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Public Key Cryptosystems (1)
• Public-key/two-key/asymmetric cryptography involves the use of two keys: –

• a public-key, which may be known by anybody, and can be used to encrypt

messages, and verify signatures

• a related private-key, known only to the recipient, used to decrypt

messages, and sign (create) signatures

• Is asymmetric because – those who encrypt messages or verify signatures

cannot decrypt messages or create signatures

• Asymmetric algorithms rely on one key for encryption and a different but 

related key for decryption. These algorithms have the following important 

characteristic.

• It is computationally infeasible to determine the decryption key given only 

knowledge of the cryptographic algorithm and the encryption key. 2



Public-Key Cryptosystems (2)
• In addition, some algorithms, such as RSA, also exhibit the following

characteristic.

• Either of the two related keys can be used for encryption, with the other used for

decryption.

• A public-key encryption scheme has following ingredients

• Plaintext: This is the readable message or data that is fed into the algorithm as input.

• Encryption algorithm: The encryption algorithm performs various transformations on

the plaintext.

• Public and private keys: This is a pair of keys that have been selected so that if one is used

for encryption, the other is used for decryption. The exact transformations performed by

the algorithm depend on the public or private key that is provided as input.

• Decryption algorithm: This algorithm accepts the ciphertext and the matching key and

produces the original plaintext.
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Terms for further slides ..

• There is some source A that produces a message in plaintext, X = [X1, X2, …., XM].

• The M elements of X are letters in some finite alphabet.

• The message is intended for destination B.

• B generates a related pair of keys: a public key, PUb, and a private key, PRb.

• PRb is known only to B, whereas PUb is publicly available and therefore accessible by A.

• With the message X and the encryption key PUb as input, A forms the ciphertext Y =

[Y1, Y2, …. , YN]:

• Y = E(PUb, X)

• The intended receiver, in possession of the matching private key, is able to invert the

transformation:

• X = D(PRb,Y)
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Public Key Cryptosystems (3)
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Public Key Cryptosystems (4)
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Public Key Cryptosystems -
Confidentiality
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Public Key Cryptosystems -
Authentication
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Public Key Cryptosystems
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Application of public key 
cryptography

• Encryption/Decryption: sender encrypts the message

with receiver’s public key

• Digital Signature : sender signs the message with his

private key

• Key exchange: Both sender and receiver cooperate to

exchange a session key typically for conventional

encryption.
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Application of public key 
cryptography
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Requirements of Public Key 
Cryptography (1)

Algorithm must fulfill;

• It is computationally easy for a party B to generate a key pair

(public key PUb, private key PRb).

• It is computationally easy for a sender A, knowing the public key

and the message to be encrypted, M, to generate the

corresponding ciphertext:

• C = E(PUb, M)

• It is computationally easy for the receiver B to decrypt the

resulting ciphertext using the private key to recover the original

message:

• M = D(PRb, C) = D[PRb, E(PUb, M)]
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Requirements of Public Key 
Cryptography (2)

Algorithm must fulfill;

• It is computationally infeasible for an adversary, knowing

the public key, PUb, to determine the private key, PRb.

• It is computationally infeasible for an adversary, knowing

the public key, PUb, and a ciphertext C, to recover the

original message, M.

• The two keys can be applied in either order:

• M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]
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The RSA Algorithm (1)

• It was developed in 1977 by Ron Rivest, Adi Shamir, and

Len Adleman at MIT and first published in 1978 [RIVE78].

• The Rivest-Shamir-Adleman (RSA) scheme has since that time reigned

supreme as the most widely accepted and implemented general-

purpose approach to public-key encryption.

• The RSA scheme is a cipher in which the plaintext and ciphertext are

integers between 0 and n - 1 for some n.

• A typical size for n is 1024 bits, n is less than 21024.
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The RSA Algorithm (2)
Description

• RSA makes use of an expression with exponentials.

• Plaintext is encrypted in blocks, with each block having a binary value

less than some number n. That is, the block size must be less than or

equal to log2(n) + 1;

• in practice, the block size is i bits, where 2i < n <= 2i+1

• Encryption and decryption are of the following form, for some plaintext

block M and ciphertext block C.

• C = Me mod n

• M = Cd mod n
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The RSA Algorithm (3)
Description

• Both sender and receiver must know the value of n.

• The sender knows the value of e, and only the receiver

knows the value of d.

• Thus, this is a public key encryption algorithm with

a public key of PU = {e, n} and

a private key of PR = {d, n}.
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The RSA Algorithm (4)
Description

• For this algorithm to be satisfactory for public-key

encryption, the following requirements must be met.
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The RSA Algorithm (5)
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The RSA Algorithm (5)
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RSA Scheme
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RSA Numerical
Example 1

• P=3, q=5

• N = p*q =15

• Φ(n) = (p-1)(q-1) = 2*4 = 8

• Gcd(e, Φ(n) ) = 1 where, 1<e< Φ(n)

• Let e = 3

de mod Φ(n) = 1

d * 3 mod 8 = 1

• So, d = 3

• Public key = (e,n) = (3,15)

• Private key = (d,n) = (3,15)

• Let M= 4

• C = Me mod n = 43 mod 15 = 4

• M = Cd mod n = 43 mod 15 = 4
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RSA Numerical
Example 2 

• P=11, q=3
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RSA Numerical
Example 2

• P=11, q=3

• N = p*q =33

• Φ(n) = (p-1)(q-1) = 10*2 = 20

• Gcd(e, Φ(n) ) = 1 where, 1<e< Φ(n)

• Let e = 3

de mod Φ(n) = 1

d * 3 mod 20 = 1

• So, d = 7

• Public key = (e,n) = (3,33)

• Private key = (d,n) = (7,33)

• Let M= 7

• C = Me mod n = 73 mod 33 = 13

• M = Cd mod n = 137 mod 33 = 7
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Attacks on RSA
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Attacks on RSA

• Mathematical attack
• Factorization

• Common Modulus

• Short Message attack

• Timing attack

• Cycling attack

• Chosen cipher attack
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Factorization attacks on RSA
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Factorization attacks on RSA 
(cont.)
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Common Modulus Attack
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Short Message Attack
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Short Message Attack (cont.)
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Short Message Attack (cont.)
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Short Message Attack (cont.)

33



Short Message Attack (cont.)
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Timing Attack 
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Timing Attack (cont.) 
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Timing Attack (cont.) 
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Cycling Attack
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Chosen Cipher Attack 

39Reference : https://crypto.stackexchange.com/questions/2323/how-does-a-chosen-plaintext-attack-on-rsa-work



Elliptic Curve Cryptography
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How can two people in a crowded room derive a

secret that only the pair know, without revealing

the secret to anyone else that might be listening?
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Diffie Hellman Key Exchange(1)

• The Diffie-Hellman Key Exchange is a means for two

parties to jointly establish a shared secret over an

unsecure channel, without having any prior knowledge of

each other.

• This protocol is widely used in protocols like IPSec and

SSL/TLS.

• Using this protocol, sending and receiving devices in a

network derive a secret key then be used for subsequent

symmetric encryption of messages.
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Diffie Hellman Key Exchange(2)

• Not an encryption algo

• Used to exchange secret key between two users

• Uses asymmetric encryption to exchange the secret key

• Depends for its effectiveness on the difficulty of computing

Discrete Logarithms (Refer Chapter – Number Theory

(Stalling)).
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Diffie Hellman Key Exchange(3)

• A primitive root of a prime number p is one whose powers modulo p

generate all the integers from 1 to p - 1. That is, if a is a primitive root of

the prime number p, then the numbers

• The exponent i is referred to as the discrete logarithm of b for the base

a, mod p expressed as dloga,p(b).
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Primitive root example
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DH Algorithm Key terms…
• Twp publicly known numbers: 

• A prime number q

• An integer α = primitive root of q

• User A
• Random integer XA (private key of A) < q

• Compute YA (public key of A) = αXA mod q 

• Compute K = (YB)XA mod q

• User B
• Random integer XB (private key of B) < q

• Compute YB (public key of B) = αXB mod q

• Compute K = (YA)XB mod q

• K should be identical
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DH Numerical

Example 1

Let q = 11,

Find primitive root α , 

We get α = 2
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DH Numerical

Example 1 (cont.)

Select XA = 8
• Compute YA (public key of A) = αXA mod q = 28 mod 11 = 3

Select XB = 4
• Compute YB (public key of B) = αXB mod q = 24 mod 11 = 5

Sender A -> Computes K = (YB)XA mod q = 58 mod 11 = 4

Sender B -> Computes K = (YA)XB mod q = 34 mod 11 = 4
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DH Numerical

Example 2

In a Diffie-Hellman Key Exchange, Alice and Bob have chosen 

prime value q = 17 and primitive root = 5. If Alice’s secret key is 4 

and Bob’s secret key is 6, what is the secret key they exchanged?

Ans - 16
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Security Aspect of DH

Possibility to compute Private key and preventive 
measures

• Let q = 353 , α = 3, YA = 40 and YB = 248

• Prevention – choose large primary key
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Man in the Middle Attack

• Allows attacker to eavesdrop on the communication between two

users. Attack takes place during exchange of public keys.

Analogy: 2 users- Alice and bob, Attacker- Darth

• Darth could tell Alice that he was bob and tell bob that she was

Alice

• Alice would believe and reveal her conversation to Darth.

• Darth gathers information, alters and pass the message to Bob.

• Thus, conversation is hijacked.
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Man in the Middle Attack –
Scenario (1)
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Man in the Middle Attack –
Scenario (2)
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Man in the Middle Attack –
Scenario (3)
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Man in the Middle Attack –
Scenario (4)
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This vulnerability can be overcome with the use of digital signatures and public-key 
certificates;



Elliptic Curve Cryptography

• Asymmetric /public key cryptosystem

• Provides equal security with smaller key size

• Reduces processing overhead

• Makes use of elliptic curves

• Defined by some mathematical functions:

• y2 = x3 + ax + b

• Elliptic curve is represented as Ep(a,b). 

P is a prime number and a,b are restricted 

to mod p. 
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Elliptic Curves over Real Numbers

58

where x, y, a and b are real numbers.

Each choice of the numbers a and b yields a different elliptic curve. For

example, a = -4 and b = 0.67 gives the elliptic curve with equation y2 = x3 - 4x +

0.67; the graph of this curve is shown below:



Elliptic Curves over Real Numbers
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Elliptic Curves over Real Numbers
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Elliptic Curve Cryptography

• Abelian groups:- commutative group

Operations
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ECC- Addition operation on the points of 
curve

62



ECC- Addition operation on the points of 
curve (cont.)
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ECC- Addition operation on the points of 
curve (cont.)
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ECC- Addition operation on the points of 
curve (cont.)
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ECC- Addition operation on the 
points of curve (cont.)

• Abelian groups:

Properties of operation:

• Closure

• Associativity

• Identity element

• Inverse element

• Commutativity
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ECC- properties of operation
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ECC- properties of operation w.r.t.
P,Q and R
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A Group and a Field



ECC over Galois Field GF(p) –
modular arithmetic

• Same addition operation as that of real numbers 
but calculations are done in modulo p.
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ECC over GF(p) – modular 
arithmetic (cont.)
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ECC over GF(p) – modular 
arithmetic (cont.)
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ECC over GF(p) – Finding points on 
curve
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Understand- find mod for –ve no.
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Understand- find mod for –ve no.
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Understand- find mod for inverse no.
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Understand- find mod for inverse no.
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Group
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A Group - example

Zn + *

Closure ✓ ✓

Associative ✓ ✓

Identity ✓ ✓

Inverse ✓ ❌

Commutative ✓ ✓



A Field
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A Field - example
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A Field - example

Zn + *

Closure ✓ ✓

Associative ✓ ✓

Identity ✓ ✓

Inverse ✓ ✓

Commutative ✓ ✓



Finding Inverse Numerical 1
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Addition rules
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Addition numerical

• P = (3,10), Q = (9,7), E23(1,1)
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Addition Numerical 
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Multiplication Numerical 
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Multiplication Numerical 
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Numerical - 2
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Numerical – 2 (cont.)
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Elliptic Curve over GF(2m)
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Elliptic Curve over GF(2m)
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Elliptic Curve over GF(2m) – rule 
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GF(2m) 
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GF(2m) - basics 
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GF(2m) - basics 
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GF(2m) - basics 
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Elliptic Curve over GF(2m)

• Find points on curve

• Reference -
https://www.certicom.com/content/certicom/en/4
1-an-example-of-an-elliptic-curve-group-over-
f2m.html
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ECC Algorithm - ECDH

• ECC key exchange – similar to DH Key exchange

Global public elements

• Eq(a,b) - Elliptic curve parameters – a,b and q – prime no. or integer of 
the form 2m.

• G – point on the elliptic curve

• User A key generation

• Select private key nA , nA < n

• Calculate public key PA, PA = nA * G

• User B key generation

• Select private key nB , nB < n

• Calculate public key PB, PB = nB * G
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ECDH Algorithm

• Calculation of secret key by User A,  K  =  nA * PB

• Calculation of secret key by User B,  K  =  nB * PA

ECC encryption

Let the message be M

First encode this message M into a point on elliptic curve.

Let this point be Pm

• For encryption: choose a random positive integer K.

• The cipher point will be,

• Cm = {KG, Pm + KPB}

• This point will be sent to receiver.
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ECDH Algorithm

• For Decryption: multiply x-coordinate with receiver’s secret 
key    - KG * nB

• Then subtract from coordinate of cipher point;

• Pm + KPB – ( KG * nB )

• We know that, PB = nB * G

So substitute in above equation and we get,

• Pm + KPB – KPB 

= Pm

So, receiver gets the same point.
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ECDH - numerical
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ECDH – numerical (cont.)
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ECDH – numerical (cont.)
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ECDH – numerical (cont.)
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ECDH – numerical (cont.)
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ECDH – numerical (cont.)
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Factoring with Elliptic Curves
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Factoring with Elliptic Curves -
example
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Factoring with Elliptic Curves –
example (cont.)
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Elliptic Curve Cryptography 
Simulating ElGamal
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ElGamal with Elliptic Curve
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ElGamal with Elliptic Curve (cont.)
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ElGamal with Elliptic Curve (cont.)
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ElGamal with Elliptic Curve -
Numerical
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