-axis. In other words, the point P = (x1, 1) and

Q = (xy, —yy) are inverses of cach other, which means that P + Q = 0. Note that the
identity element is the inverse of itself,

N

A Group and a Field

The group defines the set of the points on the ellipiic curve and the add‘i—tion.operaﬁon on
the points. The field defines the addition, subtraction, multiplication, and division using
operations on real numbers that are needed to find the addition of the points in the group,



ECC over Galois Field GF(p) —
modular arithmetic

* Same addition operation as that of real numbers
but calculations are done in modulo p.

Elliptic curves over Z  :

>The curve of this type is prime curve

>The variables and coefficients are restricted to elements of a finite field.
>The values are restricted from 0 through p-1. If the values exceeds the range
perform modulo p.

>The curve is represented by y> mod p = (x* + ax +b) mod p
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ECC over GF(p) — modular
arithmetic (cont.)

Elliptic curve arithmetic over Z_ : 1 Ry
Addition: _ - Z
>Adding 2 points P(x_ ,y,p) and Q (xq' Y,) 8ives R(x, Y,) "’t‘ i
>Steps: N

>Find the slope A: y'=1"+ax+b
> A=(y,=y) / (x,=x)) ifP *Q

> A=(3x2+a) /2y, if P=Qwhere aisobtained from E_ (a,b)

>Find the Sum: R (i.e(x, y)) =P+ Q

- - )2
> X, =A% =X - X,

e Y = Ax=X) -y,
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ECC over GF(p) — modular
arithmetic (cont.)

Negating a point:

>1fQ= (x, ¥,

>Then —-Q = - (X, Y,) = (X, -¥,)

Subtraction: P-Qcan be P + (-Q).

>P-Q= (xp’ ,y_p) - (X, yq) = (xp‘ ,y,p) . (xq‘ -Y,mod p) . Now perform
addition.

Multiplication:

>0nly Scalar multiplication is possible. Multiplication between two
points are not possible. Repeated addition is performed.

>2P=P+P, 3P=P+P+Pandsoon. Note for slope (A) calculation use
the formula P=Q.

Division: only scalar division is possible. [1/a(x, y )] = at(x, v,)
Multiplication steps can be followed.
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ECC over GF(p) — Finding points on
curve




» For determining the security of various elliptic curve
ciphers, it is of some interest to know the number of points
in a finite abelian group defined over an elliptic curve.

> In the case of the finite group Er(a, b), the number of
points N is bounded by

p+1-2Vp=N=p+1+2Vp

» Note that the number of points in Ep(a, b) is approximately
equal to the number of elements in Zp, namely p elements.
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Understand- find mod for —ve no.




Understand- find mod for —ve no.




Understand- find mod for inverse no.
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Understand- find mod for inverse no.




Group

G=<2,+>
* A set of elements with a binary operation ( . Jwhose result is also
in the set and

* Has following properties:
* Closure:ifaandb areinsetG, then c=Db.a will always resultin value

which isin set G

* Associative law: (a.b).c = a.(b.c) (a+b)+c=a+(+0)
* Has identity e: e.a = a.e = a a+0=a
* Has inverse a’: a.a’ = e a+(—a)=0

* If commutative a.b = b.a a+b=b+a

* then forms an abelian group
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A G ro u p B exa m p | e in £, we can perform+ and -

G < Z,,+> is Abelian Group
G < Z,,*> is not Abelian Group

((3+5)+2)mod 6 = (3 + (5 + 2))mod 6

Le={0LEg ALy G=<duto || &=t ((8mod6) + 2)mod 6 = (3 + (7mod6)mod 6)

a=3,b=5,c=(a+b)modn (24+2)mod6 = (3+1)mod 6
c=@B+5)mod6 |c= 8’5*)5)";02 6 (4)mod 6 = (4)mod 6
'R gg)m"d 6 P ((3%5) * 2)mod 6 = (3 * (5 * 2))mod 6
- ((15mod6) * 2)mod 6 = (3 * (10mod6)mod 6)
(3*2)mod 6 = (3 *4)mod 6
(3+0)mod6=3 (06)mod 6 = (12)mod 6
(3*1)mod 6 =3 0=0
(44 (—4))mod6 =0 4+ (@ YH)mod6 =1
4+ (2))mod6=0
Closure (6)mod 6 =0
Associative
(3 +2)mod 6 = (2 + 3)mod 6 (3*2)mod 6 = (2*3)mod 6
(5)mod 6 = (5)mod 6 (6)mod 6 = (6)mod 6

Inverse

v
v
Identity v
v
v

<X NS A

Commutative




A Field

F=<Z,++>
* A set of elements with two binary operations whose result is also

in the set and e | Wi+
. . Closure Closure
* Has following properties: T st
* It's an Abelian Group for Addition Operation Identity Identity
* It's an Abelian Group for Multiplication Operation ™™ cus
Commutative Commutative

* |dentity of 1%t operation has no inverse in 2" operation.
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A Field - example

Z; ={0,1,2,3,4,5,6)

F=<Z,,+*> |Z;={123,4)5,6}

P represents prime numbers

81



A Field - example

in Z, we can perform+,—,* and +

Z; ={0,1,2,34,56}| F = <Z,,+*> | Z; = {1,2,3,4,5,6}

P represents prime numbers

(3+0)mod7 =3 (4 +(—4))mod7 =0 (4* (@4 Y)Imod7 =1

= (4 + (—4mod 7))mod 7 = 0 d74) =1y
(B*1)mod7 =3 (4 + (3))mod 7 = 0 gcC

mmoa7=0  [FIEIEIEIESEENS
1 7 4 3 BN -1
1 f4 030 1 e 2

Extended Euclidean to find the 3 3 1 0 EEEN -7
+ valueof 4=t inmod 7 0 =7

|
Closure v v (4% (4 Y))mod 7 = 1
Associative / v ged(7,4) =1
(4% (2))mod7 =1
Identity v v (8)mod7 =1
Inverse v V4
Commutative v v



Finding Inverse Numerical 1




Addition rules




Addition numerical

* P=(3,10), Q=(9,7), Ex5(1,1)
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Numerical — 2 (cont.)
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Elliptic Curve over GF(2™)

» For elliptic curves over GF(2™), we use a cubic equation
in which the variables and coefficients all take on
values in GF(2™) for some number m and in which
calculations are performed using the rules of arithmetic

in GF(2M).

a It turns out that the form of cubic equation appropriate
for cryptographic applications for elliptic curves is
somewhat different for GF(2™) than for Zp.
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Elliptic Curve over GF(2™)

» The formis

o Y2 +xy=x3+ax2+b

» where it is understood that the variables x and y and
the coefficients a and b are elements of GF(2™) and
that calculations are performed in GF(2™).
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EHIptIC Curve over GF(2™M) —rule

It can be shown that a finite abelian group can be defined based on the set
Ean(a, b), provided that b # (. The rules for addition can be stated as follows. For
all points P, Q € Ey»(a, b):

P+ 0O =P

1.

3

4. If P = (xp, vp) then R = 2P = (xg, vg) is determined by the following rules:

P = (xp, vp). then P + (xp.xp + vp) =

negative of P, which is denoted as —P.

If P=

(xp, vp) and Q = (xp.yp) with P # —Q and P # O,

R =F + O = (xp, vg) 1s determined by the following rules:

where

where

Xg =X +A+x+x5+a

Ve = AMxp + xg) + Xg + yp

Yo T yp
A= —-
IQ+_1'F

Xp =X+ A+a

yr = xp + (A + Dag

J:.H.—IF+}_F

Xp

(). The point (xp, xp + vp) is the

then
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GF(2™)

« Computational considerations:
* A polynomial f(x) in GF(2") is;
f(X)=a x*+a x2+. . .4ax+a,
- Uniquely represented by its 'n’ coefficients (a,_,, a, .,
......... a,). a e {0,1}

< Thus every golynomlal iIn GF(2") can be represented by
an n-bit num

* the coefficients and variables are in finite field
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GF(2™M) - basics










Elliptic Curve over GF(2™)

* Find points on curve

e Reference -
https://www.certicom.com/content/certicom/en/4
1-an-example-of-an-elliptic-curve-group-over-
f2m.html



ECC Algorithm - ECDH

e ECC key exchange — similar to DH Key exchange

Global public elements

Eq(a,b) - Elliptic curve parameters — a,b and g — prime no. or integer of
the form 2™,

G — point on the elliptic curve

User A key generation
* Select private key n, , n,<n

 Calculate public key P,, P,=n,*G

User B key generation
* Select private key ng, hg<n

* Calculate public key Py, Pe=n; * G



ECDH Algorithm

* Calculation of secret key by User A, K = n, * P,
* Calculation of secret key by User B, K = ng * P,

ECC encryption
Let the message be M
First encode this message M into a point on elliptic curve.

Let this point be Pm

* For encryption: choose a random positive integer K.

* The cipher point will be,
« Cm ={KG, P +KP,}
* This point will be sent to receiver.



ECDH Algorithm

For Decryption: multiply x-coordinate with receiver’s secret
key - KG*n,

Then subtract from coordinate of cipher point;
. Pm + KP;—(KG * ng )

We know that, P;=ng; * G

So substitute in above equation and we get,

* Pm + KP; — KPg
_Pm

So, receiver gets the same point.



ECDH - numerical




ECDH — numerical (cont.)




ECDH — numerical (cont.)




ECDH — numerical (cont.)




ECDH — numerical (cont.)




ECDH — numerical (cont.)
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Factoring with Elliptic Curves

Basis idea: To factorize an integer n choose an elliptic curve E, a point P on E and
compute (modulo n) either iP for i =2.3,4,... or 2P for j =1,2,.... The point i1s
that in doing that one needs to compute gcd(k,n) for various k. If one of these values is
between 1 and n we have a factor of n.

Factoring of large integers: The above idea can be easily parallelised and converted to
using an enormous number of computers to factor a single very large n. Each computer
gets some number of elliptic curves and some points on them and multiplies these points
by some integers according to the rule for addition of points. If one of computers
encounters, during such a computation, a need to compute 1 < ged(k, n) < n,
factorization is finished.

Example: If curve E : y* = x* + 4x + 4 (mod 2773) and its point P = (1,3) are used,
then 2P = (1771,705) and in order to compute 3P one has to compute

gcd(1770,2773) = 59 - factorization is done.

Example: For elliptic curve E : y* = x° + x — 1 (mod 35) and its point P = (1,1) we
have 2P = (2,2);4P = (0,22); 8P = (16, 19) and at the attempt to compute 9P one
needs to compute ged(15,35) = 5 and factorization is done.
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Factoring with Elliptic Curves -
example

Step 1. Generate an elliptic curve with point P mod n
y* =x" +10x -2 (mod 4453) let P = (1,3)
Step 2. Compute BP for some integer B.
3x° +10 13
2y 6
We used the fact that gced(6,4453)=1to find 6 '=3711 (mod 4453)

Lets compute 2P [first = 3713 (mod 4453)

we find that 2P = (x, y) with x=371 3% .2 ¥

3T13(x—1)—3= 3230

tor 4453

n‘-u-"'

4
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Factoring wit
exam

N Elliptic Curves —

ole (cont.)

Step 3. If step 2 fails because some slope does not exist mod n, the we

have found a factor of n.

1o compute 3P we add P and 2P

.. 3230~3 3227

The slope is

4332-1 4331

But gcd(4331,4453)=61%1 we can not find 43317 (mod 4453)

However, we have found the factor 61 of 4453
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Elliptic Curve Cryptography
Simulating ElGamal



ElGamal with Elliptic Curve

Figure 10.16 ElGamal cryptosystem using the elliptic curve

Note:
Operations such as addition and mulliplicalionj Bob
are over an elliptic curve group. !
+ 44
a IR DR ol i e R X

Public key: (¢, €;, EP)

Alice

TR AT

ol

r (e, £;, l-.,)
Y d
Ciphenext: (C,, C,) :
P —l Cy=rxe, -
CI=P+ r>(¢'2

Encryption e
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ElGamal with Elliptic Curve (cont.)

Generating Public and Private Keys

Bob chooses E(a, &) with an elliptic curve over GE(p) or GF(2").

Bob chooses a point on the curve, &(x;, y;).

Bob chooses an integer d.

Bob calculates e,(x,, y,) = d X ey(xy, y;). Note that multiplication here means mul-
tiple addition of points as defined before.

5. Bob announces Ela, b), €)(xy, y;), and ¢;(x5, ¥) as his public key; he keeps d as his
private key.

- =

Encryption

Alice selects P, a point on the curve, as her plaintext, P. She then calculates a pair of
points on the text as ciphertexts:

i CrmrXey i el Ca e B PRy Wi SRR
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ElGamal with Elliptic Curve (cont.)

Decryption

Bob, after receiving C, and C,, calculates P, the plaintext using the following formula.
= Cy = @HC) | Themios s hrs oeans i wit the nverse

We can prove that the P calculated by Bob is the same as that intended by Alice, as
shown below:

Prxe;~(dxrxe) =R (rxdXe) ~(rxdxe)=P+0=P

P, Cy, Cy, €y, and e, are all points on the curve. Note that the result of adding two
inverse points on the curve is the zere point.
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ElGamal with Elliptic Curve -
Numerical

Example 10.19

Here is a very trivial example of encipherment using an elliptic curve over GE(p).

e R B e O

S

Baob selects Eg7(2, 3) as the elliptic curve over GF(p).

Bob selects ¢y = (2, 22) and d = 4.

Bob calculates e, = (13, 45), where e, =d X ¢},

Bob publicly announces the tuple (E, ey, ;).

Alice wants to send the plaintext P = (24, 26) to Bob. She selects r= 2,

Alice finds the point C; = (35, 1), where C; =rxe).

Alice finds the point C; = (21, 44), where C; =P + rx e;,

Bob receives Cy and C,. He uses 2 X C, (35, 1) to get (23, 25).

Bob inverts the point (23, 25) to get the point (23, 42).

Bob adds (23, 42) with C, = (21, 44) to get the original plaintext P = (24, 26).
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